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Abstract

Syntactic machine translation systems cur-
rently use word alignments to infer syntactic
correspondences between the source and tar-
get languages. Instead, we propose an un-
supervised ITG alignment model that directly
aligns syntactic structures. Our model aligns
spans in a source sentence to nodes in a target
parse tree. We show that our model produces
syntactically consistent analyses where possi-
ble, while being robust in the face of syntactic
divergence. Alignment quality and end-to-end
translation experiments demonstrate that this
consistency yields higher quality alignments
than our baseline.

1 Introduction

Syntactic machine translation has advanced signif-
icantly in recent years, and multiple variants cur-
rently achieve state-of-the-art translation quality.
Many of these systems exploit linguistically-derived
syntactic information either on the target side (Gal-
ley et al., 2006), the source side (Huang et al., 20006),
or both (Liu et al., 2009). Still others induce their
syntax from the data (Chiang, 2005). Despite differ-
ences in detail, the vast majority of syntactic meth-
ods share a critical dependence on word alignments.
In particular, they infer syntactic correspondences
between the source and target languages through
word alignment patterns, sometimes in combination
with constraints from parser outputs.

However, word alignments are not perfect indi-
cators of syntactic alignment, and syntactic systems
are very sensitive to word alignment behavior. Even
a single spurious word alignment can invalidate a
large number of otherwise extractable rules, while
unaligned words can result in an exponentially large
set of extractable rules to choose from. Researchers
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have worked to incorporate syntactic information
into word alignments, resulting in improvements to
both alignment quality (Cherry and Lin, 2006; DeN-
ero and Klein, 2007), and translation quality (May
and Knight, 2007; Fossum et al., 2008).

In this paper, we remove the dependence on word
alignments and instead directly model the syntactic
correspondences in the data, in a manner broadly
similar to Yamada and Knight (2001). In particu-
lar, we propose an unsupervised model that aligns
nodes of a parse tree (or forest) in one language to
spans of a sentence in another. Our model is an in-
stance of the inversion transduction grammar (ITG)
formalism (Wu, 1997), constrained in such a way
that one side of the synchronous derivation respects
a syntactic parse. Our model is best suited to sys-
tems which use source- or target-side trees only.

The design of our model is such that, for divergent
structures, a structurally integrated backoff to flatter
word-level (or null) analyses is available. There-
fore, our model is empirically robust to the case
where syntactic divergence between languages pre-
vents syntactically accurate ITG derivations.

We show that, with appropriate pruning, our
model can be efficiently trained on large parallel cor-
pora. When compared to standard word-alignment-
backed baselines, our model produces more con-
sistent analyses of parallel sentences, leading to
high-count, high-quality transfer rules. End-to-
end translation experiments demonstrate that these
higher quality rules improve translation quality by
1.0 BLEU over a word-alignment-backed baseline.

2 Syntactic Rule Extraction

Our model is intended for use in syntactic transla-
tion models which make use of syntactic parses on
either the target (Galley et al., 2006) or source side
(Huang et al., 2006; Liu et al., 2006). Our model’s
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Figure 1: A single incorrect alignment removes an ex-
tractable node, and hence several desirable rules. We
represent correct extractable nodes in bold, spurious ex-
tractable nodes with a *, and incorrectly blocked ex-
tractable nodes in bold strikethrough.

chief purpose is to align nodes in the syntactic parse
in one language to spans in the other — an alignment
we will refer to as a “syntactic” alignment. These
alignments are employed by standard syntactic rule
extraction algorithms, for example, the GHKM al-
gorithm of Galley et al. (2004). Following that work,
we will assume parses are present in the target lan-
guage, though our model applies in either direction.

Currently, although syntactic systems make use of
syntactic alignments, these alignments must be in-
duced indirectly from word-level alignments. Pre-
vious work has discussed at length the poor interac-
tion of word-alignments with syntactic rule extrac-
tion (DeNero and Klein, 2007; Fossum et al., 2008).
For completeness, we provide a brief example of this
interaction, but for a more detailed discussion we re-
fer the reader to these presentations.

