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Abstract

With the recent rise in popularity and size of
social media, there is a growing need for sys-
tems that can extract useful information from
this amount of data. We address the prob-
lem of detecting new events from a stream of
Twitter posts. To make event detection feasi-
ble on web-scale corpora, we present an algo-
rithm based on locality-sensitive hashing which
is able overcome the limitations of traditional
approaches, while maintaining competitive re-
sults. In particular, a comparison with a state-
of-the-art system on the first story detection
task shows that we achieve over an order of
magnitude speedup in processing time, while
retaining comparable performance. Event de-
tection experiments on a collection of 160 mil-
lion Twitter posts show that celebrity deaths
are the fastest spreading news on Twitter.

1 Introduction

In the recent years, the microblogging service Twit-
ter has become a very popular tool for express-
ing opinions, broadcasting news, and simply com-
municating with friends. People often comment on
events in real time, with several hundred micro-blogs
(tweets) posted each second for significant events.
Twitter is not only interesting because of this real-
time response, but also because it is sometimes ahead
of newswire. For example, during the protests fol-
lowing Iranian presidential elections in 2009, Iranian
people first posted news on Twitter, where they were
later picked up by major broadcasting corporations.
Another example was the swine flu outbreak when
the US Centre for disease control (CDC) used Twit-
ter to post latest updates on the pandemic. In ad-
dition to this, subjective opinion expressed in posts
is also an important feature that sets Twitter apart
from traditional newswire.
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New event detection, also known as first story de-
tection (FSD)! is defined within the topic detection
and tracking as one of the subtasks (Allan, 2002).
Given a sequence of stories, the goal of FSD is to
identify the first story to discuss a particular event.
In this context, an event is taken to be something
that happens at some specific time and place, e.g.,
an earthquake striking the town of I’Aquila in Italy
on April 6th 2009. Detecting new events from tweets
carries additional problems and benefits compared
to traditional new event detection from newswire.
Problems include a much higher volume of data to
deal with and also a higher level of noise. A major
benefit of doing new event detection from tweets is
the added social component — we can understand the
impact an event had and how people reacted to it.

The speed and volume at which data is coming
from Twitter warrants the use of streaming algo-
rithms to make first story detection feasible. In
the streaming model of computation (Muthukrish-
nan, 2005), items (tweets in our case) arrive contin-
uously in a chronological order, and we have to pro-
cess each new one in bounded space and time. Recent
examples of problems set in the streaming model in-
clude stream-based machine translation (Levenberg
and Osborne, 2009), approximating kernel matrices
of data streams (Shi et al., 2009), and topic mod-
elling on streaming document collections (Yao et al.,
2009). The traditional approach to FSD, where each
new story is compared to all, or a constantly grow-
ing subset, of previously seen stories, does not scale
to the Twitter streaming setting. We present a FSD
system that works in the streaming model and takes
constant time to process each new document, while
also using constant space. Constant processing time
is achieved by employing locality sensitive hashing
(LSH) (Indyk and Motwani, 1998), a randomized
technique that dramatically reduces the time needed

1We will be using the terms first story detection and new

event detection interchangeably.
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to find a nearest neighbor in vector space, and the
space saving is achieved by keeping the amount of
stories in memory constant.

We find that simply applying pure LSH in a FSD
task yields poor performance and a high variance in
results, and so introduce a modification which vir-
tually eliminates variance and significantly improves
performance. We show that our FSD system gives
comparable results as a state-of-the-art system on
the standard TDT5 dataset, while achieving an order
of magnitude speedup. Using our system for event
detection on 160 million Twitter posts shows that i)
the number of users that write about an event is more
indicative than the volume of tweets written about
it, ii) spam tweets can be detected with reasonable
precision, and iii) news about deaths of famous peo-
ple spreads the fastest on Twitter.

2 First Story Detection
2.1 Traditional Approach

The traditional approach to first story detection is to
represent documents as vectors in term space, where
coordinates represent the (possibly IDF-weighted)
frequency of a particular term in a document. Each
new document is then compared to the previous ones,
and if its similarity to the closest document (or cen-
troid) is below a certain threshold, the new document
is declared to be a first story. For example, this ap-
proach is used in the UMass (Allan et al., 2000) and
the CMU system (Yang et al., 1998). Algorithm 1
shows the exact pseudocode used by the UMass sys-
tem. Note that dis,,(d) is the novelty score as-
signed to document d. Often, in order to decrease
the running time, documents are represented using
only n features with the highest weights.

