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Abstract

We present a random-walk-based approach to
learning paraphrases from bilingual parallel
corpora. The corpora are represented as a
graph in which a node corresponds to a phrase,
and an edge exists between two nodes if their
corresponding phrases are aligned in a phrase
table. We sample random walks to compute
the average number of steps it takes to reach
a ranking of paraphrases with better ones be-
ing “closer” to a phrase of interest. This ap-
proach allows “feature” nodes that represent
domain knowledge to be built into the graph,
and incorporates truncation techniques to pre-
vent the graph from growing too large for ef-
ficiency. Current approaches, by contrast, im-
plicitly presuppose the graph to be bipartite,
are limited to finding paraphrases that are of
length two away from a phrase, and do not
generally permit easy incorporation of domain
knowledge. Manual evaluation of generated
output shows that our approach outperforms
the state-of-the-art system of Callison-Burch
(2008).

1 Introduction

Automatically learning paraphrases, or alternative
ways of expressing the same meaning, is an ac-
tive area of NLP research because of its useful-
ness in a variety of applications, e.g., question an-
swering (Lin and Pantel, 2001; Ravichandran and
Hovy, 2002; Reizler et al., 2007), document sum-
marization (Barzilay et al., 1999; McKeown et al.,
2002), natural language generation (Iordanskaja et
al., 1991; Lenke, 1994; Stede, 1999), machine trans-

lation (Kauchak and Barzilay, 2006; Callison-Burch
et al., 2006; Madnani et al., 2007).

Early work on paraphrase acquisition has focused
on using monolingual parallel corpora (Barzilay and
McKeown, 2001; Barzilay and Lee, 2003; Pang et
al., 2003; Quirk et al., 2004). While effective, such
methods are hampered by the scarcity of monolin-
gual parallel corpora, an obstacle that limits both
the quantity and quality of the paraphrases learned.
To address this limitation, Bannard and Callison-
Burch (2005) focused their attention on the abun-
dance of bilingual parallel corpora. The crux of
this system (referred to below as ”BCB”) is to align
phrases in a bilingual parallel corpus and hypothe-
size English phrases as potential paraphrases if they
are aligned to the same phrase in another language
(the “pivot”). Callison-Burch (2008) further refines
BCB with a system that constrains paraphrases to
have the same syntactic structure (Syntactic Bilin-
gual Phrases: SBP).

We take a graphical view of the state-of-the-art
BCB and SBP approaches by representing the bilin-
gual parallel corpora as a graph. A node corresponds
to a phrase, and an edge exists between two nodes if
their corresponding phrases are aligned. This graph-
ical form makes the limitations of the BCB/SBP ap-
proaches more evident. The BCB/SBP graph is lim-
ited to be bipartite with English nodes on one side
and foreign language nodes on the other, and an
edge can only exist between nodes on different sides.
This neglects information between foreign language
nodes that may aid in learning paraphrases. Further,
by only considering English nodes that are linked
via a foreign language node as potential paraphrases,
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these approaches will fail to find paraphrases sepa-
rated by distances greater than length two.

In this paper, we present HTP (Hitting Time
Paraphraser), a paraphrase learning approach that is
based on random walks (Lovász, 1996) and hitting
times (Aldous and Fill, 2001). Hitting time mea-
sures the average number of steps one needs to take
in a random traversal of a graph before reaching a
destination node from a source node. Intuitively, the
smaller the hitting time from a phrase E to E′ (i.e.,
the closer E′ is to E), the more likely it is that E′ is
a good paraphrase of E. The advantages of HTP are
as follows:

• By traversing paths of lengths greater than two,
our approach is able to find more paraphrases
of a given phrase.

• We do not require the graph to be bipartite.
Edges can exist between nodes of different for-
eign languages if their corresponding phrases
are aligned. This allows information from for-
eign phrase alignments to be used in finding
English paraphrases.

• We permit domain knowledge to be easily in-
corporated as nodes in the graph. This allows
domain knowledge to favor good paraphrases
over bad ones, thereby improving performance.