2.1 Interaction with Word Alignments

Syntactic systems begin rule extraction by first iden-
tifying, for each node in the target parse tree, a
span of the foreign sentence which (1) contains ev-
ery source word that aligns to a target word in the
yield of the node and (2) contains no source words
that align outside that yield. Only nodes for which
a non-empty span satisfying (1) and (2) exists may
form the root or leaf of a translation rule; for that
reason, we will refer to these nodes as extractable
nodes.

Since extractable nodes are inferred based on
word alignments, spurious word alignments can rule
out otherwise desirable extraction points. For exam-
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ple, consider the alignment in Figure 1. This align-
ment, produced by GIZA++ (Och and Ney, 2003),
contains 4 correct alignments (the filled circles),
but incorrectly aligns the to the Chinese past tense
marker | (the hollow circle). This mistaken align-
ment produces the incorrect rule (DT — the ; ),
and also blocks the extraction of (VBN — fallen ;
D)

More high-level syntactic transfer rules are also
ruled out, for example, the “the insertion rule” (NP
— the NN NNy ; NN; NNs) and the high-level (S
— NP; VP ; NPy VPy).

3 A Syntactic Alignment Model

The most common approach to avoiding these prob-
lems is to inject knowledge about syntactic con-
straints into a word alignment model (Cherry and
Lin, 2006; DeNero and Klein, 2007; Fossum et al.,
2008).! While syntactically aware, these models re-
main limited by the word alignment models that un-
derly them.

Here, we describe a model which directly infers
alignments of nodes in the target-language parse tree
to spans of the source sentence. Formally, our model
is an instance of a Synchronous Context-Free Gram-
mar (see Chiang (2004) for a review), or SCFG,
which generates an English (target) parse tree 7" and
foreign (source) sentence f given a target sentence e.
The generative process underlying this model pro-
duces a derivation d of SCFG rules, from which T'
and f can be read off; because we condition on e,
the derivations produce e with probability 1. This
model places a distribution over 7" and f given by

p(T.fe)= p(dle)= []n(rle)
d

d red

where the sum is over derivations d which yield T’
and f. The SCFG rules r come from one of 4 types,
pictured in Table 1. In general, because our model
can generate English trees, it permits inference over
forests. Although we will restrict ourselves to a sin-
gle parse tree for our experiments, in this section, we
discuss the more general case.

'One notable exception is May and Knight (2007), who pro-
duces syntactic alignments using syntactic rules derived from
word-aligned data.



Rule Type Root | English | Foreign Example Instantiation

TERMINAL E e f, FOUR — four ;

UNARY A B f, BT, CD —  FOUR ;¢ FOUR
BINARYMONO | A BC f, Bf,, Cf. | NP — NN NN ;e NN ] NN e
BINARYINV A BC f,Cf,, Bf. | PP — IN NP ;7 NP e IN ¢

Table 1: Types of rules present in the SCFG describing our model, along with some sample instantiations of each type.
Empty word sequences f have been explicitly marked with an e.

The first rule type is the TERMINAL production,
which rewrites a terminal symbol> E as its En-
glish word e and a (possibly empty) sequence of
foreign words f;. Generally speaking, the majority
of foreign words are generated using this rule. It
is only when a straightforward word-to-word corre-
spondence cannot be found that our model resorts to
generating foreign words elsewhere.

We can also rewrite a non-terminal symbol A us-
ing a UNARY production, which on the English side
produces a single symbol B, and on the foreign side
produces the symbol B, with sequences of words f;
to its left and f; to its right.

Finally, there are two binary productions: BINA-
RYMONO rewrites A with two non-terminals B and
C on the English side, and the same non-terminals
B and C' in monotonic order on the foreign side,
with sequences of words fj, f,., and f,,, to the left,
right, and the middle. BINARYINV inverts the or-
der in which the non-terminals B and C' are written
on the source side, allowing our model to capture a
large subset of possible reorderings (Wu, 1997).

Derivations from this model have two key prop-
erties: first, the English side of a derivation is con-
strained to form a valid constituency parse, as is re-
quired in a syntax system with target-side syntax;
and second, for each parse node in the English pro-
jection, there is exactly one (possibly empty) con-
tiguous span of the foreign side which was gener-
ated from that non-terminal or one of its descen-
dants. Identifying extractable nodes from a deriva-
tion is thus trivial: any node aligned to a non-empty
foreign span is extractable.

