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Abstract

This paper investigates using prosodic infor-

mation in the form of ToBI break indexes for

parsing spontaneous speech. We revisit two

previously studied approaches, one that hurt

parsing performance and one that achieved

minor improvements, and propose a new

method that aims to better integrate prosodic

breaks into parsing. Although these ap-

proaches can improve the performance of ba-

sic probabilistic context free grammar (PCFG)

parsers, they all fail to produce fine-grained

PCFG models with latent annotations (PCFG-

LA) (Matsuzaki et al., 2005; Petrov and Klein,

2007) that perform significantly better than the

baseline PCFG-LA model that does not use

break indexes, partially due to mis-alignments

between automatic prosodic breaks and true

phrase boundaries. We propose two alterna-

tive ways to restrict the search space of the

prosodically enriched parser models to the n-

best parses from the baseline PCFG-LA parser

to avoid egregious parses caused by incor-

rect breaks. Our experiments show that all

of the prosodically enriched parser models can

then achieve significant improvement over the

baseline PCFG-LA parser.

1 Introduction

Speech conveys more than a sequence of words to

a listener. An important additional type of informa-

tion that phoneticians investigate is called prosody,

which includes phenomena such as pauses, pitch,

energy, duration, grouping, and emphasis. For a

review of the role of prosody in processing spo-

ken language, see (Cutler et al., 1997). Prosody

can help with the disambiguation of lexical meaning

(via accents and tones) and sentence type (e.g., yes-

no question versus statement), provide discourse-

level information like focus, prominence, and dis-

course segment, and help a listener to discern a

speaker’s emotion or hesitancy, etc. Prosody often

draws a listener’s attention to important information

through contrastive pitch or duration patterns associ-

ated words or phrases. In addition, prosodic cues can

help one to segment speech into chunks that are hy-

pothesized to have a hierarchical structure, although

not necessarily identical to that of syntax. This sug-

gests that prosodic cues may help in the parsing of

speech inputs, the topic of this paper.

Prosodic information such as pause length, du-

ration of words and phones, pitch contours, en-

ergy contours, and their normalized values have

been used in speech processing tasks like sentence

boundary detection (Liu et al., 2005). In contrast,

other researchers use linguistic encoding schemes

like ToBI (Silverman et al., 1992), which encodes

tones, the degree of juncture between words, and

prominence symbolically. For example, a simplified

ToBI encoding scheme uses the symbol 4 for ma-

jor intonational breaks, p for hesitation, and 1 for all

other breaks (Dreyer and Shafran, 2007). In the lit-

erature, there have been several attempts to integrate

prosodic information to improve parse accuracy of

speech transcripts. These studies have used either

quantized acoustic measurements of prosody or au-

tomatically detected break indexes.

Gregory et al. (2004) attempted to integrate quan-

tized prosodic features as additional tokens in the

same manner that punctuation marks are added

into text. Although punctuation marks can signif-

icantly improve parse accuracy of newswire text,

the quantized prosodic tokens were found harm-
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ful to parse accuracy when inserted into human-

generated speech transcripts of the Switchboard cor-

pus. The authors hypothesized that the inserted

pseudo-punctuation break n-gram dependencies in

the parser model, leading to lower accuracies. How-

ever, another possible cause is that the prosody has

not been effectively utilized due to the fact that

it is overloaded; it not only provides information

about phrases, but also about the state of the speaker

and his/her sentence planning process. Hence, the

prosodic information may at times be more harmful

than helpful to parsing performance.

In a follow-on experiment, Kahn et al. (2005), in-

stead of using raw quantized prosodic features, used

three classes of automatically detected ToBI break

indexes (1, 4, or p) and their posteriors. Rather than

directly incorporating the breaks into the parse trees,

they used the breaks to generate additional features

for re-ranking the n-best parse trees from a gener-

ative parsing model trained without prosody. They

were able to obtain a significant 0.6% improvement

on Switchboard over the generative parser, and a

more modest 0.1% to 0.2% improvement over the

reranking model that also utilizes syntactic features.