Algorithm 1: Traditional FSD system based on
nearest-neighbor search.

1 foreach document d in corpus do

2 foreach term t in d do

3 foreach document d’ that contains t do
4 | update distance(d, d)

5 end

6 end

7 diSmin (d) = ming {distance(d,d’')}

8 add d to inverted index

9 end

2.2 Locality Sensitive Hashing

The problem of finding the nearest neighbor to a
given query has been intensively studied, but as the
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dimensionality of the data increases none of the cur-
rent solutions provide much improvement over a sim-
ple linear search (Datar et al., 2004). More recently,
research has focused on solving a relaxed version of
the nearest neighbor problem, the approximate near-
est neighbor, where the goal is to report any point
that lies within (1 + €)r distance of the query point,
where r is the distance to the nearest neighbor. One
of the first approaches to solving the approximate-
NN problem in sublinear time was described in Indyk
and Motwani (1998), where the authors introduced a
new method called locality sensitive hashing (LSH).
This method relied on hashing each query point into
buckets in such a way that the probability of collision
was much higher for points that are near by. When a
new point arrived, it would be hashed into a bucket
and the points that were in the same bucket were
inspected and the nearest one returned.

Because we are dealing with textual documents,
a particularly interesting measure of distance is the
cosine between two documents. Allan et al. (2000)
report that this distance outperforms the KL diver-
gence, weighted sum, and language models as dis-
tance functions on the first story detection task. This
is why in our work we use the hashing scheme pro-
posed by Charikar (2002) in which the probability
of two points colliding is proportional to the cosine
of the angle between them. This scheme was used,
e.g., for creating similarity lists of nouns collected
from a web corpus in Ravichandran et al. (2005). It
works by intersecting the space with random hyper-
planes, and the buckets are defined by the subspaces
formed this way. More precisely, the probability of
two points x and y colliding under such a hashing
scheme is

0(x,y)

Pcoll:]-_ia
s

(1)
where 6(x,y) is the angle between x and y. By us-
ing more than one hyperplane, we can decrease the
probability of collision with a non-similar point. The
number of hyperplanes k can be considered as a num-
ber of bits per key in this hashing scheme. In par-
ticular, if x - u; < 0,7 € [1...k] for document z and
hyperplane vector u;, we set the i-th bit to 0, and
1 otherwise. The higher k is, the fewer collisions
we will have in our buckets but we will spend more
time computing the hash values.? However, increas-
ing k also decreases the probability of collision with
the nearest neighbor, so we need multiple hash ta-
bles (each with k independently chosen random hy-
perplanes) to increase the chance that the nearest
neighbor will collide with our point in at least one of

2Probability of collision under k random hyperplanes will

be Pk

coll”



them. Given the desired number of bits k, and the
desired probability of missing a nearest neighbor §,
one can compute the number of hash tables L as

L =log, px 0.

(2)
2.3 Variance Reduction Strategy

Unfortunately, simply applying LSH for nearest
neighbor search in a FSD task yields poor results
with a lot of variance (the exact numbers are given in
Section 6). This is because LSH only returns the true
near neighbor if it is reasonably close to the query
point. If, however, the query point lies far away
from all other points (i.e., its nearest neighbor is far
away), LSH fails to find the true near neighbor. To
overcome this problem, we introduce a strategy by
which, if the LSH scheme declares a document new
(i.e., sufficiently different from all others), we start a
search through the inverted index, but only compare
the query with a fixed number of most recent doc-
uments. We set this number to 2000; preliminary
experiments showed that values between 1000 and
3000 all yield very similar results. The pseudocode
shown in algorithm 2 summarizes the approach based
on LSH, with the lines 11 and 12 being the variance
reduction strategy.