In Figure 2, we show a sample sentence pair frag-

2For notational convenience, we imagine that for each par-
ticular English word e, there is a special preterminal symbol E
which produces it. These symbols E act like any other non-
terminal in the grammar with respect to the parameterization in
Section 3.1. To denote standard non-terminals, we will use A,
B, and C.
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NP[1,3]
IN[3.,4] DT[1,1] NNSJ[1,3]
| | |
before[3,4] the[1,1] elecﬂons[l,S]
0 1 pal‘[’i'(‘z;%ent 2 eleci,’tiun 3 “-/;-(_:/;é)re 4
SI W BrITEES ZHi
\/
DT\/NNS
\M/IN
PP
PP — IN NP ;# NP IN
NP — DT NNS ;DT NNS
IN —  BEFORE ; BEFORE
BEFORE —  before D )
DT —  THE ; THE
THE —  the ;
NNS —  ELECTIONS ; ELECTIONS
ELECTIONS — elections ;WS 2

Figure 2: Top: A synchronous derivation of a small sen-
tence pair fragment under our model. The English pro-
jection of the derivation represents a valid constituency
parse, while the foreign projection is less constrained.
We connect each foreign terminal with a dashed line to
the node in the English side of the synchronous deriva-
tion at which it is generated. The foreign span assigned
to each English node is indicated with indices. All nodes
with non-empty spans, shown in boldface, are extractable
nodes. Bottom: The SCFG rules used in the derivation.

ment as generated by our model. Our model cor-
rectly identifies that the English the aligns to nothing
on the foreign side. Our model also effectively cap-
tures the one-to-many alignment® of elections to 1

3While our model does not explicitly produce many-to-one
alignments, many-to-one rules can be discovered via rule com-
position (Galley et al., 2006).



2> 1%£%5. Finally, our model correctly analyzes the
Chinese circumposition TE ... ZHi (before ...). In
this construction, Z Hij carries the meaning of “be-
fore”, and thus correctly aligns to before, while 7
functions as a generic preposition, which our model
handles by attaching it to the PP. This analysis per-
mits the extraction of the general rule (PP — IN;
NP ; £ NP5 IN;), and the more lexicalized (PP —
before NP ; 7£ NP Z Hi).

3.1 Parameterization

In principle, our model could have one parameter for
each instantiation r of a rule type. This model would
have an unmanageable number of parameters, pro-
ducing both computational and modeling issues — it
is well known that unsupervised models with large
numbers of parameters are prone to degenerate anal-
yses of the data (DeNero et al., 2006). One solution
might be to apply an informed prior with a compu-
tationally tractable inference procedure (e.g. Cohn
and Blunsom (2009) or Liu and Gildea (2009)). We
opt here for the simpler, statistically more robust so-
lution of making independence assumptions to keep

the number of parameters at a reasonable level.
Concretely, we define the probability of the BI1-
NARYMONO rule,*

p(r=A— BC;fBf,, Cf.|Aex)

which conditions on the root of the rule A and the
English yield e 4, as

Py(A— BC | A ea) pinu(l | B,C)-

pleft(fl ‘ A7 eA)’pmid(fm ‘ AyeA)'nght(fr ’ A,eA)

In words, we assume that the rule probability de-
composes into a monolingual PCFG grammar prob-
ability py, an inversion probability p;,,, and a proba-
bility of left, middle, and right word sequences pjc 1,
Pmid> and p,.z-ght.s Because we condition on e, the
monolingual grammar probability p, must form a
distribution which produces e with probability 1.6

“In the text, we only describe the factorization for the BI-
NARYMONO rule. For a parameterization of all rules, we refer
the reader to Table 2.