Dreyer and Shafran (2007) added prosodic breaks

into a generative parsing model with latent vari-

ables. They utilized three classes of ToBI break in-

dexes (1, 4, and p), automatically predicted by the

approach described in (Dreyer and Shafran, 2007;

Harper et al., 2005). Breaks were modeled as a se-

quence of observations parallel to the sentence and

each break was generated by the preterminal of the

preceding word, assuming that the observation of a

break, b, was conditionally independent of its pre-

ceding word, w, given preterminal X:

P (w, b|X) = P (w|X)P (b|X) (1)

Their approach has advantages over (Gregory et al.,

2004) in that it does not break n-gram dependencies

in parse modeling. It also has disadvantages in that

the breaks are modeled by preterminals rather than

higher level nonterminals, and thus cannot directly

affect phrasing in a basic PCFG grammar. How-

ever, they addressed this independence drawback by

splitting each nonterminal into latent tags so that the

impact of prosodic breaks could be percolated into

the phrasing process through the interaction of la-

tent tags. They achieved a minor 0.2% improvement

over their baseline model without prosodic cues and

also found that prosodic breaks can be used to build

more compact grammars.

In this paper, we re-investigate the models of

(Gregory et al., 2004) and (Dreyer and Shafran,

2007), and propose a new way of modeling that

can potentially address the shortcomings of the two

previous approaches. We also attribute part of the

failure or ineffectiveness of the previously investi-

gated approaches to errors in the quantized prosodic

tokens or automatic break indexes, which are pre-

dicted based only on acoustic cues and could mis-

align with phrase boundaries. We illustrate that

these prosodically enriched models are in fact highly

effective if we systematically eliminate bad phrase

and hesitation breaks given their projection onto the

reference parse trees. Inspired by this, we pro-

pose two alternative rescoring methods to restrict

the search space of the prosodically enriched parser

models to the n-best parses from the baseline PCFG-

LA parser to avoid egregious parse trees. The effec-

tiveness of our rescoring method suggests that the

reranking approach of (Kahn et al., 2005) was suc-

cessful not only because of their prosodic feature de-

sign, but also because they restrict the search space

for reranking to n-best lists generated by a syntactic

model alone.

2 Experimental Setup

Due to our goal of investigating the effect of

prosodic information on the accuracy of state of the

art parsing of conversational speech, we utilize both

Penn Switchboard (Godfrey et al., 1992) and Fisher

treebanks (Harper et al., 2005; Bies et al., 2006), for

which we also had automatically generated break in-

dexes from (Dreyer and Shafran, 2007; Harper et al.,

2005)1. The Fisher treebank is a higher quality pars-

ing resource than Switchboard due to its greater use

of audio and refined specifications for sentence seg-

mentation and disfluency markups, and so we utilize

its eval set for our parser evaluation; the first 1,020

trees (7,184 words) were used for development and

the remaining 3,917 trees (29,173 words) for eval-

uation. We utilized the Fisher dev1 and dev2 sets

containing 16,519 trees (112,717 words) as the main

training data source and used the Penn Switchboard

1A small fraction of words in the Switchboard treebank

could not be aligned with the break indexes that were produced

based on a later refinement of the transcription. We chose not

to alter the Switchboard treebank, so in cases of missing break

values, we heuristically added break *1* to words in the middle

of a sentence and *4* to words that end a sentence.
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treebank containing 110,504 trees (837,863 words)

as an additional training source to evaluate the ef-

fect of training data size on parsing performance.

The treebank trees are normalized by downcasing

all terminal strings and deleting punctuation, empty

nodes, and nonterminal-yield unary rules that are not

related to edits.

We will compare2 three prosodically enriched

PCFG models described in the next section, with a

baseline PCFG parser. We will also utilize a state

of the art PCFG-LA parser (Petrov and Klein, 2007;

Huang and Harper, 2009) to examine the effect of

prosodic enrichment3. Unlike (Kahn et al., 2005),

we do not remove EDITED regions prior to parsing

because parsing of EDITED regions is likely to ben-

efit from prosodic information. Also, parses from all

models are compared with the gold standard parses

in the Fisher evaluation set using SParseval bracket

scoring (Harper et al., 2005; Roark et al., 2006)

without flattening the EDITED constituents.