Algorithm 2: Our LSH-based approach.
input: threshold ¢

1 foreach document d in corpus do

2 add d to LSH

3 S « set of points that collide with d in LSH

4 dis'rmﬁn (d) —1

5 foreach document d’ in S do

6

7

8

9

¢ = distance(d, d’)
if ¢ < dispn(d) then
| dismin(d) — ¢

end
10 end
11 if dispin(d) >= t then
12 compare d to a fixed number of most

recent documents as in Algorithm 1 and
update disp;, if necessary

13 end

14 assign score disi,(d) to d
15 add d to inverted index

16 end

3 Streaming First Story Detection

Although using LSH in the way we just described
greatly reduces the running time, it is still too expen-
sive when we want to deal with text streams. Text
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streams naturally arise on the Web, where millions
of new documents are published each hour. Social
media sites like Facebook, MySpace, Twitter, and
various blogging sites are a particularly interesting
source of textual data because each new document
is timestamped and usually carries additional meta-
data like topic tags or links to author’s friends. Be-
cause this stream of documents is unbounded and
coming down at a very fast rate, there is usually a
limit on the amount of space/time we can spend per
document. In the context of first story detection,
this means we are not allowed to store all of the pre-
vious data in main memory nor compare the new
document to all the documents returned by LSH.

Following the previous reasoning, we present the
following desiderata for a streaming first story de-
tection system: we first assume that each day we
are presented with a large volume of documents
in chronological order. A streaming FSD system
should, for each document, say whether it discusses a
previously unseen event and give confidence in its de-
cision. The decision should be made in bounded time
(preferably constant time per document), and using
bounded space (also constant per document). Only
one pass over the data is allowed and the decision
has to be made immediately after a new document
arrives. A system that has all of these properties can
be employed for finding first stories in real time from
a stream of stories coming down from the Web.

3.1 A constant space and time approach

In this section, we describe our streaming FSD sys-
tem in more depth. As was already mentioned in
Section 2.2, we use locality sensitive hashing to limit
our search to a small number of documents. How-
ever, because there is only a finite number of buck-
ets, in a true streaming setting the number of docu-
ments in any bucket will grow without a bound. This
means that i) we would use an unbounded amount
of space, and ii) the number of comparisons we need
to make would also grow without a bound. To alle-
viate the first problem, we limit the number of doc-
uments inside a single bucket to a constant. If the
bucket is full, the oldest document in the bucket is
removed. Note that the document is removed only
from that single bucket in one of the L hash tables
— it may still be present in other hash tables. Note
that this way of limiting the number of documents
kept is in a way topic-specific. Luo et al. (2007) use
a global constraint on the documents they keep and
show that around 30 days of data needs to be kept
in order to achieve reasonable performance. While
using this approach also ensures that the number of
comparisons made is constant, this constant can be



rather large. Theoretically, a new document can col-
lide with all of the documents that are left, and this
can be quite a large number (we have to keep a suffi-
cient portion of the data in memory to make sure we
have a representative sample of the stream to com-
pare with). That is why, in addition to limiting the
number of documents in a bucket, we also limit our-
selves to making a constant number of comparisons.
We do this by comparing each new document with
at most 3L documents it collided with. Unlike Datar
et al. (2004), where any 3L documents were used, we
compare to the 3L documents that collide most fre-
quently with the new document. That is, if S is the
set of all documents that collided with a new doc-
ument in all L hash tables, we order the elements
of S according to the number of hash tables where
the collision occurred. We take the top 3L elements
of that ordered set and compare the new document
only to them.

4 Detecting Events in Twitter Posts

While doing first story detection on a newspaper
stream makes sense because all of the incoming doc-
uments are actual stories, this is not the case with
Twitter posts (tweets). The majority of tweets are
not real stories, but rather updates on one’s personal
life, conversations, or spam. Thus, simply running a
first story detection system on this data would yield
an incredible amount of new stories each day, most
of which would be of no interest to anyone but a few
people. However, when something significant hap-
pens (e.g., a celebrity dies), a lot of users write about
this either to share their opinion or just to inform
others of the event. Our goal here is to automati-
cally detect these significant events, preferably with
a minimal number of non-important events.
Threading. We first run our streaming FSD
system and assign a novelty score to each tweet. In
addition, since the score is based on a cosine dis-
tance to the nearest tweet, for each tweet we also
output which other tweet it is most similar to. This
way, we can analyze threads of tweets, i.e., a subset
of tweets which all discuss the same topic (Nallap-
ati et al., 2004). To explain how we form threads
of tweets, we first introduce the links relation. We
say that tweet a links to tweet b if b is the nearest
neighbor of a@ and 1 — cos(a,b) < t, where t is a user-
specified threshold. Then, for each tweet a we either
assign it to an existing thread if its nearest neighbor
is within distance ¢, or say that a is the first tweet in
a new thread. If we assign a to an existing thread,
we assign it to the same thread to which its nearest
neighbor belongs. By changing ¢ we can control the
granularity of threads. If ¢ is set very high, we will
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have few very big and broad threads, whereas setting
t very low will result in many very specific and very
small threads. In our experiments, we set t = 0.5.
We experimented with different values of ¢ and found
that for ¢ € [0.5, 0.6] results are very much the same,
whereas setting ¢ outside this interval starts to im-
pact the results in the way we just explained.