3 All parameters in our model are multinomial distributions.

8 A simple case of such a distribution is one which places all
of its mass on a single tree. More complex distributions can be
obtained by conditioning an arbitrary PCFG on e (Goodman,
1998).
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We further assume that the probability of produc-
ing a foreign word sequence f; decomposes as:

piest(fi | Asea) =pi(|fi| =m | A) H (fi | A ea)

where m is the length of the sequence f;. The pa-
rameter p; is a left length distribution. The prob-
abilities py,iq, Pright» decompose in the same way,
except substituting a separate length distribution p,,
and p, for p;. For the TERMINAL rule, we emit f;
with a similarly decomposed distribution pyepp, us-
ing length distribution p,,,.

We define the probability of generating a foreign
word f; as

p(fi | Aea) =

Y

i€ea

pt fJ |€z)

with ¢ € e4 denoting an index ranging over the in-
dices of the English words contained in e4. The
reader may recognize the above expressions as the
probability assigned by IBM Model 1 (Brown et al.,
1993) of generating the words f; given the words e 4,
with one important difference — the length m of the
foreign sentence is often not modeled, so the term
pi(|fi] = m | A) is set to a constant and ignored.
Parameterizing this length allows our model to ef-
fectively control the number of words produced at
different levels of the derivation.

It is worth noting how each parameter affects the
model’s behavior. The p; distribution is a standard
“translation” table, familiar from the IBM Models.
The p;y, distribution is a “distortion” parameter, and
models the likelihood of inverting non-terminals B
and C'. This parameter can capture, for example,
the high likelihood that prepositions IN and noun
phrases NP often invert in Chinese due to its use
of postpositions. The non-terminal length distribu-
tions p;, pm, and p, model the probability of “back-
ing off” and emitting foreign words at non-terminals
when a more refined analysis cannot be found. If
these parameters place high mass on 0 length word
sequences, this heavily penalizes this backoff be-
haviour. For the TERMINAL rule, the length distri-
bution p,, parameterizes the number of words pro-
duced for a particular English word e, functioning
similarly to the “fertilities” employed by IBM Mod-
els 3 and 4 (Brown et al., 1993). This allows us



to model, for example, the tendency of English de-
terminers the and a translate to nothing in the Chi-
nese, and of English names to align to multiple Chi-
nese words. In general, we expect an English word
to usually align to one Chinese word, and so we
place a weak Dirichlet prior on on the p. distribution
which puts extra mass on 1-length word sequences.
This is helpful for avoiding the “garbage collection”
(Moore, 2004) problem for rare words.

3.2 Exploiting Non-Terminal Labels

There are often foreign words that do not correspond
well to any English word, which our model must
also handle. We elected for a simple augmentation
to our model to account for these words. When gen-
erating foreign word sequences f at a non-terminal
(i.e. via the UNARY or BINARY productions), we
also allow for the production of foreign words from
the non-terminal symbol A. We modify p(f; | ea)
from the previous section to allow production of f;
directly from the non-terminal’ A:

p(fjlea) =pu-p(fi | A)

Hl=pu) - Y il )
i€ea

where p,;; is a global binomial parameter which con-
trols how often such alignments are made.

This necessitates the inclusion of parameters like
p:( B | NP) into our translation table. Generally,
these parameters do not contain much information,
but rather function like a traditional NULL rooted
at some position in the tree. However, in some
cases, the particular annotation used by the Penn
Treebank (Marcus et al., 1993) (and hence most
parsers) allows for some interesting parameters to
be learned. For example, we found that our aligner
often matched the Chinese word |, which marks
the past tense (among other things), to the preter-
minals VBD and VBN, which denote the English
simple past and perfect tense. Additionally, Chinese
measure words like /7> and %4 often align to the CD
(numeral) preterminal. These generalizations can be
quite useful — where a particular number might pre-
dict a measure word quite poorly, the generalization
that measure words co-occur with the CD tag is very
robust.

"For terminal symbols E, this production is not possible.
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3.3 Membership in ITG

The generative process which describes our model
contains a class of grammars larger than the com-
putationally efficient class of ITG grammars. For-
tunately, the parameterization described above not
only reduces the number of parameters to a man-
ageable level, but also introduces independence as-
sumptions which permit synchronous binarization
(Zhang et al., 2006) of our grammar. Any SCFG that
can be synchronously binarized is an ITG, meaning
that our parameterization permits efficient inference
algorithms which we will make use of in the next
section. Although several binarizations are possi-
ble, we give one such binarization and its associated
probabilities in Table 2.