3 Methods of Integrating Breaks

Rather than using quantized raw acoustic features as

in (Gregory et al., 2004), we use automatically gen-

erated ToBI break indexes as in (Dreyer and Shafran,

2007; Kahn et al., 2005) as the prosodic cues, and

investigate three alternative methods of modeling

prosodic breaks. Figure 1 shows parse trees for the

four models for processing the spontaneous speech

transcription she’s she would do, where the speaker

hesitated after saying she’s and then resumed with

another utterance she would do. Each word input

into the parser has an associated break index repre-

sented by the symbol 1, 4, or p enclosed in asterisks

indicating the break after the word. The automat-

ically detected break *4* after the contraction is a

strong indicator of an intonational phrase boundary

that might provide helpful information for parsing if

modeled appropriately. Figure 1 (a) shows the ref-

erence parse tree (thus the name REGULAR) where

the break indexes are not utilized.
The first method to incorporate break indexes,

BRKINSERT, shown in Figure 1 (b), treats the *p*

and *4* breaks as tokens, placing them under the

2We use Bikel’s randomized parsing evaluation comparator

to determine the significance (p < 0.005) of the difference be-

tween two parsers’ outputs.
3Due to the randomness of parameter initialization in the

learning of PCFG-LA models with increasing numbers of latent

tags, we train each latent variable grammar with 10 different

seeds and report the average F score on the evaluation set.
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Figure 1: Modeling Methods

highest nonterminal nodes so that the order of words

and breaks remain unchanged in the terminals. This

is similar to (Gregory et al., 2004), except that auto-

matically generated ToBI breaks are used rather than

quantized raw prosodic tokens.

The second method, BRKPOS, shown in Fig-

ure 1 (c), treats breaks as a sequence of observa-

tions parallel to the words in the sentence as in

(Dreyer and Shafran, 2007). The dotted edges in

Figure 1 (c) represent the relation between pretermi-

nals and prosodic breaks, and we call them prosodic

rewrites, with analogy to grammar rewrites and lex-

ical rewrites. The generation of words and prosodic

breaks is assumed to be conditionally independent

given the preterminal, as in Equation 1.

The third new method, BRKPHRASE, shown in

Figure 1 (d), also treats breaks as a sequence of ob-

servations parallel to the sentence; however, rather

than associating the prosodic breaks with the preter-

minals, each is generated by the highest nonterminal

(including preterminal) in the parse tree that covers

the preceding word as the right-most terminal. The

observation of break, b, is assumed to be condition-

ally independent of grammar or lexical rewrite, r,

given the nonterminal X:

P (r, b|X) = P (r|X)P (b|X) (2)

The relation is indicated by the dotted edges in Fig-

ure 1 (d), and it is also called a prosodic rewrite.

The potential advantage of BRKPHRASE is that it

does not break or fragment n-gram dependencies of

the grammar rewrites, as in the BRKINSERT method,

and it directly models the dependency between

breaks and phrases, which the BRKPOS method ex-

plicitly lacks.

4 Model Training

Since automatically generated prosodic breaks are

incorporated into the parse trees deterministi-
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cally for all of the three enrichment methods

(BRKINSERT, BRKPOS, and BRKPHRASE), train-

ing a basic PCFG is straightforward; we simply pull

the counts of grammar rules, lexical rewrites, or

prosodic rewrites from the treebank and normalize

them to obtain their probabilities.

