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Abstract

Current statistical parsers tend to perform well
only on their training domain and nearby gen-
res. While strong performance on a few re-
lated domains is sufficient for many situations,
itis advantageous for parsers to be able to gen-
eralize to a wide variety of domains. When
parsing document collections involving het-
erogeneous domains (e.g. the web), the op-
timal parsing model for each document is typ-
ically not obvious. We study this problem as
a new task —multiple source parser adapta-
tion. Our system trains on corpora from many
different domains. It learns not only statistics
of those domains but quantitative measures of
domain differences and how those differences
affect parsing accuracy. Given a specific tar-
get text, the resulting system proposes linear
combinations of parsing models trained on the
source corpora. Tested across six domains,
our system outperforms all non-oracle base-
lines including the best domain-independent
parsing model. Thus, we are able to demon-
strate the value of customizing parsing models
to specific domains.
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syntax are domain dependent (typically at the lexi-
cal level), single parsing models tend to not perform
well across all domains (see Table 1). Thus, statis-
tical parsers inevitably learn some domain-specific
properties in addition to the more general properties
of a language’s syntax. Recently, Daumé IIl (2007)
and Finkel and Manning (2009) showed techniques
for training models that attempt to separate domain-
specific and general properties. However, even when
given models for multiple training domains, it is not
straightforward to determine which model performs
best on an arbitrary piece of novel text.

This problem comes to the fore when one wants
to parse document collections where each document
is potentially its own domain. This shows up par-
ticularly when parsing the web. Recently, there
has been much interest in applying parsers to the
web for the purposes of information extraction and
other forms of analysis (c.f. the CLSP 2009 summer
workshop “Parsing the Web: Large-Scale Syntactic
Processing”). The scale of the web demands an au-
tomatic solution to the domain detection and adap-
tation problems. Furthermore, it is not obvious that
human annotators can determine the optimal parsing
models for each web page.

Our goal is to study this exact problem. We create

In statistical parsing literature, it is common to se@ new parsing taskyultiple source parser adapta-

parsers trained and tested on the same textual doen, designed to capture cross-domain performance
main (Charniak and Johnson, 2005; McClosky etlong with evaluation metrics and baselines. Our
al., 2006a; Petrov and Klein, 2007; Carreras et alnew task involves training parsing models on labeled

2008; Suzuki et al., 2009, among others).

Unforand unlabeled corpora from a variety of domains

tunately, the performance of these systems degrad@surce domains). This is in contrast to standard do-
on sentences drawn from a different domain. Thimain adaptation tasks where there is a single source
issue can be seen across different parsing modelemain. For evaluation, one is given a teter¢et
(Sekine, 1997; Gildea, 2001; Bacchiani et al., 2006gxt) but not the identity of its domain. The chal-
McClosky et al., 2006b). Given that some aspects dénge is determining how to best use the available
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Test
Train BNC GENIA BROWN SWBD ETT WsSJ| Average
GENIA | 66.3 83.6 64.6 51.6 69.0 66.6 67.0
BROWN | 81.0 71.5 86.3 79.0 80.9 80. 79.9
SWBD 70.8 62.9 755 890 759 69.1f 739
ETT 72.7 65.3 75.4 75.2 819 732 73.9
WSJ 825 749 83.8 78.5 834 890 82.0

Table 1: Cross-domaiif-score performance of the Charniak (2000) parser. Averagesnacro-averages.
Performance drops as training and test domains divergev€age, thavsimodel is the most accurate.