Once we have threads of tweets, we are interested
in which threads grow fastest, as this will be an indi-
cation that news of a new event is spreading. There-
fore, for each time interval we only output the fastest
growing threads. This growth rate also gives us a way
to measure a thread’s impact.

5 Related Work

In the recent years, analysis of social media has at-
tracted a lot of attention from the research commu-
nity. However, most of the work that uses social
media focuses on blogs (Glance et al., 2004; Bansal
and Koudas, 2007; Gruhl et al., 2005). On the other
hand, research that uses Twitter has so far only
focused on describing the properties of Twitter it-
self (Java et al., 2007; Krishnamurthy et al., 2008).

The problem of online new event detection in
a large-scale streaming setting was previously ad-
dressed in Luo et al. (2007). Their system used the
traditional approach to FSD and then employed var-
ious heuristics to make computation feasible. These
included keeping only the first stories in memory,
limiting the number of terms per document, limiting
the number of total terms kept, and employing par-
allel processing. Our randomized framework gives us
a principled way to work out the errors introduced
and is more general than the previously mentioned
approach because we could still use all the heuris-
tics used by Luo et al. (2007) in our system. Fi-
nally, while Luo et al. (2007) achieved considerable
speedup over an existing system on a TDT corpus,
they never showed the utility of their system on a
truly large-scale task.

The only work we are aware of that analyzes so-
cial media in a streaming setting is Saha and Getoor
(2009). There, the focus was on solving the maxi-
mum coverage problem for a stream of blog posts.
The maximum coverage problem in their setting,
dubbed blog watch, was selecting k blogs that maxi-
mize the cover of interests specified by a user. This
work differs from Saha and Getoor (2009) in many
ways. Most notably, we deal with the problem of
detecting new events, and determining who was the
first to report them. Also, there is a difference in the
type and volume of data — while Saha and Getoor
(2009) use 20 days of blog data totalling two million
posts, we use Twitter data from a timespan of six



months, totalling over 160 million posts.

6 Experiments

6.1 TDT5 Experimental Setup

Baseline.  Before applying our FSD system on
Twitter data, we first compared it to a state-of-the-
art FSD system on the standard TDT5 dataset. This
way, we can test if our system is on par with the best
existing systems, and also accurately measure the
speedup that we get over a traditional approach. In
particular, we compare our system with the UMass
FSD system (Allan et al., 2000). The UMass system
has participated in the TDT2 and TDT3 competi-
tions and is known to perform at least as well as other
existing systems who also took part in the competi-
tion (Fiscus, 2001). Note that the UMass system
uses an inverted index (as shown in Algorithm 1)
which optimizes the system for speed and makes sure
a minimal number of comparisons is made. We com-
pare the systems on the English part of the TDT5H
dataset, consisting of 221, 306 documents from a time
period spanning April 2003 to September 2003. To
make sure that any difference in results is due to
approximations we make, we use the same settings
as the UMass system: 1-NN clustering, cosine as a
similarity measure, and TFIDF weighted document
representation, where the IDF weights are incremen-
tally updated. These particular settings were found
by Allan et al. (2000) to perform the best for the
FSD task. We limit both systems to keeping only
top 300 features in each document. Using more than
300 features barely improves performance while tak-
ing significantly more time for the UMass system.?
LSH parameters. In addition, our system has
two LSH parameters that need to be set. The num-
ber of hyperplanes k gives a tradeoff between time
spent computing the hash functions and the time
spent computing the distances. A lower k means
more documents per bucket and thus more distance
computations, whereas a higher k means less doc-
uments per bucket, but more hash tables and thus
more time spent computing hash functions. Given k,
we can use equation (2) to compute L. In our case,
we chose k to be 13, and L such that the probability
of missing a neighbor within the distance of 0.2 is
less than 2.5%. The distance of 0.2 was chosen as a
reasonable estimate of the threshold when two docu-
ments are very similar. In general, this distance will
depend on the application, and Datar et al. (2004)
suggest guessing the value and then doing a binary
search to set it more accurately. We set k to 13 be-