In this paper, we focus on learning English para-
phrases. However, our system can be applied to
learning paraphrases in any language.

We begin by reviewing random walks and hitting
times in the next section. Then we describe our para-
phrase learning algorithm (Section 3), and report our
experiments (Section 4). We discuss related work in
Section 5. Finally, we conclude with future work
(Section 6).

2 Background

A directed graph consists of a set of nodes V , and a
set of edges E. A directed edge is a pair (i, j) where
i, j ∈ V . Associated with the graph is a |V | × |V |
adjacency matrix W . Each entry Wij in the matrix
is the weight of edge (i, j), or zero if the edge does
not exist.

In a random walk (Lovász, 1996), we traverse
from node to node via the edges. Suppose at time

step t, we are at node i. In the next step, we move
to its neighbor j with probability proportional to
the weight of the edge (i, j), i.e., with probability
Wij/

∑
jWij . This probability is known as the tran-

sition probability from i to j. Note that the transition
probabilities from a node to its neighbors sum to 1.

The hitting time hij (Aldous and Fill, 2001) from
node i to j is defined as the average number of steps
one takes in a random walk starting from i to visit j
for the first time. Hitting time has the property of be-
ing robust to noise. This is a desirable property for
our system which works on bilingual parallel cor-
pora containing numerous spurious alignments be-
tween phrases (i.e., edges between nodes). However,
as observed by Liben-Nowell and Kleinberg (2003),
hitting time has the drawback of being sensitive to
portions of the graph that are far from the start node
because it considers paths of length up to∞.

To circumvent this problem, Sarkar and Moore
(2007) introduced the notion of truncated hitting
time where random walks are limited to have at most
T steps. The truncated hitting time hTij from node i
to j is defined as the average number of steps one
takes to reach j for the first time starting from i in a
random walk that is limited to at most T steps. hTij
is defined to be 0 if i = j or T = 0, and to be T if j
is not reach in T steps. As T →∞, hTij → hij .

In a recent work, Sarkar et al. (2008) showed that
truncated hitting time can be approximated accu-
rately with high probability by sampling. They run
M independent length-T random walks from node
i. In m of these runs, node j is visited for the first
time at time steps t1j , . . . , t

m
j . The estimated trun-

cated hitting time is given by

ĥTij =
∑m
k=1 t

k
j

M
+ (1− m

M
)T (1)

They also showed that the number of samples of ran-
dom walks M has to be at least 1

2ε2
log 2n

d in order
for the estimated truncated hitting time to be a good
estimate of the actual truncated hitting time with
high probability, i.e., for P (|ĥTij−hTij |≤εT )≥1− δ,
where n is the number of nodes in the graph, ε and δ
are user-specified parameters, and 0 ≤ ε, δ ≤ 1.

3 Hitting Time Paraphraser (HTP)

HTP takes a query phrase as input, and outputs a list
of paraphrases, with better paraphrases at the top of
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Figure 1: Graph created from English-French (E-F),
English-German (E-G), and French-German (F-G) bilin-
gual parallel corpora. Bold edges have large positive
weights (high transition probabilities).

the list. HTP also requires as input a set of bilin-
gual parallel corpora that have been processed into
phrase tables of the kind used in statistical machine
translation.

A bilingual parallel corpus is made up of sen-
tences in two languages. Two sentences that are
translations of one another are paired together, and
a phrase in one sentence is aligned with a phrase in
the other with the same meaning. From such align-
ments, we can count for a phrase E both the num-
ber of times it occurs (CountE), and the number of
times it is aligned with a phrase F in the other lan-
guage (CountE,F ). With these counts we can es-
timate the probability of F given E as P (F |E) =
CountE,F

CountE
.

HTP represents the aligned phrases as a graph. A
node corresponds to a phrase, and a directed edge
exists from node i to j if their corresponding phrases
are aligned. The weight of edge (i, j) is given by
P (j|i) which is computed as described in the previ-
ous paragraph.

