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Abstract

Constrained decoding is of great importance
not only for speed but also for translation qual-
ity. Previous efforts explore soft syntactic con-
straints which are based on constituent bound-
aries deduced from parse trees of the source
language. We present a new framework to es-
tablish soft constraints based on a more nat-
ural alternative: translation boundary rather
than constituent boundary. We propose sim-
ple classifiers to learn translation boundaries
for any source sentences. The classifiers are
trained directly on word-aligned corpus with-
out using any additional resources. We report
the accuracy of our translation boundary clas-
sifiers. We show that using constraints based
on translation boundaries predicted by our
classifiers achieves significant improvements
over the baseline on large-scale Chinese-to-
English translation experiments. The new
constraints also significantly outperform con-
stituent boundary based syntactic constrains.

1 Introduction

It has been known that phrase-based decoding
(phrase segmentation/translation/reordering (Chi-
ang, 2005)) should be constrained to some extent not
only for transferring the NP-hard problem (Knight,
1999) into a tractable one in practice but also for im-
proving translation quality. For example, Xiong et
al. (2008) find that translation quality can be signif-
icantly improved by either prohibiting reorderings
around punctuation or restricting reorderings within
a 15-word window.

Recently, more linguistically motivated con-
straints are introduced to improve phrase-based de-
coding. (Cherry, 2008) and (Marton and Resnik,
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2008) introduce syntactic constraints into the stan-
dard phrase-based decoding (Koehn et al., 2003) and
hierarchical phrase-based decoding (Chiang, 2005)
respectively by using a counting feature which ac-
cumulates whenever hypotheses violate syntactic
boundaries of source-side parse trees. (Xiong et al.,
2009) further presents a bracketing model to include
thousands of context-sensitive syntactic constraints.
All of these approaches achieve their improvements
by guiding the phrase-based decoder to prefer trans-
lations which respect source-side parse trees.

One major problem with such constituent bound-
ary based constraints is that syntactic structures of
the source language do not necessarily reflect trans-
lation structures where the source and target lan-
guage correspond to each other. In this paper,
we investigate building classifiers that directly ad-
dress the problem of translation boundary, rather
than extracting constituent boundary from source-
side parsers built for a different purpose. A trans-
lation boundary is a position in the source sequence
which begins or ends a translation zone ' spanning
multiple source words. In a translation zone, the
source phrase is translated as a unit. Reorderings
which cross translation zones are not desirable.

Inspired by (Roark and Hollingshead, 2008)
which introduces classifiers to decide if a word can
begin/end a multi-word constituent, we build two
discriminative classifiers to tag each word in the
source sequence with a binary class label. The first
classifier decides if a word can begin a multi-source-
word translation zone; the second classifier decides
if a word can end a multi-source-word translation

"We will give a formal definition of translation zone in Sec-
tion 2.
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zone. Given a partial translation covering source se-
quence (i, j) with start word ¢; and end word ¢; 2,
this translation can be penalized if the first classifier
decides that the start word c; can not be a beginning
translation boundary or the second classifier decides
that the end word ¢; can not be an ending translation
boundary. In such a way, we can guide the decoder
to boost hypotheses that respect translation bound-
aries and therefore the common translation structure
shared by the source and target language, rather than
the syntactic structure of the source language.

We report the accuracy of such classifiers by com-
paring their outputs with “gold” translation bound-
aries obtained from reference translations on the de-
velopment set. We integrate translation boundary
based constraints into phrase-based decoding and
display that they improve translation quality signif-
icantly in large-scale experiments. Furthermore, we
confirm that they also significantly outperform con-
stituent boundary based syntactic constraints.

2 Beginning and Ending Translation Zones

To better understand the particular task that we ad-
dress in this paper, we study the distribution of
classes of translation boundaries in real-world data.
First, we introduce some notations. Given a source
sentence cj ...c,, we will say thata word ¢; (1 < 7 <
n) is in the class B, if there is a translation zone 7
spanning c;...c; for some j > ¢; and ¢; € B, oth-
erwise. Similarly, we will say that a word ¢; is in
the class F), if there is a translation zone spanning
¢;...cj for some j > 4; and ¢; € E), otherwise.

Here, a translation zone 7 is a pair of aligned
source phrase and target phrase

7= (c,ed)

19D

where 7 must be consistent with the word alignment
M

V(u,v) e Myi<u<j—p<v<g

By this, we require that no words inside the source
phrase ¢! are aligned to words outside the target
phrase e and that no words outside the source
phrase are aligned to words inside the target phrase.