3In other words, using more features only increases the
advantage of our system over the UMass system.
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cause it achieved a reasonable balance between time
spent computing the distances and the time spent
computing the hash functions.

Evaluation metric. The official TDT evalua-
tion requires each system to assign a confidence score
for its decision, and this assignment can be made
either immediately after the story arrives, or after
a fixed number of new stories have been observed.
Because we assume that we are working in a true
streaming setting, systems are required to assign a
confidence score as soon as the new story arrives.
The actual performance of a system is measured
in terms of detection error tradeoff (DET) curves
and the minimal normalized cost. Evaluation is car-
ried out by first sorting all stories according to their
scores and then performing a threshold sweep. For
each value of the threshold, stories with a score above
the threshold are considered new, and all others are
considered old. Therefore, for each threshold value,
one can compute the probability of a false alarm, i.e.,
probability of declaring a story new when it is actu-
ally not, and the miss probability, i.e., probability
of declaring a new story old (missing a new story).
Having computed all the miss and false alarm prob-
abilities, we can plot them on a graph showing the
tradeoff between these two quantities — such graphs
are called detection error tradeoff curves. The nor-
malized cost Cye; is computed as

Cdet = Cmiss*Pmiss*Ptarget +CFA*PFA*Pnon—target7

where C,,;ss and Cgy are costs of miss and false
alarm, P,,;ss and Pgq are probabilities of a miss and
false alarm, and Pigrger and Ppon—target are the prior
target and non-target probabilities. Minimal nor-
malized cost C,,;y, is the minimal value of Cg4.; over
all threshold values (a lower value of C,,;, indicates
better performance).

6.2 TDT5 Results

All the results on the TDT5 dataset are shown in
Table 1. In this section, we go into detail in explain-
ing them. As was mentioned in Section 2.2, simply
using LSH to find a nearest neighbor resulted in poor
performance and a high variance of results. In par-
ticular, the mean normalized cost of ten runs of our
system without the variance reduction strategy was
0.88, with a standard deviation of 0.046. When us-
ing the strategy explained in Section 2.2, the mean
result dropped to 0.70, with a standard deviation of
0.004. Therefore, the results were significantly im-
proved, while also reducing standard deviation by an
order of magnitude. This shows that there is a clear
advantage in using our variance reduction strategy,



Table 1: Summary of TDT5 results. Numbers next to LSH,, indicate the maximal number of documents in a bucket,
measured in terms of percentage of the expected number of collisions.

Baseline Unbounded Bounded
Pure Variance Red. Time Space and Time
System  UMass LSH LSH’ LSH; LSHj, 0.5 LSH;, 0.3 LSH;, 0.1
Chrnin 0.69 0.88 0.70 0.71 0.76 0.75 0.73
" e 1 I Random Performance | e
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Figure 1: Comparison of our system with the UMass FSD
system.

and all the following results we report were obtained
from a system that makes use of it.

Figure 1 shows DET curves for the UMass and for
our system. For this evaluation, our system was not
limited in space, i.e., buckets sizes were unlimited,
but the processing time per item was made constant.
It is clear that UMass outperforms our system, but
the difference is negligible. In particular, the min-
imal normalized cost C,,;, was 0.69 for the UMass
system, and 0.71 for our system. On the other hand,
the UMass system took 28 hours to complete the
run, compared to two hours for our system. Figure 2
shows the time required to process 100 documents
as a function of number of documents seen so far.
We can see that our system maintains constant time,
whereas the UMass system processing time grows
without a bound (roughly linear with the number
of previously seen documents).