Figure 1 gives an example of a graph created
from English-French, English-German, and French-
German parallel corpora. We use this figure to il-
lustrate the strengths of HTP. First, by using moder-
ately long random walks, HTP is able to find para-
phrases that are separated by long paths. For ex-
ample, there is a high probability path of length 4
(E1, F1, E2, F2, E3) from E1 to E3. Because of the
path’s high probability, it will appear in many of the
random walks starting from E1 that are sampled on
the graph, and thus E3 will be visited in many of
the samples. This causes the truncated hitting time
hTE1E3

to be small, allowing HTP to find E3 as a
plausible paraphrase of E1. Second, by allowing
edges between nodes of different foreign languages

Table 1: The HTP algorithm.

function HTP (E,C, d, n,m, T, δ, l)
input: E, query phrase

C, tables of aligned phrases
d, maximum distance of nodes from E
n, maximum number of nodes in graph
m, number of samples of random walks
T , maximum number of steps taken by a

random walk
δ, probability that estimated truncated hitting

time deviates from actual value by a large
margin (see Equation 1)

l, number of top outgoing edges to select at
each node in a random walk

output:(E′
1, . . . , E

′
k), paraphrases of E ranked in

order of increasing hitting times
calls: CreateGraph(E,C, d, n) creates graph G

from C containing at most n nodes that are
at most d steps from E

EstimateHitT imes(E,G,m, T, δ), estimates
the truncated hitting times of each node in G
by running m random walks

PruneNodes((E1, . . . , Ek), G), removes nodes
from G if their hitting times is equal to T .

AddFeatureNodes(G), adds nodes
representing domain knowledge to G

G← CreateGraph(E,C, d, n)
(E1, . . . , Ek)← EstimateHitT imes(E,G,m, T, δ)
G′←PruneNodes((E1, . . . , Ek), G)
G′′←AddFeatureNodes(G′)
(E′

1, . . . , E
′
k)← EstimateHitT imes(E,G′′,m, T, δ)

return (E′
1, . . . , E

′
k)

(i.e., by not requiring the graph to be bipartite), HTP
allows strong correlation between foreign language
nodes to aid in finding paraphrases. In the figure,
even though E4 and E5 are not linked via a com-
mon foreign language node, there is a high proba-
bility path linking them (E4, F3, G1, E5). This al-
lows HTP to find E5 as a reasonable paraphrase of
E4. Third, HTP enables domain knowledge to be
incorporated as nodes in the graph. For example,
we could incorporate the domain knowledge that
phrases with lots of unigrams in common are likely
to be paraphrases. In Figure 1, the “feature” node
represents such knowledge, linking E4 and E1 as
possible paraphrases even though they have no for-
eign language nodes in common. Note that such
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domain knowledge nodes can be linked to arbitrary
nodes, not just English ones.

The HTP algorithm is shown in Table 1. It takes
as input a query phrase and a set of bilingual phrase
tables. The algorithm begins by creating a graph
from the phrase tables. Then it estimates the trun-
cated hitting times of each node from the query node
by sampling random walks of length T . Next it
prunes nodes (and their associated edges) if their
truncated hitting times are equal to T . To the result-
ing graph, it then adds nodes representing domain
knowledge and estimates the truncated hitting times
of the nodes by sampling random walks as before.
Finally, it returns the nodes in the same language as
the query phrase in order of increasing hitting times.

3.1 Graph Creation

An obvious approach to creating a graph from bilin-
gual parallel corpora is to create a node for every
phrase in the corpora, and two directed edges (i, j)
and (j, i) for every aligned phrase pair i and j. Let
H refer to the graph that is created in this manner.
Such an approach is only tractable for small bilin-
gual parallel corpora that would result in a small
H , but not for large corpora containing millions of
sentences, such as those described in Section 4.1.
Therefore we approximate H with a graph H ′ that
only contains nodes “near” to the node representing
the query phrase. Specifically, we perform breadth-
first search starting from the query node up to a
depth d, or until the number of nodes visited in the
search has reached a maximum of n nodes. Some
nodes at the periphery of H ′ have edges to nodes
that are not in H ′ but are in H . For a periph-
ery node j that has edges to nodes j1, . . . , jk out-
side H ′, we create a “dummy” node a, and replace
edges (j, j1), . . . , (j, jk) with a single edge (j, a)
with weight

∑k
x=1Wj,jx . We also add edges (a, j)

and (a, a) (each with a heuristic weight of 0.5). The
dummy nodes and their edges approximate the tran-
sition probabilities at H ′’s periphery. Our empirical
results show that this approximation works well in
practice.