As is well known in the parsing community, the

basic PCFG does not provide state-of-the-art per-

formance due to its strong independence assump-

tions. We can relax these assumptions by explicitly

incorporating more information into the conditional

history, as in Charniak’s parser (Charniak, 2000);

however, this would require sophisticated engineer-

ing efforts to decide what to include in the history

and how to smooth probabilities appropriately due

to data sparsity. In this paper, we utilize PCFG-LA

models (Matsuzaki et al., 2005; Petrov and Klein,

2007) that split each nonterminal into a set of latent

tags and learn complex dependencies among the la-

tent tags automatically during training. The result-

ing model is still a PCFG, but it is probabilistically

context free on the latent tags, and the interaction

among the latent tags is able to implicitly capture

higher order dependencies among the original non-

terminals and observations. We follow the approach

in (Huang and Harper, 2009) to train the PCFG-LA

models.

5 Parsing

In a basic PCFG without latent variables, the goal

of maximum probability parsing is to find the most

likely parse tree given a sentence based on the gram-

mar. Suppose our grammar is binarized (so it con-

tains only unary and binary grammar rules). Given

an input sentence wn
1 = w1, w2, · · · , wn, the inside

probability, P (i, j, X), of the most likely sub-tree

that is rooted at nonterminal X and generates sub-

sequence w
j
i can be computed recursively by:

P (i, j, X) = max(max
Y

P (i, j, Y )P (X → Y ),

max
i<k<j,Y,Z

P (i, k, Y )P (k + 1, j, Z)P (X → Y Z)) (3)

Backtracing the search process then returns the most

likely parse tree for the REGULAR grammar.

The same parsing algorithm can be directly ap-

plied to the BRKINSERT grammar given that the

break indexes are inserted appropriately into the in-

put sentence as additional tokens. Minor modifica-

tion is needed to extend the same parsing algorithm

to the BRKPOS grammar. The only difference is that

the inside probability of a preterminal is set accord-

ing to Equation 1. The rest of the algorithm proceeds

as in Equation 3.

However, parsing with the BRKPHRASE grammar

is more complicated because whether a nonterminal

generates a break or not is determined by whether

it is the highest nonterminal that covers the preced-

ing word as its right-most terminal. In this case,

the input observation also contains a sequence of

break indexes bn
1 = b1, b2, · · · , bn that is parallel

to the input sentence wn
1 = w1, w2, · · · , wn. Let

P (i, j, X, 0) be the probability of the most likely

sub-tree rooted at nonterminal X over span (i, j)

that generates word sequence w
j
i , as well as break

index sequence b
j−1
i , excluding bj . According to

the independence assumption in Equation 2, with

the addition of prosodic edge X → bj , the same

sub-tree also has the highest probability, denoted by

P (i, j, X, 1), of generating word sequence w
j
i to-

gether with the break index sequence b
j
i . Thus we

have:

P (i, j, X, 1) = P (i, j, X, 0)P (bj |X) (4)

The structural constraint that a break index is only

generated by the highest nonterminal that covers

the preceding word as the right-most terminal en-

ables a dynamic programming algorithm to compute

P (i, j, X, 0) and thus P (i, j, X, 1) efficiently. If the

sub-tree (without the prosodic edge that generates

bj) over span (i, j) is constructed from a unary rule

rewrite X → Y , then the root nonterminal Y of

some best sub-tree over the same span (i, j) can not

generate break bj because it has a higher nontermi-

nal X that also covers word wj as its right-most ter-

minal. If the sub-tree is constructed from a binary

rule rewrite X → Y Z, then the root nonterminal Y

of some best sub-tree over some span (i, k) will gen-

erate break bk because Y is the highest nonterminal

that covers word wk as the right-most terminal4. In

contrast, the root nonterminal Z of some best sub-

tree over some span (k+1, j) can not generate break

bj because Z has a higher nonterminal X that also

covers word wj as its right-most terminal. Hence,

4Use of left-branching is required for the BRKPHRASE

method to ensure that the prosodic breaks are associated with

the original nonterminals, not intermediate nonterminals in-

troduced by binarization. Binarization is needed for efficient

parametrization of PCFG-LA models and left- versus right-

branching binarization does not significantly affect model per-

formance; hence, we use left-branching for all models.
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P (i, j, X, 1) and P (i, j, X, 0) can be computed re-

cursively by Equation 4 above and Equation 5 be-

low:
P (i, j, X, 0) = max(max

Y
P (i, j, Y, 0)P (X → Y ),

max
i<k<j,Y,Z

P (i, k, Y, 1)P (k + 1, j, Z, 0)P (X → Y Z)) (5)