%In this paper, we use ¢ to denote the source language and e
the target language.
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Item Count M) P (%)
Sentences 3.8 -
Words 96.9 -
Words € B, 22.7 23.4
Words € E, 41.0 42.3
Words ¢ By and ¢ E, 332 343

Table 1: Statistics on word classes from our bilingual
training data. All numbers are calculated on the source
side. P means the percentage.

This means, in other words, that the source phrase

¢! is mapped as a unit onto the target phrase el

When defining the By, and E) class, we also re-
quire that the source phrase C‘Z in the translation zone
must contain multiple words (5 > 7). Our interest
is the question of whether a sequence of consecu-
tive source words can be translated as a unit (i.e.
whether there is a translation zone covering these
source words). For a single-word source phrase, if
it can be translated separately, it is always translated
as a unit in the context of phrase-based decoding.
Therefore this question does not exist.

Note that the first word ¢; and the last word ¢,
are unambiguous in terms of whether they begin or
end a translation zone. The first word ¢; must begin
a translation zone spanning the whole source sen-
tence. The last word ¢,, must end a translation zone
spanning the whole source sentence. Therefore, our
classifiers only need to predict the other n — 2 words
for a source sentence of length n.

Table 1 shows statistics of word classes from our
training data which contain nearly 100M words in
approximately 4M sentences. Among these words,
only 22.7M words can begin a translation zone
which covers multiple source words. 41M words
can end a translation zone spanning multiple source
words, which accounts for more than 42% in all
words. We still have more than 33M words, ac-
counting for 34.3%, which neither begin nor end
a multi-source-word translation zone. Apparently,
translations that begin/end on words € B, /€ E, are
preferable to those which begin/end on other words.

Yet another interesting study is to compare trans-
lation boundaries with constituent boundaries de-
duced from source-side parse trees. In doing so,
we can know further how well constituent boundary



Classification Task \ Avg. Accuracy (%)
By/B,, 46.9
E,/E, 52.2

Table 2: Average classification accuracy on the develop-
ment set when we treat constituent boundary deducer (ac-
cording to source-side parse trees) as a translation bound-
ary classifier.

based syntactic constraints can improve translation
quality. We pair the source sentences of our devel-
opment set with each of the reference translations
and include the created sentence pairs in our bilin-
gual training corpus. Then we obtain word align-
ments on the new corpus (see Section 5.1 for the de-
tails of learning word alignments). From the word
alignments we obtain translation boundaries (see de-
tails in the next section). We parse the source sen-
tences of our development set and obtain constituent
boundaries from parse trees.

To make a clear comparison with our transla-
tion boundary classifiers (see Section 3.3), we treat
constituent boundaries deduced from source-side
parse trees as output from beginning/ending bound-
ary classifiers: the constituent beginning boundary
corresponds to B,; the constituent ending boundary
corresponds to ;. We have four reference transla-
tions for each source sentence. Therefore we have
four translation boundary sets, each of which is pro-
duced from word alignments between source sen-
tences and one reference translation set. Each of
the four translation boundary sets will be used as a
gold standard. We calculate classification accuracy
for our constituent boundary deducer on each gold
standard and average them finally.

Table 2 shows the accuracy results. The average
accuracies on the four gold standard sets are very
low, especially for the B,/ B,, classification task. In
section 3.3, we will show that our translation bound-
ary classifiers achieve higher accuracy than that of
constituent boundary deducer. This suggests that
pure constituent boundary based constraints are not
the best choice to constrain phrase-based decoding.

3 Learning Translation Boundaries

In this section, we investigate building classifiers
to predict translation boundaries. First, we elabo-
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rate the acquisition of training instances from word
alignments. Second, we build two classifiers with
simple features on the obtained training instances.
Finally, we evaluate our classifiers on the develop-
ment set using the “gold” translation boundaries ob-
tained from reference translations.

3.1 Obtaining Translation Boundaries from
Word Alignments

We can easily obtain constituent boundaries from
parse trees. Similarly, if we have a tree covering
both source and target sentence, we can easily get
translation boundaries from this tree. Fortunately,
we can build such a tree directly from word align-
ments. We use (Zhang et al., 2008)’s shift-reduce al-
gorithm (SRA) to decompose word alignments into
hierarchical trees.