resources from training to maximize accuracy across Multiple source domain adaptation has been done
multiple target texts. for other tasks (e.g. classification in (Blitzer et
Broadly put, we model how domain differencesal., 2007; Daumé IIl, 2007; Dredze and Cram-
influence parsing accuracy. This is done by takingner, 2008)) and is related to multitask learning.
several computational measures of domain diffeaumé Il (2007) shows that an extremely sim-
ences between the target text and each source gide method delivers solid performance on a num-
main. We use these features in a simple linear réer of domain adaptation classification tasks. This is
gression model which is trained to predict the accuachieved by making a copy of each feature for each
racy of a parsing model (or, more generally, a mixsource domain plus the “general” pseudodomain
ture of parsing models) on a target text. To parséor capturing domain independent features). This
the target text, one simply uses the mixture of parsllows the classifier to directly model which features
ing models with the highest predicted accuracy. Ware domain-specific. Finkel and Manning (2009)
show that our method is able to predict these acculemonstrate the hierarchical Bayesian extension of
racies quite well and thus effectively rank parsinghis where domain-specific models draw from a gen-
models formed from mixtures of labeled and autoeral base distribution. This is applied to classifica-
matically labeled corpora. tion (named entity recognition) as well as depen-
In Section 2, we detail recent work on similardency parsing. These works describe how to train
tasks. Our regression-based approach is coveredrirodels in many different domains but sidestep the
Section 3. We describe an evaluation strategy in Seproblem of domain detection. Thus, our work is or-
tion 4. Section 5 presents new baselines which ateogonal to theirs.
intended to give a sense of current approaches andoyr domain detection strategy draws on work in
their_limif[ations._ The results of our experiments ar‘?oarser accuracy prediction (Ravi et al., 2008; Kawa-
detailed in Section 6 where we show that our systeifarg and Uchimoto, 2008). These works aim to pre-
ogtperfo_rms a_II non-oracle baselines. We conclud&ict the parser performance on a given target sen-
with a discussion and future work (Section 7). tence. Ravi et al. (2008) frame this as a regression
2 Reated work problem. Kawaht_a_ra e_lnd Uchimoto (2098) treat it
as a binary classification task and predict whether
The closest work to ours is Plank and Sima’am specific parse is at a certain level of accuracy or
(2008), where unlabeled text is used to group setmgher. Ravi et al. (2008) show that their system
tences fromwsJinto subdomains. The authors cre-can be used to return a ranking over different parsing
ate a model for each subdomain which weights treeaodels which we extend to the multiple domain set-
from its subdomain more highly than others. Givering. They also demonstrate that training their model
the domain specific models, they consider differendn wsJ allows them to accurately predict parsing
parse combination strategies. Unfortunately, thessccuracy on th8ROWN corpus. In contrast, our
methods do not yield a statistically significant im-models are trained over multiple domains to model
provement. which factors influence cross-domain performance.
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3 Approach KWORDS returns the percentage of words in one
] ) _ domain which never appear in the other domain.
We start with the assumption that all target domain$pis can be done on the word type or token level.
are mixtures of our source domaihsintuitively, We opt for tokens since unknown words pose prob-
these mixtures should give higher probability masg, s for parsing each time they occunvkMWORDS
to more similar source domains. This raises thgqijes the percentage of words in the source
question of how to measure the similarity betweeomain that are never seen in the target domain.
doma_ms_. _Our method uses multiple complemer’whereas ©SINETOP50 examines how similar the
tary similarity measures between the target and ea%h frequency words are from one domainnU

source. We feed these similarity measures into a rWORDS tends to focus on the overlap of low fre-

gression model which learns how domain dISSImIquenCy words.

larities hurt parse accuracy. Thus, to parse a target no described. BSINETOP50 and WNKWORDS

domain, we need only find the input that maximize, o fnctions only of two source domains and do not
the regression function —thatis, the highest scoring, e the mixing weights of source domains into ac-
mixture of source domains. Our system is similar tQount. We experimented with several methods of in-