Although dynamic programming algorithms exist

for maximum probability decoding of basic PCFGs

without latent annotations for all four methods, it is

an NP hard problem to find the most likely parse tree

using PCFG-LA models. Several alternative decod-

ing algorithms have been proposed in the literature

for parsing with latent variable grammars. We use

the best performing max-rule-product decoding al-

gorithm, which searches for the best parse tree that

maximizes the product of the posterior rule (either

grammar, lexical, or prosodic) probabilities, as de-

scribed in (Petrov and Klein, 2007) for our models

with latent annotations and extend the dynamic pars-

ing algorithm described in Equation 5 for the BRK-

PHRASE grammar with latent annotations.

6 Results on the Fisher Corpus

6.1 Prosodically Enriched Models

Table 1 reports the parsing accuracy of the four basic

PCFGs without latent annotations when trained on

the Fisher training data. All of the grammars have a

low F score of around 65% due to the overly strong

and incorrect independence assumptions. We ob-

serve that the BRKPHRASE grammar benefits most

from breaks, significantly improving the baseline

accuracy from 64.9% to 67.2%, followed by the

BRKINSERT grammar, which at 66.2% achieves a

smaller improvement. The BRKPOS grammar ben-

efits the least among the three because breaks are

attached to the preterminals and thus have less im-

pact on phrasing due to the independence assump-

tions in the basic PCFG. In contrast, both the BRK-

PHRASE and BRKINSERT methods directly model

the relationship between breaks and phrase bound-

aries through governing nonterminals; however, the

BRKPHRASE method does not directly change any

of the grammar rules in contrast to the BRKINSERT

method that more or less breaks n-gram dependen-

cies and fragments rule probabilities.

The bars labeled DIRECT in Figure 2 report the

parsing performance of the four PCFG-LA models

trained on Fisher. The introduction of latent anno-

tations significantly boosts parsing accuracies, pro-

viding relative improvements ranging from 16.8%

REGULAR BRKINSERT BRKPOS BRKPHRASE

64.9 66.2 65.2 67.2

Table 1: Fisher evaluation parsing results for the basic

PCFGs without latent annotations trained on the Fisher

training set.

up to 19.0% when trained on Fisher training data

due to the fact that the PCFG-LA models are able

to automatically learn more complex dependencies

not captured by basic PCFGs.
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Figure 2: Parsing results on the Fisher evaluation set

of the PCFG-LA models trained on the Fisher training

data. The DIRECT bars represent direct parsing results for

models trained and evaluated on the original data, ORA-

CLE bars for models trained and evaluated on the modi-

fied oracle data (see Subsection 6.2), and the ORACLE-

RESCORE and DIRECTRESCORE bars for results of the

two rescoring approaches (described in Subsection 6.3)

on the original evaluation data.

However, the prosodically enriched methods do

not significantly improve upon the REGULAR base-

line after the introduction of latent annotations. The

BRKPHRASE method only achieves a minor in-

significant 0.1% improvement over the REGULAR

baseline; whereas, the BRKINSERT method is a sig-

nificant 0.7% worse than the baseline. Similar re-

sults for BRKINSERT were reported in (Gregory et

al., 2004), where they attributed the degradation to

the fact that the insertion of the prosodic “punctua-

tion” breaks the n-gram dependencies. Another pos-

sible cause is that the insertion of “bad” breaks that

do not align with true phrase boundaries hurts per-

formance more than the benefits gained from “good”

breaks due to the tightly integrated relationship be-

tween phrases and breaks. For the BRKPOS method,

the impact of break indexes is implicitly percolated

to the nonterminals through the interaction among

latent tags, as discussed in (Dreyer and Shafran,

2007), and its performance may thus be less affected

by the “bad” breaks. With latent annotations (in con-

trast to the basic PCFG), the model is now signif-

icantly better than BRKINSERT and is on par with

BRKPHRASE.
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6.2 Models with Oracle Breaks

In order to determine whether “bad” breaks limit

the improvements in parsing performance from

prosodic enrichment, we conducted a simple ora-

cle experiment where all *p* and *4* breaks that

did not align with phrase boundaries in the tree-

bank were systematically converted to *1* breaks5.