The last three columns in Table 1 show the effect
that limiting the bucket size has on performance.
Bucket size was limited in terms of the percent of
expected number of collisions, i.e., a bucket size of
0.5 means that the number of documents in a bucket
cannot be more than 50% of the expected number
of collisions. The expected number of collisions can
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Figure 2: Comparison of processing time per 100 docu-
ments for our and the UMass system.

be computed as n/2*, where n is the total number
of documents, and k is the LSH parameter explained
earlier. Not surprisingly, limiting the bucket size re-
duced performance compared to the space-unlimited
version, but even when the size is reduced to 10% of
the expected number of collisions, performance re-
mains reasonably close to the UMass system. Fig-
ure 3 shows the memory usage of our system on a
month of Twitter data (more detail about the data
can be found in Section 6.3). We can see that most
of the memory is allocated right away, after which
the memory consumption levels out. If we ran the
system indefinitely, we would see the memory usage
grow slower and slower until it reached a certain level
at which it would remain constant.

6.3 Twitter Experimental Setup

Corpus. We used our streaming FSD system to
detect new events from a collection of Twitter data
gathered over a period of six months (April 1st 2009
to October 14th 2009). Data was collected through
Twitter’s streaming APL* Our corpus consists of
163.5 million timestamped tweets, totalling over 2
billion tokens. All the tweets in our corpus contain

4http://stream.twitter.com/



50

45

35 —

30 7 —

25 q

20 —

Percent of memory used

0 I I I I I I I
0 500 1000 1500 2000 2500 3000 3500

Miniites

4000

Figure 3: Memory usage on a month of Twitter data.
X-axis shows how long the system has been running for.

only ASCII characters and we additionally stripped
the tweets of words beginning with the @ or # sym-
bol. This is because on Twitter words beginning with
@ indicate a reply to someone, and words beginning
with # are topic tags. Although these features would
probably be helpful for our task, we decided not to
use them as they are specific to Twitter and our ap-
proach should be independent of the stream type.

Gold standard. In order to measure how well
our system performs on the Twitter data, we em-
ployed two human experts to manually label all the
tweets returned by our system as either Fvent, Neu-
tral, or Spam. Note that each tweet that is returned
by our system is actually the first tweet in a thread,
and thus serves as the representative of what the
thread is about. Spam tweets include various ad-
vertisements, automatic weather updates, automatic
radio station updates, etc. For a tweet to be la-
beled as an event, it had to be clear from the tweet
alone what exactly happened without having any
prior knowledge about the event, and the event refer-
enced in the tweet had to be sufficiently important.
Important events include celebrity deaths, natural
disasters, major sports, political, entertainment, and
business events, shootings, plane crashes and other
disasters. Neutral tweets include everything not la-
beled as spam or event. Because the process of man-
ual labeling is tedious and time-consuming, we only
labeled the 1000 fastest growing threads from June
2009. Rate of growth of a thread is measured by the
number of tweets that belong to that thread in a win-
dow of 100,000 tweets, starting from the beginning
of the thread. Agreement between our two annota-
tors, measured using Cohen’s kappa coefficient, was
substantial (kappa = 0.65). We use 820 tweets on
which both annotators agreed as the gold standard.
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Evaluation. Evaluation is performed by com-
puting average precision (AP) on the gold standard
sorted according to different criteria, where event
tweets are taken to be relevant, and neutral and spam
tweets are treated as non-relevant documents. Aver-
age precision is a common evaluation metric in tasks
like ad-hoc retrieval where only the set of returned
documents and their relevance judgements are avail-
able, as is the case here (Croft et al., 2009). Note
that we are not evaluating our FSD system here.
There are two main reasons for this: i) we already
have a very good idea about the first story detection
performance from the experiments on TDT5 data,
and ii) evaluating a FSD system on this scale would
be prohibitively expensive as it would involve hu-
man experts going through 30 million tweets looking
for first stories. Rather, we are evaluating different
methods of ranking threads which are output from a
FSD system for the purpose of detecting important
events in a very noisy and unstructured stream such
as Twitter.