3.2 Graph Pruning

After H ′ is created, we run M independent length-
T random walks on it starting from the query node
to estimate the truncated hitting times of all nodes.

Figure 2: Feature nodes representing domain knowledge.
Feature nodes are shaded. The bold node represents a
query phrase. (a) n-gram nodes (b) “syntax” nodes (c)
“not-substring/superstring-of” nodes.

A node in H ′ may have many outgoing edges, most
of which may be due to spurious phrase alignments.
For efficiency, and to reduce the noise due to spuri-
ous edges, we select among a node’s top l outgoing
edges with the highest transition probabilities, when
deciding which node to visit next at each step of a
random walk

For each random walk k, we record the first time
that a node j is visited tkj . Using Equation 1, we es-
timate the truncated hitting time of each node. Then
we remove nodes (and their associated edges) that
are far from the query node, i.e., with times equal
to T . Such nodes either are not visited in any of the
random walks, or are always visited for the first time
at step T .

3.3 Adding Domain Knowledge

Next we add nodes representing domain knowledge
to the pruned graph. In this version of HTP, we im-
plemented three types of feature nodes.

First, we have n-gram nodes. These nodes cap-
ture the domain knowledge that phrases containing
many words in common are likely to be paraphrases.
For each 1 to 4-gram that appears in English phrases,
we create an n-gram node a. We add directed edges
(a, j) and (j, a) if node j represents an English
phrase containing n-gram a. For example, in Fig-
ure 2(a), “reach the objective” is connected to “ob-
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jective” because it contains that unigram. Note that
such nodes create short paths between nodes with
many n-grams in common, thereby reducing the hit-
ting times between them.

Second, we have “syntax” nodes, which repre-
sent syntactic classes of the start and end words of
English phrases. We created classes such as inter-
rogatives (“whose”, “what”, “where”, etc.), articles
(“the”, “a”, “an”), etc. For each class c, we cre-
ate syntax nodes ac and a′c to respectively represent
the conditions that a phrase begins and ends with a
word in class c. Directed edges (ac, j) and (j, ac)
are added if node j starts with a word in class c (sim-
ilarly we add (a′c, j) and (j, a′c) if it ends with a word
in class c). For example, in Figure 2(b), “the objec-
tive is” is linked to “starts with article” because it
begins with “the”. These syntax nodes allow HTP to
capture broad commonalities about structural distri-
bution, without requiring syntactic equivalence as in
Callison-Burch 2008 (or the use of a parser).

Third, we have “not-substring/superstring-of”
nodes. We observed that many English phrases (e.g.,
“reach the objective” and “reach the”) that are super-
strings or substrings of each other tend to be aligned
to several shared non-English phrases in the bilin-
gual parallel corpora used in our experiments. Most
such English phrase pairs are not paraphrases, but
they are linked by many short paths via their com-
mon aligned foreign phrase, and thus have small
hitting times. To counteract this, we create a “not-
substring/superstring-of” node a. The query node i
is always connected to a via edges (i, a) and (a, i).
We add edges (a, j) and (j, a) if English phrase j
is not a substring or superstring of the query phrase
(see Figure 2(c)).