3.4 Robustness to Syntactic Divergence

Generally speaking, ITG grammars have proven
more useful without the monolingual syntactic con-
straints imposed by a target parse tree. When deriva-
tions are restricted to respect a target-side parse tree,
many desirable alignments are ruled out when the
syntax of the two languages diverges, and align-
ment quality drops precipitously (Zhang and Gildea,
2004), though attempts have been made to address
this issue (Gildea, 2003).

Our model is designed to degrade gracefully in
the case of syntactic divergence. Because it can pro-
duce foreign words at any level of the derivation,
our model can effectively back off to a variant of
Model 1 in the case where an ITG derivation that
both respects the target parse tree and the desired
word-level alignments cannot be found.

For example, consider the sentence pair fragment
in Figure 3. It is not possible to produce an ITG
derivation of this fragment that both respects the
English tree and also aligns all foreign words to
their obvious English counterparts. Our model han-
dles this case by attaching the troublesome FHKX at
the uppermost VP. This analysis captures 3 of the
4 word-level correspondences, and also permits ex-
traction of abstract rules like (S — NP VP ; NP VP)
and (NP — the NN ; NN).

Unfortunately, this analysis leaves the English
word tomorrow with an empty foreign span, permit-
ting extraction of the incorrect translation (VP —
announced tomorrow /A\?ﬁ), among others. Our



Rule Type Root | English side | Foreign side | Probability

TERMINAL | E e Wi Drerm (Wi | E)

UNARY A B" w; B* po(A— B A)piesi(wi | A en)
B* B Bw, p'r'ight(wr | A7 eA)

BINARY A AT w; AT prese(wi | Ayea)
Al BC! BC? pg(A — B C'| A)piny(I=false | B, C)
A' | BC! C'B pg(A — BC | A)piny(I=true | B,C)
Cl 02 f7n C2 pmid(f'm ‘ A: eA)
02 C O fr pright(ff‘ ‘ A, EA)

Table 2: A synchronous binarization of the SCFG describing our model.

VP[2,3]
VP[2,3]

%DT[3,3] NN[3,4] MD[1,2] VB[2,2] VBN[2,3] NN[3.3]

the[3,3] list[3,4]  will[1,2] be[2,2] tomorrow[3,3]
0 tomorrow 1 will 2 3 /}',vr 4
WIE i £

Figure 3: The graceful degradation of our model in the
face of syntactic divergence. It is not possible to align
all foreign words with their obvious English counterparts
with an ITG derivation. Instead, our model analyzes as
much as possible, but must resort to emitting B X high
in the tree.

point here is not that our model’s analysis is “cor-
rect”, but “good enough” without resorting to more
computationally complicated models. In general,
our model follows an “extract as much as possi-
ble” approach. We hypothesize that this approach
will capture important syntactic generalizations, but
it also risks including low-quality rules. It is an em-
pirical question whether this approach is effective,
and we investigate this issue further in Section 5.3.

There are possibilities for improving our model’s
treatment of syntactic divergence. One option is
to allow the model to select trees which are more
consistent with the alignment (Burkett et al., 2010),
which our model can do since it permits efficient in-
ference over forests. The second is to modify the
generative process slightly, perhaps by including the
“clone” operator of Gildea (2003).
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4 Learning and Inference

4.1 Parameter Estimation

The parameters of our model can be efficiently
estimated in an unsupervised fashion using the
Expectation-Maximization (EM) algorithm. The E-
step requires the computation of expected counts un-
der our model for each multinomial parameter. We
omit the details of obtaining expected counts for
each distribution, since they can be obtained using
simple arithmetic from a single quantity, namely, the
expected count of a particular instantiation of a syn-
chronous rule . This expectation is a standard quan-
tity that can be computed in O(n%) time using the
bitext Inside-Outside dynamic program (Wu, 1997).