Given an arbitrary word-level alignment as an in-
put, SRA is able to output a tree representation of the
word alignment (a.k.a decomposition tree). Each
node of the tree is a translation zone as we defined
in the Section 2. Therefore the first word on the
source side of each multi-source-word node is a be-
ginning translation boundary (€ B,); the last word
on the source side of each multi-source-word node
is an ending translation boundary (€ E,).

Figure la shows an example of many-to-many
alignment, where the source language is Chinese
and the target language is English. Each word is
indexed with their occurring position from left to
right. Figure 1b is the tree representation of the word
alignment after hierarchical analysis using SRA. We
use ([i,7],[p,q]) to denote a tree node, where i, j
and p, g are the beginning and ending index in the
source and target language, respectively. By check-
ing nodes which cover multiple source words, we
can easily decide that the source words {fii':, 1,
[Kl#4} are in the class B, and any other words are
in the class B,, if we want to train a B, /B,, classi-
fier with class labels { B,, By, }. Similarly, the source
words {{X, ¥AT, #F, &M} are in the class E, and
any other words are in the class E,, when we train a
E,/E, classifier with class labels {E,, E,}.

By using SRA on each word-aligned bilingual
sentence, as described above, we can tag each source
word with two sets of class labels: {B,, B, } and
{Ey, E,}. The tagged source sentences will be used
to train our two translation boundary classifiers.
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The last five flights all failed due to accidents
1 2 3 4 5 6 7 8 9

(1, 71, [1, 91)

(1, 51, [1, 5]) (16, 7], [6, 9])
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[1,4) (5 5L 5 5D ([6, 6], [7, 9] ([7,7], [6, 6])
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Figure 1: An example of many-to-many word alignment and its tree representation produced by (Zhang et al., 2008)’s

shift-reduce algorithm.

3.2 Building Translation Boundary Classifiers

We build two discriminative classifiers based on
Maximum Entropy Markov Models (MEMM) (Mc-
Callum et al., 2000). One classifier is to predict the
word class ¢ € { By, By, } for each source word. The
other is to predict the word class { € {E,, E,}.
These two classifiers are separately trained using
training instances obtained from our word-aligned
training data as demonstrated in the last section.

We use features from surrounding words, includ-
ing 2 before and 2 after the current word position
(c_2,c_1,C4+1,c42). We also use class features to
train models with Markov order 1 (including class
feature (._,), and Markov order 2 (including class
features (._,, Ce_,)-

3.3 Evaluating Translation Boundary
Classifiers

How well can we perform these binary classifica-
tion tasks using the classifiers described above? Can
we obtain better translation boundary predictions
than extracting constituent boundary from source-
side parse trees? To investigate these questions, we
evaluate our MEMM based classifiers. We trained
them on our 100M-word word-aligned corpus. We
ran the two trained classifiers on the development
set separately to obtain the B,/B,, words and E,/FE,
words. Then we built our four gold standards using
four reference translation sets as described in Sec-
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Avg. Accuracy (%)
Classification Task | MEMM 1 MEMM 2
B,/By, 71.7 70.2
E,/E, 59.2 58.8

Table 3: Average classification accuracy on the develop-
ment set for our MEMM based translation boundary clas-
sifiers with various Markov orders.

tion 2. The average classification accuracy results
are shown in Table 3.

Comparing Table 3 with Table 2, we find that our
MEMM based classifiers significantly outperform
constituent boundary deducer in predicting transla-
tion boundaries, especially in the B, /B, classifi-
cation task, where our MEMM based B, /B, clas-
sifier (Markov order 1) achieves a relative increase
of 52.9% in accuracy over the constituent bound-
ary deducer. In the E,/FE,, classification task, our
classifiers also perform much better than constituent
boundary deducer.

Then are our MEMM based translation boundary
classifiers good enough? The accuracies are still low
although they are higher than those of constituent
boundary deducer. One reason why we have low
accuracies is that our gold standard based evalua-
tion is not established on real gold standards. In
other words, we don’t have gold standards in terms
of translation boundary since different translations



Classification Task \ Avg. Accuracy (%)
By/B,, 80.6
E,/E, 75.7

Table 4: Average classification accuracy on the develop-
ment set when treating each reference translation set as a
boundary classifier.

generate very different translation boundaries. We
can measure these differences in reference transla-
tions using the same evaluation metric (classification
accuracy). We treat each reference translation set
as a translation boundary classifier while the other
three reference translation sets as gold standards.
We calculate the classification accuracy for the cur-
rent reference translation set and finally average all
four accuracies. Table 4 presents the results.