Ravi et al. (2008) in that both use regression to pres, orating mixing weights into the feature value.
dict f-scores and some of the features are related. In practice, the one which worked best for us is to

divide the mixture weight of the source domain by
the raw feature value. This has the nice property that
Our features are designed to help the regressi@fhen a source is not used, the adjusted feature value
model determine if a particular source domain mixis zero regardless of the raw feature value.
ture is well suited for a target domain as well as the From pilot studies, we learned that a uniform mix-
quality of a source domain mixture. While we ex-tyre of available source domains gave strong results
plored a large number of features, we present he(rther details on this in Section 5). Our last feature,
only the three that were chosen by our feature selegnTropy, is intended to let the regression system
tion method (Section 6.2). leverage this and measures the entropy of the distri-
Two of our features, GSINETOP50 and WN-  pution over source domains. This provides a sense
KWORDS, are designed to approximate how simiof uniformity.
lar the target domain is to a specific source domain.
Only the surface form of the target text and auto3-2 Predicting cross-domain accuracy
matic analyses are available (e.g. we can tag or parger a given source domain mixture, we can create
the target text, but cannot use gold tags or trees). a parsing model by linearly interpolating the pars-
Relative word frequencies are an important ining model statistics from each source domain. The
dicator of domain. Cosine similarity uses a spakey component of our approach is a domain-aware
tial representation to summarize the word frequerlinear regression model which predicts how well a
cies in a corpus as a single vector. A commospecific parsing model will do on a given target text.
method is to represent each corpus as a vector Dhe linear regressor is given values from the three
frequencies of thé most frequent words (Schuitze,features from the previous section@d€INETOP50,
1995). This method assigns high similarity to doUNkWORDS, and ENTROPY) and returns an esti-
mains with a large amount of overlap in the high-mate of thef-score the parsing model would achieve
frequency vocabulary items. We experimented witlthe target text.
several orders of magnitude fbr(our feature selec-  Training data for the regressor consists of ex-
tion method later choske = 50 — see Section 6.2). amples of source domain mixtures and their ac-
Our second feature for comparing domaingy-U tual f-scores on target texts. To produce this, we
Tmayseem like a major limitation, but as we will showrand-Omly sampled source dpmaln mixtures, created
, o . parsing models for those mixtures, and then evalu-
later, our method works quite well at incorporating sedfitied

(automatically parsed) corpora which can typically be oieta ~ ated the parsing models on _a” of our target texts.
for any domain. We used a simple technique for randomly sam-

3.1 Features
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87.5¢ ‘ ‘ ‘ ‘ — Train Test
/[JI Source  Target| Source Target
7o | C\{t} C\{i}[C\{t} {t}
86.5 (a) Out-of-domain evaluation
% 660 Train Test
2 Source Target| Source Target
855 C Cc\{§| c {4y
850 (b) In-domain evaluation
84.5 Table 2: List of domains allowed in single round of
84.0 { evaluation. In each round, the evaluation corpus is
C is the set of all target domains.

0 200 400 600 800 1000
Number of mixed parsing model samples

4 Evaluation
Figure 1: Cumulative oraclé¢-score (averaged over
all target domains) as more models are randomiyultiple-source domain adaptation is a new task for
sampled. Most of the improvement comes the firgtarsing and thus some thought must be given to eval-
200 samples indicating that our samples seem to lb@tion methodology. We describe two evaluation
sufficient to cover the space of good source domaiscenarios which differ in how foreign the target text
mixtures. is from our source domains. Schemas for these eval-
uation scenarios are shown in Table 2. Note that

training and testing here refer to training and testing

pling source domain mixtures. First, we sample thgs o regression modenot the parsing models.
number of source domains to use. We draw values | . first scenario out-of-domain evaluation

from an exponential distribution and take their inte_ - target domain is completely removed from con-

ger value until we obtain a number between two an%deration and only used to evaluate proposed mod-

the number of source domains. This is parametrize s at test time. The regressor is trained on training

so that we typically only use a few corpora but still _ . -
i oints that use any of the remaining corpdza,{¢},
have some chance of using all of them. Once wIO y g corpta, {t}

K h b f d . ISS sources or targets. For example, # wsJ we

now the number of source domains, We Sampi,, yrain the regressor on all data points which don’t
their identities uniformly at random without replace-usewSJ (or any self-trained corpora derived from
ment from the list of all source domains. Finally,