6.4 Twitter Results

Results for the average precisions are given in Ta-
ble 2. Note that we were not able to compare our
system with the UMass FSD system on the Twit-
ter data, as the UMass system would not finish in
any reasonable amount of time. Different rows of
Table 2 correspond to the following ways of ranking
the threads:

e Baseline — random ordering of threads

e Size of thread — threads are ranked according to
number of tweets

e Number of users — threads are ranked according
to number of unique users posting in a thread

e Entropy + users — if the entropy of a thread is
< 3.5, move to the back of the list, otherwise
sort according to number of unique users

Results show that ranking according to size of thread
performs better than the baseline, and ranking ac-
cording to the number of users is slightly better.
However, a sign test showed that neither of the two
ranking strategies is significantly better than the
baseline. We perform the sign test by splitting the
labeled data into 50 stratified samples and ranking
each sample with different strategies. We then mea-
sure the number of times each strategy performed
better (in terms of AP) and compute the significance
levels based on these numbers. Adding the informa-
tion about the entropy of the thread showed to be



Table 2: Average precision for Fvents vs. Rest and for
Events and Neutral vs. Spam.

Ranking method events vs. rest spam vs. rest

Baseline 16.5 84.6
Size of thread 24.1 83.5
Number of users 24.5 83.9
Entropy + users 34.0 96.3

Table 3: Average precision as a function of the entropy
threshold on the Events vs. Rest task.

2.5 3 3.5 4
276 30.0 34.0 332

4.5
294

Entropy 2
AP 24.8

very beneficial. Entropy of a thread is computed as
n; n;
chread = - ; NZ IOg NZ7

where n; is the number of times word i appears in
a thread, and N = ) .n, is the total number of
words in a thread. We move the threads with low
entropy (< 3.5) to the back of the list, while we or-
der other threads by the number of unique users.
A sign test showed this approach to be significantly
better (p < 0.01) than all of the previous ranking
methods. Table 3 shows the effect of varying the en-
tropy threshold at which threads are moved to the
back of the list. We can see that adding informa-
tion about entropy improves results regardless of the
threshold we choose. This approach works well be-
cause most spam threads have very low entropy, i.e.,
contain very little information.

We conducted another experiment where events
and neutral tweets are considered relevant, and spam
tweets non-relevant documents. Results for this ex-
periment are given in the third column of Table 2.
Results for this experiment are much better, mostly
due to the large proportion of neutral tweets in the
data. The baseline in this case is very strong and
neither sorting according to the size of the thread
nor according to the number of users outperforms
the baseline. However, adding the information about
entropy significantly (p < 0.01) improves the perfor-
mance over all other ranking methods.

Finally, in Table 4 we show the top ten fastest
growing threads in our data (ranked by the number
of users posting in the thread). Each thread is repre-
sented by the first tweet. We can see from the table
that events which spread the fastest on Twitter are
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Table 4: Top ten fastest growing threads in our data.

# users First tweet

7814  TMZ reporting michael jackson has had a heart
attack. We r checking it out. And pulliing
video to use if confirmed

7579  RIP Patrick Swayze...

3277  Walter Cronkite is dead.

2526  we lost Ted Kennedy :(

1879 RT BULLETIN - STEVE MCNAIR
HAS DIED.

1511  David Carradine (Bill in ”Kill Bill”)
found hung in Bangkok hotel.

1458  Just heard Sir Bobby Robson has died. RIP.

1426 I just upgraded to 2.0 - The professional
Twitter client. Please RT!

1220 LA Times reporting Manny Ramirez tested
positive for performance enhancing drugs.
To be suspended 50 games.

1057 A representative says guitar legend

Les Paul has died at 94

mostly deaths of famous people. One spam thread
that appears in the list has an entropy of 2.5 and
doesn’t appear in the top ten list when using the
entropy + users ranking.

7 Conclusion

We presented an approach to first story detection in a
streaming setting. Our approach is based on locality
sensitive hashing adapted to the first story detection
task by introducing a backoff towards exact search.
This adaptation greatly improved performance of the
system and virtually eliminated variance in the re-
sults. We showed that, using our approach, it is pos-
sible to achieve constant space and processing time
while maintaining very good results. A comparison
with the UMass FSD system showed that we gain
more than an order of magnitude speedup with only a
minor loss in performance. We used our FSD system
on a truly large-scale task of detecting new events
from over 160 million Twitter posts. To the best of
our knowledge, this is the first work that does event
detection on this scale. We showed that our system
is able to detect major events with reasonable preci-
sion, and that the amount of spam in the output can
be reduced by taking entropy into account.
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