Comparing Table 4 with Table 3, we can see that
the accuracy of our translation boundary classifica-
tion approach is not that low when considering vast
divergences of reference translations. The question
now becomes, how can classifier output be used to
constrain phrase-based decoding, and what is the
impact on the system performance of using such
constraints.

4 Integrating Translation Boundaries into
Decoding

By running the two trained classifiers on the source
sentence separately, we obtain two classified word
sets: B, /B, words, and E,,/ E,, words. We can pro-
hibit any translations or reorderings spanning c;...c;
(j > 1) where ¢; ¢ B, according to the first classi-
fier or ¢; ¢ E, according to the second classifier. In
such a way, we integrate translation boundaries into
phrase-based decoding as hard constraints, which,
however, is at the risk of producing no translation
covering the whole source sentence.

Alternatively, we introduce soft constraints based
on translation boundary that our classifiers pre-
dict, similar to constituent boundary based soft con-
straints in (Cherry, 2008) and (Marton and Resnik,
2008). We add a new feature to the decoder’s log-
linear model: translation boundary violation count-
ing feature. This counting feature accumulates
whenever hypotheses have a partial translation span-
ning ¢;...c; (j > i) where ¢; ¢ By or ¢; ¢ E,. The
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LDCID Description

LDC2004E12 | United Nations
LDC2004T08 | Hong Kong News
LDC2005T10 | Sinorama Magazine
LDC2003E14 | FBIS

LDC2002E18 | Xinhua News V1 beta
LDC2005T06 | Chinese News Translation
LDC2003E07 | Chinese Treebank
LDC2004T07 | Multiple Translation Chinese

Table 5: Training corpora.

weight A, of this feature is tuned via minimal error
rate training (MERT) (Och, 2003) with other feature
weights.

Unlike hard constraints, which simply prevent
any hypotheses from violating translation bound-
aries, soft constraints allow violations of translation
boundaries but with a penalty of exp(—A,C,) where
C, is the violation count. By using soft constraints,
we can enable the model to prefer hypotheses which
are consistent with translation boundaries.

S Experiment

Our baseline system is a phrase-based system us-
ing BTGs (Wu, 1997), which includes a content-
dependent reordering model discriminatively trained
using reordering examples (Xiong et al., 2006). We
carried out various experiments to evaluate the im-
pact of integrating translation boundary based soft
constraints into decoding on the system performance
on the Chinese-to-English translation task of the
NIST MT-05 using large scale training data.

5.1 Experimental Setup

Our training corpora are listed in Table 5. The
whole corpora consist of 96.9M Chinese words and
109.5M English words in 3.8M sentence pairs. We
ran GIZA++ (Och and Ney, 2000) on the par-
allel corpora in both directions and then applied
the “grow-diag-final” refinement rule (Koehn et al.,
2005) to obtain many-to-many word alignments.
From the word-aligned corpora, we extracted bilin-
gual phrases and trained our translation model.

We used all corpora in Table 5 except for the
United Nations corpus to train our MaxEnt based
reordering model (Xiong et al., 2006), which con-



sist of 33.3M Chinese words and 35.8M English
words. We built a four-gram language model us-
ing the SRILM toolkit (Stolcke, 2002), which was
trained on Xinhua section of the English Gigaword
corpus (181.1M words).

To train our translation boundary classifiers, we
extract training instances from the whole word-
aligned corpora, from which we obtain 96.9M train-
ing instances for the B, /B, and E,/E, classifier.
We ran the off-the-shelf MaxEnt toolkit (Zhang,
2004) to tune classifier feature weights with Gaus-
sian prior set to 1 to avoid overfitting.

We used the NIST MT-03 evaluation test data as
our development set (919 sentences in total, 27.1
words per sentence). The NIST MT-05 test set in-
cludes 1082 sentences with an average of 27.4 words
per sentence. Both the reference corpus for the NIST
MT-03 set and the reference corpus for the NIST
MT-05 set contain 4 translations per source sen-
tence. To compare with constituent boundary based
constraints, we parsed source sentences of both the
development and test sets using a Chinese parser
(Xiong et al., 2005) which was trained on the Penn
Chinese Treebank with an F;-score of 79.4%.

Our evaluation metric is case-insensitive BLEU-4
(Papineni et al., 2002) using the shortest reference
sentence length for the brevity penalty. Statistical
significance in BLEU score differences was tested
by paired bootstrap re-sampling (Koehn, 2004).