4.2 Dynamic Program Pruning

While our model permits O(n%) inference over a
forest of English trees, inference over a full forest
would be very slow, and so we fix a single n-ary En-
glish tree obtained from a monolingual parser. How-
ever, it is worth noting that the English side of the
ITG derivation is not completely fixed. Where our
English trees are more than binary branching, we
permit any binarization in our dynamic program.
For efficiency, we also ruled out span alignments
that are extremely lopsided, for example, a 1-word
English span aligned to a 20-word foreign span.
Specifically, we pruned any span alignment in which
one side is more than 5 times larger than the other.
Finally, we employ pruning based on high-
precision alignments from simpler models (Cherry
and Lin, 2007; Haghighi et al., 2009). We com-
pute word-to-word alignments by finding all word
pairs which have a posterior of at least 0.7 according
to both forward and reverse IBM Model 1 parame-
ters, and prune any span pairs which invalidate more
than 3 of these alignments. In total, this pruning re-



Span P R F1
Syntactic Alignment | 50.9 | 83.0 | 63.1
GIZA++ 56.1 | 67.3 | 61.2
Rule P R F1
Syntactic Alignment | 39.6 | 40.3 | 39.9
GIZA++ 46.2 | 34.7 | 39.6

Table 3: Alignment quality results for our syntactic
aligner and our GIZA++ baseline.

duced computation from approximately 1.5 seconds
per sentence to about 0.3 seconds per sentence, a
speed-up of a factor of 5.

4.3 Decoding

Given a trained model, we extract a tree-to-string
alignment as follows: we compute, for each node
in the English tree, the posterior probability of a
particular foreign span assignment using the same
dynamic program needed for EM. We then com-
pute the set of span assignments which maximizes
the sum of these posteriors, constrained such that
the foreign span assignments nest in the obvious
way. This algorithm is a natural synchronous gener-
alization of the monolingual Maximum Constituents
Parse algorithm of Goodman (1996).

S Experiments

5.1 Alignment Quality

We first evaluated our alignments against gold stan-
dard annotations. Our training data consisted of the
2261 manually aligned and translated sentences of
the Chinese Treebank (Bies et al., 2007) and approx-
imately half a million unlabeled sentences of parallel
Chinese-English newswire. The unlabeled data was
subsampled (Li et al., 2009) from a larger corpus by
selecting sentences which have good tune and test
set coverage, and limited to sentences of length at
most 40. We parsed the English side of the train-
ing data with the Berkeley parser.® For our baseline
alignments, we used GIZA++, trained in the stan-
dard way.® We used the grow-diag-final alignment
heuristic, as we found it outperformed union in early
experiments.

We trained our unsupervised syntactic aligner on
the concatenation of the labelled and unlabelled

$http://code.google.com/p/berkeleyparser/
%5 jterations of model 1, 5 iterations of HMM, 3 iterations
of Model 3, and 3 iterations of Model 4.

124

data. As is standard in unsupervised alignment mod-
els, we initialized the translation parameters p; by
first training 5 iterations of IBM Model 1 using the
joint training algorithm of Liang et al. (2006), and
then trained our model for 5 EM iterations. We
extracted syntactic rules using a re-implementation
of the Galley et al. (2006) algorithm from both our
syntactic alignments and the GIZA++ alignments.
We handle null-aligned words by extracting every
consistent derivation, and extracted composed rules
consisting of at most 3 minimal rules.

We evaluate our alignments against the gold stan-
dard in two ways. We calculated Span F-score,
which compares the set of extractable nodes paired
with a foreign span, and Rule F-score (Fossum et al.,
2008) over minimal rules. The results are shown in
Table 3. By both measures, our syntactic aligner ef-
fectively trades recall for precision when compared
to our baseline, slightly increasing overall F-score.

5.2 Translation Quality

For our translation system, we used a re-
implementation of the syntactic system of Galley et
al. (2006). For the translation rules extracted from
our data, we computed standard features based on
relative frequency counts, and tuned their weights
using MERT (Och, 2003). We also included a
language model feature, using a 5-gram language
model trained on 220 million words of English text
using the SRILM Toolkit (Stolcke, 2002).