When trained and evaluated on this modified ora-

cle data, all three prosodically enriched latent vari-

able models improve by about 1% and were then

able to achieve significant improvements over the

REGULAR PCFG-LA baseline, as shown by the bars

labeled ORACLE in Figure 2. It should be noted,

however, that the BRKINSERT method is much less

effective than the other two methods in the oracle

experiment, suggesting that broken n-gram depen-

dencies affect the model in addition to the erroneous

breaks.

6.3 N-Best Re-Scoring

As mentioned previously, prosody does not only

provide information about phrases, but also about

the state of the speaker and his/her sentence plan-

ning process. Given that our break detector uti-

lizes only acoustic knowledge to predict breaks, the

recognized *p* and *4* breaks may not correctly

reflect hesitations and phrase boundaries. Incor-

rectly recognized breaks could hurt parsing more

than the benefit brought from the correctly recog-

nized breaks, as demonstrated by superior perfor-

mance of the prosodically enhanced models in the

oracle experiment. We next describe two alternative

methods to make better use of automatic breaks.

In the first approach, which is called ORACLE-

RESCORE, we train the prosodically enhanced

grammars on cleaned-up break-annotated training

data, where misclassified *p* and *4* breaks are

converted to *1* breaks (as in the oracle experi-

ment). If these grammars were used to directly parse

the test sentences with automatically detected (un-

modified) breaks, the results would be quite poor

due to mismatch between the training and testing

conditions. However, we can automatically bias

against potentially misclassified *p* and *4* breaks

if we utilize information provided by n-best parses

from the baseline REGULAR PCFG-LA grammar.

5Other sources of errors include misclassification of *p*

breaks as *1* or *4* and misclassification of *4* breaks as *1*

or *p*. Although these errors are not repaired in the oracle ex-

periment, fixing them could potentially provide greater gains.

For each hypothesized parse tree in the n-best list,

the *p* and *4* breaks that do not align with the

phrase boundaries of the hypothesized parse tree are

converted to *1* breaks, and then a new score is

computed using the product of posterior rule proba-

bilities6, as in the max-rule-product criterion, for the

hypothesized parse tree using the grammars trained

on the cleaned-up training data. In this approach,

we convert the posterior probability, P (T |W, B),
of parse tree T given words W and breaks B

to P (B′|W, B)P (T |W, B′), where B′ is the new

break sequence constrained by T , and simplify it to

P (T |W, B′), assuming that conversions to a new se-

quence of breaks as constrained by a hypothesized

parse tree are equally probable given the original se-

quence of breaks. We consider this to be a reason-

able assumption for a small n-best (n = 50) list with

reasonably good quality.

In the second approach, called DIRECTRESCORE,

we train the prosodically enhanced PCFG-LA mod-

els using unmodified, automatic breaks, and then

use them to rescore the n-best lists produced by

the REGULAR PCFG-LA model to avoid the poorer

parse trees caused by fully trusting automatic break

indexes. The size of the n-best list should not be too

small or too large, or the results would be like di-

rectly parsing with REGULAR when n = 1 or with

the prosodically enriched model when n →∞.

The ORACLERESCORE and DIRECTRESCORE

bars in Figure 2 report the performance of the

prosodically enriched models with the correspond-

ing rescoring method. Both methods use the same

50-best lists produced by the baseline REGULAR

PCFG-LA model using the max-rule-product cri-

terion. Both rescoring methods produce signifi-

cant improvements in the performance of all three

prosodically enriched PCFG-LA models. The pre-

viously ineffective (0.7% worse than REGULAR)

BRKINSERT PCFG-LA model is now 0.3% and

0.5% better than the REGULAR baseline using

the ORACLERESCORE and DIRECTRESCORE ap-

proaches, respectively. The best performing BRK-

POS and BRKPHRASE rescoring models are 0.6-

0.9% better than the REGULAR baseline. It is in-

teresting to note that rescoring with models trained

on cleaned up prosodic breaks is somewhat poorer

6The product of posterior rule probabilities of a parse tree

is more suitable for rescoring than the joint probability of the

parse tree and the observables (words and breaks) because the

breaks are possibly different for different trees.
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than models trained using all automatic breaks.