5.2 Using Translation Boundaries from
Reference Translations

The most direct way to investigate the impact on the
system performance of using translation boundaries
is to integrate “right” translation boundaries into de-
coding which are directly obtained from reference
translations. For both the development set and test
set, we have four reference translation sets, which
are named refl, ref2, ref3 and ref4, respectively.
For the development set, we used translation bound-
aries obtained from refl. Based on these boundaries,
we built our translation boundary violation counting
feature and tuned its feature weight with other fea-
tures using MERT. When we obtained the best fea-
ture weights As, we evaluated on the test set using
translation boundaries produced from ref1, ref2, ref3
and ref4 of the test set respectively.

Table 6 shows the results. We clearly see that us-
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System | BLEU-4 (%)
Base 33.05

Refl 33.99*

Ref2 34.17*

Ref3 33.93*

Ref4 34.21*

Table 6: Results of using translation boundaries obtained
from reference translations. *: significantly better than
baseline (p < 0.01).

ing “right” translation boundaries to build soft con-
straints significantly improve the performance mea-
sured by BLEU score. The best result comes from
ref4, which achieves an absolute increase of 1.16
BLEU points over the baseline. We believe that the
best result here only indicates the lower bound of
potential improvement when using right translation
boundaries. If we have consistent translation bound-
aries on the development and test set (for example,
we have the same 4 translators build reference trans-
lations for both the development and test set), the
performance improvement will be higher.

5.3 Using Automatically Learned Translation
Boundaries

The success of using translation boundaries from
reference translations inspires us to pursue trans-
lation boundaries predicted by our MEMM based
classifiers. We ran our MEMM1 (Markov order 1)
and MEMM?2 (Markov order 2) B, /By, and E, / E,,
classifiers on both the development and test set.
Based on translation boundaries output by MEMM 1
and MEMM2 classifiers, we built our translation
boundary violation feature and tuned it on the de-
velopment set. The evaluation results on the test set
are shown in Table 7.

From Table 7 we observe that using soft con-
straints based on translation boundaries from both
our MEMM 1 and MEMM 2 significantly outper-
form the baseline. Impressively, when using outputs
from MEMM 2, we achieve an absolute improve-
ment of almost 1 BLEU point over the baseline. This
result is also very close to the best result of using
translation boundaries from reference translations.

To compare with constituent boundary based syn-
tactic constraints, we also carried out experiments
using two kinds of such constraints. One is the



System BLEU-4 (%)
Base 33.05
Condeducer | 33.18

XP+ 33.58*
BestRef 34.21*%+
MEMM 1 33.70*
MEMM 2 34.04%+

Table 7: Results of using automatically learned trans-
lation boundaries. Condeducer means using pure con-
stituent boundary based soft constraint. XP+ is another
constituent boundary based soft constraint but with dis-
tinction among special constituent types (Marton and
Resnik, 2008). BestRef is the best result using reference
translation boundaries in Table 6. MEMM 1 and MEMM
2 are our MEMM based translation boundary classifiers
with Markov order 1 and 2. *: significantly better than
baseline (p < 0.01). +: significantly better than XP+
(p < 0.01).

Condeducer which uses pure constituent bound-
ary based syntactic constraint: any partial transla-
tions which cross any constituent boundaries will
be penalized. The other is the XP+ from (Marton
and Resnik, 2008) which only penalizes hypotheses
which violate the boundaries of a constituent with
a label from {NP, VP, CP, IP, PP, ADVP, QP, LCP,
DNP}. The XP+ is the best syntactic constraint
among all constraints that Marton and Resnik (2008)
use for Chinese-to-English translation.

Still in Table 7, we find that both syntactic con-
straint Condeducer and XP+ are better than the base-
line. But only XP+ is able to obtain significant im-
provement. Both our MEMM 1 and MEMM 2 out-
perform Condeducer. MEMM 2 achieves significant
improvement over XP+ by approximately 0.5 BLEU
points. This comparison suggests that translation
boundary is a better option than constituent bound-
ary when we build constraints to restrict phrase-
based decoding.