With the addition of the above, each node rep-
resenting an English phrase can have four kinds
of outgoing edges: edges to foreign phrase nodes,
and edges to the three kinds of feature nodes. Let
fphrase, fngram, fsyntax, fsubstring denote the distri-
bution of transition probabilities among the four
kinds of outgoing edges. Note that fphrase +
fngram + fsyntax + fsubstring = 1.0. These values
are user-specified or can be set with tuning data. An
outgoing edge from English phrase node i that orig-
inally had weight (transition probability) Wij will
now have weight Wij × fphrase. All k edges from i

to n-gram nodes will have weight fngram

k . Likewise
for edges to the other two kinds of feature nodes.
Each of the k outgoing edges from a feature node is
simply set to have a weight of 1

k .
After adding the feature nodes, we again run M

independent length-T random walks to estimate the
truncated hitting times of the nodes, and return the
English phrase nodes in order of increasing hitting
times.

4 Experiments

We conducted experiments to investigate how HTP
compares with the state of the art, and to evaluate
the contributions of its components.

4.1 Dataset

We used the Europarl dataset (Koehn, 2005) for
our experiments. This dataset contains English
transcripts of the proceedings of the European
Parliament, and their translations into 10 other
European languages. In the dataset, there are
about a million sentences per language, and En-
glish sentences are aligned with sentences in the
other languages. Callison-Burch (2008) aligned
English phrases with phrases in each of the
other languages using Giza++ (Och and Ney,
2004). We used his English-foreign phrasal align-
ments which are publicly available on the web at
http://ironman.jhu.edu/emnlp08.tar. In addition, we
paired sentences of different non-English languages
that correspond to the same English sentence, and
aligned the phrases using 5 iterations of IBM model
1 in each direction, followed by 5 iterations of HMM
alignment with paired training using the algorithm
described in Liang et al. (2006). We further used the
technique of Chen et al. (2009) to remove a phrase
alignment F -G (where F and G are phrases in dif-
ferent foreign languages) if it was always aligned
to different phrases in a third “bridge” foreign lan-
guage. As observed by Chen et al., this helped to
remove spurious alignments. We used Finnish as the
bridge language; when either F or G is Finnish, we
used Spanish as the bridge language; when F and
G were Finnish and Spanish, we used English as
the bridge language. In our experiments, we used
phrases of length 1 to 4 of the following six lan-
guages: English, Danish, German, Spanish, Finnish,
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and Dutch. All the phrasal alignments between each
pair of languages (15 in total) were used as input to
HTP and its comparison systems. A small subset of
the remaining phrase alignments were used for tun-
ing parameters.

4.2 Systems
We compared HTP to the state-of-the-art SBP sys-
tem (Callison-Burch, 2008). We also investigated
the contribution of the feature nodes by running HTP
without them. In addition, we ran HTP on a bipartite
graph, i.e., one created from English-foreign phrase
alignments only without any phrase alignments be-
tween foreign languages.

We used Callison-Burch (2008)’s implemen-
tation of SBP that is publicly available at
http://ironman.jhu.edu/emnlp08.tar. SBP is based
on BCB (Bannard and Callison- Burch, 2005) which
computes the probability that English phrase E′ is a
paraphrase of E using the following formula:

P (E′|E) ≈
∑
C∈C

∑
F∈C

P (E′|F )P (F |E) (2)

where C is set of bilingual parallel corpora, and F is
a foreign language phrase. Representing phrases as
nodes, and viewing P (E′|F ) and P (F |E) as tran-
sition probabilities of edges (F,E′) and (E,F ), we
see that BCB is summing over the transition prob-
abilities of all length-two paths between E and E′.
All E′ paraphrases of E can then be ranked in or-
der of decreasing probability as given by Equation 2.
The SBP system modifies Equation 2 to incorporate
syntactic information, thus:

P (E′|E) ≈
1
|C|

∑
C∈C

∑
F∈C

P (E′|F, synE))P (F |E, synE) (3)

where synE is the syntax of phrase E, and
P (E′|F, synE)) = 0 ifE′ is not of the same syntac-
tic category. From Equation 3, we can see that SBP
constrains E′ to have the same syntactic structure
as E. To obtain the syntactic structure of each En-
glish phrase, each English sentence in every parallel
corpus has to be parsed to obtain its parse tree. An
English phrase can have several syntactic structures
because different parse trees can have the phrase as
their leaves, and in each of these, SBP associates the

Table 2: Scoring Standards.