7 Models with Augmented Training Data

Figure 3 reports the evaluation results for mod-

els that are trained on the combination of Fisher

and Switchboard training data. With the additional

Switchboard training data, the nonterminals can be

split into more fine-grained latent tags, enabling the

learning of deeper dependencies without over-fitting

the limited sized Fisher training data. This improved

all models by at least 2.6% absolute. Note also that

the patterns observed for models trained using the

larger training set are quite similar to those from us-

ing the smaller training set in Figure 2. The prosod-

ically enriched models all benefit significantly from

the oracle breaks and from the rescoring methods.

The BRKPOS and BRKPHRASE methods, with the

additional training data, also achieve significant im-

provements over the REGULAR baseline without

rescoring.
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Figure 3: Parsing results on the Fisher evaluation set of

the PCFG-LA models trained on the Fisher+Switchboard

training data.

8 Error Analysis

In this section, we compare the errors of the

BRKPHRASE PCFG-LA model and the DIRECT-

RESCORE approach for that model to each other and

to the baseline PCFG-LA model without prosodic

breaks. All models are trained and tested on Fisher

as in Section 6. The results using other prosodically

enhanced PCFG-LA models and their rescoring al-

ternatives show similar patterns.

Figure 4 depicts the difference in F scores be-

tween BRKPHRASE and REGULAR and between

BRKPHRASE+DIRECTRESCORE and REGULAR on

a tree-by-tree basis in a 2D plot. Each quad-

rant also contains +/– signs roughly describing how

much BRKPHRASE+DIRECTRESCORE is better (+)

or worse (–) than BRKPHRASE and a pair of num-

bers (a, b), in which a represents the percentage of

sentences in that quadrant containing *p* or *4*
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Figure 4: 2D plot of the difference in F scores be-

tween BRKPHRASE and REGULAR and between BRK-

PHRASE+DIRECTRESCORE and REGULAR, on a tree-

by-tree basis, where each dot represents a test sentence.

Each quadrant also contains +/– signs roughly describ-

ing how much BRKPHRASE+DIRECTRESCORE is better

(+) or worse (–) than BRKPHRASE and a pair of numbers

(a, b), in which a represents the percentage of sentences

in that quadrant containing *p* or *4* breaks that do not

align with true phrase boundaries, and b represents the

percentage of such *p* and *4* breaks among the total

number of *p* and *4* breaks in that quadrant.

breaks that do not align with true phrase bound-

aries, and b represents the percentage of such *p*

and *4* breaks among the total number of *p* and

*4* breaks in that quadrant.

Each dot in the top-right quadrant represents a

test sentence for which both BRKPHRASE and BRK-

PHRASE+DIRECTRESCORE produce better trees

than the baseline REGULAR PCFG-LA model. The

BRKPHRASE+DIRECTRESCORE approach is on av-

erage slightly worse than the BRKPHRASE method

(hence the single minus sign), although it also often

produces better parses than BRKPHRASE alone. In

contrast, the BRKPHRASE+DIRECTRESCORE ap-

proach on average makes many fewer errors than

BRKPHRASE (hence + +) as can be observed in the

bottom-left quadrant, where both approaches pro-

duce worse parse trees than the REGULAR base-

line. The most interesting quadrant is on the top-left

where the BRKPHRASE approach always produces

worse parses than the REGULAR baseline while the

BRKPHRASE+DIRECTRESCORE approach is able

to avoid these errors while producing better parses

than the baseline (hence + + +). Although the BRK-

PHRASE+DIRECTRESCORE approach can also pro-

duce worse parses than REGULAR, as in the bottom-

right quadrant (hence – – –), altogether the quad-

rants suggest that, by restricting the search space
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to the n-best lists produced by the baseline REG-

ULAR parser, the BRKPHRASE+DIRECTRESCORE

approach is able to avoid many bad parses trees

at the expense of somewhat poorer parses in cases

when BRKPHRASE is able to benefit from the full

search space.