5.4 One Classifier vs. Two Classifiers

Revisiting the classification task in this paper, we
can also consider it as a sequence labeling task
where the first source word of a translation zone
is labeled “B”, the last source word of the trans-
lation zone is labeled “E”, and other words are la-
beled “O”. To complete such a sequence labeling
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task, we built only one classifier which is still based
on MEMM (with Markov order 2) with the same
features as described in Section 3.2. We built soft
constraints based on the outputs of this classifier and
evaluated them on the test set. The case-insensitive
BLEU score is 33.62, which is lower than the per-
formance of using two separate classifiers (34.04).

We calculated the accuracy for class “B” by map-
ping “B” to By and “E” and “O” to B,,. The result is
67.9%. Similarly, we obtained the accuracy of class
“E”, which is as low as 48.6%. These two accura-
cies are much lower than those of using two separate
classifiers, especially the accuracy of “E”. This sug-
gests that the B, and £, are not interrelated tightly.
It is better to learn them separately with two classi-
fiers.

Another advantage of using two separate classi-
fiers is that we can explore more constraints. A word
ci, can be possibly labeled as B, by the first classifier
and F, by the second classifier. Therefore we can
build soft constraints on span (c;, ¢x) (¢; € By, ¢ €
E,) and span (cg, ¢j) (¢, € By,c; € Ey). This is
impossible if we use only one classifier since each
word can have only one class label. We can build
only one constraint on span (¢;, ¢) or span (¢, ¢;).

6 Related Work

Various approaches incorporate constraints into
phrase-based decoding in a soft or hard manner. Our
introduction has already briefly mentioned (Cherry,
2008) and (Marton and Resnik, 2008), which utilize
source-side parse tree boundary violation counting
feature to build soft constraints for phrase-based de-
coding, and (Xiong et al., 2009), which calculates a
score to indicate to what extent a source phrase can
be translated as a unit using a bracketing model with
richer syntactic features. More previously, (Chi-
ang, 2005) rewards hypotheses whenever they ex-
actly match constituent boundaries of parse trees on
the source side.

In addition, hard linguistic constraints are also ex-
plored. (Wu and Ng, 1995) employs syntactic brack-
eting information to constrain search in order to im-
prove speed and accuracy. (Collins et al., 2005) and
(Wang et al., 2007) use hard syntactic constraints to
perform reorderings according to source-side parse
trees. (Xiong et al., 2008) prohibit any swappings



which violate punctuation based constraints.

Non-linguistic constraints are also widely used
in phrase-based decoding. The IBM and ITG con-
straints (Zens et al., 2004) are used to restrict re-
orderings in practical phrase-based systems.

(Berger et al., 1996) introduces the concept of rift
into a machine translation system, which is similar
to our definition of translation boundary. They also
use a maximum entropy model to predict whether a
source position is a rift based on features only from
source sentences. Our work differs from (Berger et
al., 1996) in three major respects.

1) We distinguish a segment boundary into two
categories: beginning and ending boundary due
to their different distributions (see Table 1).
However, Berger et al. ignore this difference.

2) We train two classifiers to predict beginning
and ending boundary respectively while Berger
et al. build only one classifier. Our experiments
show that two separate classifiers outperform
one classifier.

3) The last difference is how segment bound-
aries are integrated into a machine transla-
tion system. Berger et al. use predicted
rifts to divide a long source sentence into a
series of smaller segments, which are then
translated sequentially in order to increase de-
coding speed (Brown et al., 1992; Berger
et al.,, 1996). This can be considered as a
hard integration, which may undermine trans-
lation accuracy given wrongly predicted rifts.
We integrate predicted translation boundaries
into phrase-based decoding in a soft manner,
which improves translation accuracy in terms
of BLEU score.

7 Conclusion and Future Work

In this paper, we have presented a simple approach
to learn translation boundaries on source sentences.
The learned translation boundaries are used to con-
strain phrase-based decoding in a soft manner. The
whole approach has several properties.

e First, it is based on a simple classification task
that can achieve considerably high accuracy
when taking translation divergences into ac-
count using simple models and features.
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e Second, the classifier output can be straightfor-
wardly used to constrain phrase-based decoder.

e Finally, we have empirically shown that, to
build soft constraints for phrase-based decod-
ing, translation boundary predicted by our clas-
sifier is a better choice than constituent bound-
ary deduced from source-side parse tree.

Future work in this direction will involve trying
different methods to define more informative trans-
lation boundaries, such as a boundary to begin/end
a swapping. We would also like to investigate new
methods to incorporate automatically learned trans-
lation boundaries more efficiently into decoding in
an attempt to further improve search in both speed
and accuracy.
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