0 Clearly wrong; grammatically incorrect, or
does not preserve meaning

1 Minor grammatical errors (e.g., subject-verb
disagreement or wrong tense), or meaning is
largely preserved but not completely

2 Totally correct; grammatically correct and
meaning is preserved

phrase with all subtrees that have the phrase as their
leaves. SBP thus offers several ways of choosing
which syntactic structure a phrase should be asso-
ciated with. In our experiments, we used the best
performing method of averaging Equation 3 over all
syntactic structures that E is associated with.

4.3 Methodology

To evaluate performance, we used 33,216 En-
glish translations from the Linguistic Data Con-
sortium’s Multiple Translation Chinese (MTC) cor-
pora (Huang et al., 2002). We randomly selected
100 1- to 4-grams that appeared in both Europarl
and MTC sentences (excluding stop words, num-
bers, and phrases containing periods and commas).
For each of those 100 phrases, we randomly se-
lected a MTC sentence containing that phrase. We
then replaced the phrase in the sentence with each
paraphrase output by the systems, and evaluated the
correctness of the paraphrase in the context of the
sentence. We had two volunteers manually score
the paraphrases on a 3-point scale (Table 2), using
a simplified version of the scoring system used by
Callison-Burch (2008). We deemed a paraphrase
to be correct if it was scored 1 or 2, and wrong
if it was scored 0. Evaluation was blind, and the
paraphrases were presented randomly to the volun-
teers. The Kappa measure of inter-annotator agree-
ment was 0.62, which indicates substantial agree-
ment between the evaluators. We took the average
score for each paraphrase.

The parameters used for HTP were as follows
(see Table 1 for parameter descriptions): d =
6, n = 50, 000,m = 1, 000, 000, T = 10, δ =
0.05, l= 20, fphrase = 0.1, fngram = 0.1, fsyntax =
0.4, fsubstring = 0.4. (ε≤ 0.03 with these values of
n,m, T, and δ.)
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Table 3: HTP vs. SBP.
HTP SBP

Correct top-1 paraphrases 71% 53%
Correct top-k paraphrases 54% 39%

Count of correct paraphrases 420 145
Correct paraphrases 43% 39%

Table 4: HTP vs. HTP without feature nodes.
HTP HTP-

NoFeatNodes
Correct top-1 paraphrases 61% 41%
Correct top-k paraphrases 43% 29%

Count of correct paraphrases 420 283
Correct paraphrases 43% 29%

4.4 Results

HTP versus SBP. Comparison between HTP and
SBP is complicated by the fact that the two systems
did not output the same number of paraphrases for
the 100 query phrases. HTP output paraphrases for
all the query phrases, but SBP only did so for 49
query phrases. Of those 49 query phrases, HTP re-
turned at least as many paraphrases as SBP, and for
many it returned more.

To provide a fair comparison, we present results
both for these 49 query phrases, and for all para-
phrases returned by each of the systems. The up-
per half of Table 3 shows results for the 49 query
phrases. The first row of Table 3 reports the per-
centage of top-1 paraphrases from this set that are
correct, while the second row reports the percentage
of correct top-k paraphrases from this set, where k is
the number of queries returned by SBP, and is lim-
ited to at most 10. The value of k may differ for
each query: if SBP and HTP return 3 and 20 para-
phrases respectively, we only consider the top 3. On
the third and fourth rows, we present the number
of correct paraphrases and the percentage of correct
paraphrases among the top 10 paraphrases returned
by HTP for all 100 queries and the corresponding
figures for the 49 queries for SBP. (When a sys-
tem returned fewer than 10 paraphrases for a query,
we consider all the paraphrases for that query.) It
is evident from Table 3 that HTP consistently out-
performs SBP: not only does it return more cor-
rect paraphrases overall (420 versus 145), it also has

Table 5: HTP vs. HTP with bipartite graph.