The reader should note that the top-left quadrant

of Figure 4 has the highest percentage (70.2%) of

sentences with “bad” *p* and *4* breaks and the

highest percentage (30.0%) of such “bad” breaks

among all breaks. This evidence supports our argu-

ment that “bad” breaks are harmful to parsing per-

formance and some parse errors caused by mislead-

ing breaks can be resolved by limiting the search

space of the prosodically enriched models to the

n-best lists produced by the baseline REGULAR

parser. However, the significant presence of “bad”

breaks in the top-right quadrant also suggests that

the prosodically enriched models are able to pro-

duce better parses than the baseline despite the pres-

ence of “bad” breaks, probably because the models

are trained on the mixture of both “good” and “bad”

breaks and are able to somehow learn to use “good”

breaks while avoiding being misled by “bad” breaks.

BRKPHRASE

REGULAR BRKPHRASE +DIRECTRESCORE

NP 90.4 90.4 90.9

VP 84.7 84.7 85.6

S 84.4 84.3 85.2

INTJ 93.0 93.4 93.4

PP 76.5 76.7 77.9

EDITED 60.4 62.2 63.3

SBAR 67.2 67.0 68.8

Table 2: F scores of the seven most frequent non-

terminals of the REGULAR, BRKPHRASE, and BRK-

PHRASE+DIRECTRESCORE models.

Table 2 reports the F scores of the seven most fre-

quent phrases for the REGULAR, BRKPHRASE, and

BRKPHRASE+DIRECTRESCORE methods trained

on Fisher. When comparing the BRKPHRASE

method to REGULAR, the break indexes help to im-

prove the score for edits most, followed by inter-

jections and prepositional phrases; however, they do

not improve the accuracy of any of the other phrases.

The BRKPHRASE+DIRECTRESCORE approach ob-

tains improvements on all of the major phrases.

Figure 5 (a) shows a reference parse tree of a

test sentence. The REGULAR approach correctly

parses the first half (omitted) of the sentence but

it fails to correctly interpret the second half (as

shown). The BRKPHRASE approach, in contrast,

is misguided by the incorrectly classified inter-

ruption point *p* after word “has”, and so pro-

duces an incorrect parse early in the sentence. The

BRKPHRASE+DIRECTRESCORE approach is able

to provide the correct tree given the n-best list pro-

duced by the REGULAR approach, despite the break

index errors.

(a) Reference, BRKPHRASE+DIRECTRESCORE

(b) REGULAR (c) BRKPHRASE

Figure 5: Parses for like∗1∗ has∗p∗ anything∗1∗ like∗1∗
affected∗1∗ you∗4∗ personally∗4∗ or∗1∗ anything∗4∗

9 Conclusions

We have investigated using prosodic information in

the form of automatically detected ToBI break in-

dexes for parsing spontaneous speech by compar-

ing three prosodic enrichment methods. Although

prosodic enrichment improves the basic PCFGs, that

performance gain disappears when latent variables

are used, partly due to the impact of misclassified

(“bad”) breaks that are assigned to words that do not

occur at phrase boundaries. However, we find that

by simply restricting the search space of the three

prosodically enriched latent variable parser models

to the n-best parses from the baseline PCFG-LA

parser, all of them attain significant improvements.

Our analysis more fully explains the positive results

achieved by (Kahn et al., 2005) from reranking with

prosodic features and suggests that the hypothesis

that inserted prosodic punctuation breaks n-gram de-

pendencies only partially explains the negative re-

sults of (Gregory et al., 2004). Our findings from

the oracle experiment suggest that integrating ToBI

classification with syntactic parsing should increase

the accuracy of both tasks.
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