For tuning and test data, we used a subset of the
NIST MTO04 and MTOS5 with sentences of length at
most 40. We used the first 1000 sentences of this set
for tuning and the remaining 642 sentences as test
data. We used the decoder described in DeNero et
al. (2009) during both tuning and testing.

We provide final tune and test set results in Ta-
ble 4. Our alignments produce a 1.0 BLEU improve-
ment over the baseline. Our reported syntactic re-
sults were obtained when rules were thresholded by
count; we discuss this in the next section.

5.3 Analysis

As discussed in Section 3.4, our aligner is designed
to extract many rules, which risks inadvertently ex-
tracting low-quality rules. To quantify this, we
first examined the number of rules extracted by our
aligner as compared with GIZA++. After relativiz-



Tune Test
Syntactic Alignment | 29.78 | 29.83
GIZA++ 28.76 | 28.84
GIZA++ high count | 25.51 | 25.38

Table 4: Final tune and test set results for our grammars
extracted using the baseline GIZA++ alignments and our
syntactic aligner. When we filter the GIZA++ grammars
with the same count thresholds used for our aligner (“high
count”), BLEU score drops substantially.

ing to the tune and test set, we extracted approx-
imately 32 million unique rules using our aligner,
but only 3 million with GIZA++. To check that
we were not just extracting extra low-count, low-
quality rules, we plotted the number of rules with
a particular count in Figure 4. We found that while
our aligner certainly extracts many more low-count
rules, it also extracts many more high-count rules.
Of course, high-count rules are not guaranteed
to be high quality. To verify that frequent rules
were better for translation, we experimented with
various methods of thresholding to remove rules
with low count extracted from using aligner. We
found in early development found that removing
low-count rules improved translation performance
substantially. In particular, we settled on the follow-
ing scheme: we kept all rules with a single foreign
terminal on the right-hand side. For entirely lexical
(gapless) rules, we kept all rules occurring at least
3 times. For unlexicalized rules, we kept all rules
occurring at least 20 times per gap. For rules which
mixed gaps and lexical items, we kept all rules oc-
curring at least 10 times per gap. This left us with
a grammar about 600 000 rules, the same grammar
which gave us our final results reported in Table 4.
In contrast to our syntactic aligner, rules extracted
using GIZA++ could not be so aggressively pruned.
When pruned using the same count thresholds, ac-
curacy dropped by more than 3.0 BLEU on the tune
set, and similarly on the test set (see Table 4). To
obtain the accuracy shown in our final results (our
best results with GIZA++), we had to adjust the
count threshold to include all lexicalized rules, all
unlexicalized rules, and mixed rules occurring at
least twice per gap. With these count thresholds, the
GIZA++ grammar contained about 580 000 rules,
roughly the same number as our syntactic grammar.
We also manually searched the grammars for
rules that had high count in the syntactically-
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Figure 4: Number of extracted translation rules with a
particular count. Grammars extracted from our syntactic
aligner produce not only more low-count rules, but also
more high-count rules than GIZA++.

extracted grammar and low (or 0) count in the
GIZA++ grammar. Of course, we can always
cherry-pick such examples, but a few rules were il-
luminating. For example, for the 7E ... Z Hi con-
struction discussed earlier, our aligner permits ex-
traction of the general rule (PP — IN; NP5 ; 1F NP,
IN1) 3087 times, and the lexicalized rule (PP — be-
fore NP ; £ NP Z Fij) 118 times. In constrast, the
GIZA++ grammar extracts the latter only 23 times
and the former not at all. The more complex rule
(NP — NP5 , who S , ; S1 [l NP5), which captures
a common appositive construction, was absent from
the GIZA++ grammar but occurred 63 in ours.

6 Conclusion

We have described a syntactic alignment model
which explicitly aligns nodes of a syntactic parse in
one language to spans in another, making it suitable
for use in many syntactic translation systems. Our
model is unsupervised and can be efficiently trained
with a straightforward application of EM. We have
demonstrated that our model can accurately capture
many syntactic correspondences, and is robust in the
face of syntactic divergence between language pairs.
Our aligner permits the extraction of more reliable,
high-count rules when compared to a standard word-
alignment baseline. These high-count rules also pro-
duce improvements in BLEU score.
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