: . WSJ) as a source or target domain. At test time, we
we sample the weights for the source domains UNkre given the text ofvsJs test set. From this, our

formly from a simplex. The dimension of the sim- stem creates a parsing model using the remaining

: .S
plex is the sam_e as the nu_mber_ of_ sogrce doma'%%ailable corpora for parsing the rawsJtext.
so we end up with a probability distribution over the . . L
This evaluation scenario is intended to evaluate

sampled source domains. how well our system can adapt to an entirely new
In total, we sampled 1,040 source domain mix- y P y

domain with only raw text from the new domain
tures. We evaluated each of these source dom ! . . .
. . . o or example, parsing biomedical text when none
mixtures on the six target domains giving us 6,24

: . |% available in our list of source domains). Ide-

data points in total. One may be concerned tha
A - ally, we would have a large number of web pages
this is insufficient to cover the large space of source . .
. . - or other documents from other domains which we
domain mixtures. However, we show in Figure 1 .
- - “could use solely for evaluation. Unfortunately, at
that only about 200 samples are sufficient to ach|ev%. . .
) i this time, only a handful of domains have been an-

good oracle performanéeén practice.

notated with constituency structures under the same

2\We calculate this by picking the best available model fo——
each target domain and taking the average of tlfedcores. This can pick different models for each target domain.
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annotation guidelines. Instead, we hold out eactarget domain isvsJwhile the in-domain scenario
hand-annotated domain, (including any automat- uses thevsimodel throughout.

ically parsed corpora derived from that source do- There are several interesting oracle baselines as
main) as a test set in a round-robin fashforFor  \ell which serve to measure the limits of our ap-
each round of the round robin we obtain fscore proach.  These baselines examine the resulting
and we report the mean and variance of frecores  f.scores of models and pick the best model accord-
for each model. ing to some criteria. The first oracle baseline is
The second scenarion-domain evaluation, al- BesT SINGLE CORPUSwhich parses each corpus
lows the target domain, to be used as a sourcewith the source domain that maximizes performance
domain in training but not as a target domain. Thign the target domain. In almost all cases, this base-
is intended to evaluate the situation where the targgfe selects each corpus to parse itself.
domain is not actually that different from our source Our second oracle baselineEST SEEN, chooses

domalrrlls. The in-domain Izvalu?tlon csn a?promfhe best parsing model from all those explored for
mat(T ow ?]ur system wou pec'; orm w eg, hor ®Xzach test set. Recall that while training the regres-
ample, we havevsJjas a source domain and the tar;,, mogel in Section 3.2, we needed to explore

get text |s|ney|\:shfrom alsourcE other thﬂﬂh“l Thush many possible source domain mixtures to approxi-
our mpde still has to learn thavsJ and the North 0.0 e complete space of mixed parsing models.
Ame_rlcan News T?Xt Corp_USN('\NC) are good_for To the extent that we can fully explore the space of
parsing news text like/sawithout seeing any direct ;. g parsing models, this baseline represents an
_evaluatlons Of the sory(sJ andNANC can be used upper bound for model mixing approaches. Since
'?1 mo;:llels which are evaluated on elher corpora, fully exploring the space of possible weightings is
though). intractable, it is not a true upper bound. While it

. is theoretically possible to beat this pseudo-upper
5 Basdines bound, (indeed, this is the mark of a good domain