HTP HTP-
Bipartite

Correct top-1 paraphrases 62% 58%
Correct top-k paraphrases 46% 41%

Count of correct paraphrases 420 361
Correct paraphrases 43% 41%

higher precision (43% versus 39%)
HTP and SBP respectively took 48 and 468 sec-

onds per query on a 3 GHz machine. The times are
not directly comparable because the systems are im-
plemented in different languages (HTP in C# and
SBP in Java), and use different data structures.

HTP without Feature Nodes. Both HTP and HTP
minus feature nodes output paraphrases for each of
the 100 query phrases. Table 4 compares perfor-
mance in the same manner as in Table 3, except that
the “top-1” and “top-k” results are over all 100 query
phrases. We see that feature nodes boost HTP’s per-
formance, allowing HTP to return more correct para-
phrases (420 versus 283), and at higher precision
(43% versus 29%).

HTP with Bipartite Graph. Lastly, we investi-
gate the contribution of alignments between foreign
phrases to HTP’s performance. HTP-Bipartite refers
to HTP that is given a set consisting only of English-
foreign phrase alignment as input. HTP-Bipartite
does not return paraphrases for 5 query phrases.
Thus, in Table 5, the “top-1” and “top-k” results are
for the 95 query phrases for which both systems re-
turn paraphrases. From the better performance of
HTP, we see that the foreign phrase alignments help
in finding English paraphrases.

5 Related Work

Random walks and hitting times have been suc-
cessfully applied to a variety of applications.
Brand (2005) has used hitting times for collabora-
tive filtering, in which product recommendations to
users are made based on purchase history. In com-
puter vision, hitting times have been used to de-
termine object shape from silhouettes (Gorelick et
al., 2004), and for image segmentation (Grady and
Schwartz, 2006). In social network analysis, Liben-
Nowell and Kleinberg (2003) have investigated the
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use of hitting times for predicting relationships be-
tween entities. Recently, Mei et al. (2008) have used
the hitting times of nodes in a bipartite graph cre-
ated from search engine query logs to find related
queries. They used an iterative algorithm to compute
the hitting time, which converges slowly on large
graphs. In HTP, we have sought to obviate this issue
by using truncated hitting time that can be computed
efficiently by sampling random walks.

Several approaches have been proposed to learn
paraphrases. Barzilay and Mckeown (2001) acquire
paraphrases from a monolingual parallel corpus us-
ing a co-training algorithm. Their co-trained classi-
fier determines whether two phrases are paraphrases
of one another using their surrounding contexts. Lin
and Pantel (2001) learn paraphrases using the dis-
tributional similarity of paths in dependency trees.
Ibrahim et al. (2003) generalize syntactic paths in
aligned monolingual sentence pairs in order to gen-
erate paraphrases. Pang et al. (2003) merge parse
trees of monolingual sentence pairs, and then com-
press the merged tree into a word lattice that can sub-
sequently be used to generate paraphrases. Recently,
Zhao et al. (2008) used dependency parses to learn
paraphrase patterns that include part-of-speech slots.
In other recent work, Das and Smith (2009) use a
generative model for paraphrase detection. Rather
than outputing paraphrases of an input phrase, their
system detects whether two input sentences are para-
phrases of one another.

6 Conclusion and Future Work

We have introduced HTP, a novel approach based
on random walks and hitting times for the learning
of paraphrases from bilingual parallel corpora. HTP
works by converting aligned phrases into a graph,
and finding paraphrases that are “close” to a phrase
of interest. Compared to previous approaches, HTP
is able to find more paraphrases by traversing paths
of lengths longer than 2; utilizes information in the
edges between foreign phrase nodes; and allows do-
main knowledge to be easily incorporated. Empir-
ical results show its effectiveness in learning new
paraphrases.

As future work, we plan to learn the distribution
of weights on edges to phrase nodes and feature
nodes automatically from data, rather than tuning

them manually, and to develop a probabilistic model
supporting HTP. We intend also to apply HTP to
learning paraphrases in languages other than English
and investigate the impact of the learned paraphrases
on resource-sparse machine translation systems.

Acknowledgments

This work was done while the first author was an
intern at Microsoft Research. We would like to
thank Xiaodong He, Jianfeng Gao, Chris Quirk,
Kristina Toutanova, Bob Moore, and other mem-
bers of the MSR NLP group, along with Dengyong
Zhou (TMSN) for their insightful comments and as-
sistance in the course of this project.

References
David Aldous and Jim Fill. 2001. Reversible

Markov Chains and Random Walks on Graphs.
http://www.stat.berkeley.edu/~aldous/RWG/book.html.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of the 43rd Annual Meeting of the ACL, pages
597–604.

Regina Barzilay and Lillian Lee. 2003. Learning to
paraphrase: an unsupervised approach using multiple-
sequence alignment. In Proceedings of HLT/NAACL,
pages 16–23.

Regina Barzilay and Kathleen McKeown. 2001. Extract-
ing paraphrases from a parallel corpus. In Proceedings
of the 39th Annual Meeting of the ACL, pages 50–57.

Regina Barzilay, Kathleen McKeown, and Michael El-
hadad. 1999. Information fusion in the context of
multi-document summarization. In Proceedings of the
37th Annual Meeting of the ACL, pages 550–557.

Matthew Brand. 2005. A random walks perspective on
maximizing satisfaction and profit. In Proceedings of
the 8th SIAM Conference on Optimization.

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved statistical machine translation
using paraphrases. In Proceedings of HLT/NAACL,
pages 17–24.

Chris Callison-Burch. 2008. Syntactic constraints on
paraphrases extracted from parallel corpora. In Pro-
ceedings of EMNLP, pages 196–205.

Yu Chen, Martin Kay, and Andreas Eisele. 2009. Inter-
secting multilingual data for faster and better statistical
translations. In Proceedings of HLT/NAACL.

Dipanjan Das and Noah A. Smith. 2009. Paraphrase
identification as probabilistic quasi-synchronous
recognition. In Proceedings of the Joint Conference

152



of the Annual Meeting of the Association for Com-
putational Linguistics and the International Joint
Conference on Natural Language Processing.

Lena Gorelick, Meirav Galun, Eitan Sharon, Ronen
Basri, and Achi Brandt. 2004. Shape representation
and classification using the Poisson equation. In Pro-
ceedings of the Conference on Computer Vision and
Pattern Recognition.

Leo Grady and Eric L. Schwartz. 2006. Isoperimet-
ric graph partitioning for image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 28:469–475.

Shudong Huang, David Graff, and George Doddington.
2002. Multiple-translation Chinese corpus. Linguistic
Data Consortium, Philadelphia.

Ali Ibrahim, Boris Katz, and Jimmy Lin. 2003. Ex-
tracting structural paraphrases from aligned monolin-
gual corpora. In Proceedings of the 2nd International
Workshop on Paraphrasing, pages 57–64.

Lidija Iordanskaja, Richard Kittredge, and Alain
Polguère. 1991. Lexical selection and paraphrase in
a meaning-text generation model. In Cécile L. Paris,
William R. Swartout, and William C. Mann, editors,
Natural Language Generation in Artificial Intelligence
and Computational Linguistics. Kluwer Academic.

David Kauchak and Regina Barzilay. 2006. Para-
phrasing for automatic evaluation. In Proceedings of
HLT/NAACL, pages 455–462.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of the
10th Machine Translation Summit.

Nils Lenke. 1994. Anticipating the reader’s problems
and the automatic generation of paraphrases. In Pro-
ceedings of the 15th Conference on Computational
Linguistics, pages 319–323.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of HLT/NAACL,
pages 104–111.

David Liben-Nowell and Jon Kleinberg. 2003. The link
prediction problem for social networks. In Proceed-
ings of the 12th International Conference on Informa-
tion and Knowledge, pages 556–559.

Dekang Lin and Patrick Pantel. 2001. Discovery of in-
ference rules for question answering. In Proceedings
of ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, pages 323–328.
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