Given that this is a new task for parsing, we needeg€tection system) it is far from easy. We provide
to create baselines which demonstrate the curreREST SINGLE CORPUSand BEsT SeeN for both
approaches to multiple-source domain adaptatioffi-domain and out-of-domain scenarios. The out-of-
One approach is to take all available corpora andomain scenario r_estrlcts the set of pQSS|bIe models
mix them together uniformi$. The UNIFORM base-  t© those notincluding the target domain.
line does exactly this using the available hand-built Finally, we searched for the H5T OVERALL
training corpora. BLF-TRAINED UNIFORM uses MODEL. This is the model with the highest aver-
self-trained corpora as well. In the out-of-domairage f-score across all six target domains. This base-
scenario, these exclude the held out domain, but line can be thought of as an oracle version ofe#b
the in-domain setting, the held out domain is inSET: wsJand demonstrates the limit of using a sin-
cluded. These baselines are similar to the.A&and gle parsing model regardless of target domain. Natu-
WEIGHTED baselines in Daumé Il (2007). rally, the very nature of this baseline places it only in
Another simple baseline is to use the same par§1€ in-domain evaluation scenario. Since it was able
ing model regardless of target domain. This is ho0 select the model according fescores on our six
large heterogeneous document collections are typgRrget domains, its performance on domains outside
cally parsed currently. We use thesicorpus since that setis not guaranteed.
it is the best single corpus for parsing all six target To provide a better sense of the space of mixed
domains (see Table 1). We refer to this baseline gmrsing models, we also provide thed®sT SEEN
FIXED SET: wsd In the out-of-domain scenario, baseline which picks the worst model available for a
we fall back to &LF-TRAINED UNIFORM when the  specific target corpus.

3Thus, the schemas in Table 2 are schemas for each round.

4Accounting for size so that the larger corpora don’t over-  °This turns out to be&ENIA for all corpora other thagENIA
whelm the smaller ones. andswsD when the target domain SENIA.
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6 Experiments from Medline for our self-trained/EDLINE corpus.

. . _Unlike the other two self-trained corpora, we include
Our experiments use the Charniak (2000) generatl\f\%o versions ofMEDLINE. These differ on whether
parser. We describe the corpora used in our nir}%ey were parsed USINGENIA or WSJ as a base
source and six target domains in Section 6.1. In Se(r:ﬁodel to study the effect on cross-domain perfor-
tion 6.2, we provide a greedy strategy for pickin

; . : %nance. Finally, we use a small number of sentences
features to include in our regression model. The re. " .

. . . rom the British National Corpuss{ic) (Foster and
sults of our experiments are in Section 6.3.

van Genabith, 2008f The sentences were chosen
6.1 Corpora randomly, so each one is potentially from a different

. . . : domain. On the other hangNc can be thought of
We aimed to include as many different domains as_ . L : . L
S its own domain in that it contains significant lex-

possible annotated under compatible schemes. We . . . i
) . |8al differences from the American English used in
also tried to include human-annotated corpora an
. : our other corpora.
automatically labeled corpora (self-trained corpora Wi dth dardi
as in McClosky et al. (2006a) which have been fthe prepr(t)cte_zsse d'f; ecorpore_ll_Lo standar |zeltmany
shown to work well across domains). Our fina' N€ annotation dilterences. us, our resufts on

set includes text from newsmsJ NANC), broad- tEem may be Sl'ﬁlhtly (E[i;]ffelrent ttr;]an Othﬁr works r?n Id
cast newsgTT), literature BROWN, GUTENBERG), ese corpora. INEVerineless, these changes shou

biomedical GENIA, MEDLINE), Spontaneous speechnot significantly impact overall the performance.
(swBD), a_nd the British Natlonal CorpugKc). In 6.2 Feature sdection
our experiments, self-trained corpora cannot be use
as target domains since we lack gold annotations afMdhile our final model uses only three features, we
BNC is not used as a source domain due to its sizeonsidered many other possible features (not de-
An overview of our corpora is shown in Table 3.  scribed due to space constraints). In order to explore
We use news articles portion of the Wall Streethese without hill climbing on our test data, we cre-
Journal corpusws) from the Penn Treebank (Mar- ated a round-robin tuning scenario. Since the out-
cus et al., 1993) in conjunction with the self-trainedf-domain evaluation scenario holds out one target
North American News Text CorpusiANc, Graff domain, this gives us six test evaluation rounds. For
(1995)). The English Translation TreebarkrT each of these six rounds, we hold out one of the re-
(Bies, 2007), is the translatibrof broadcast news maining five target domains for tuning. This gives
in Arabic. For literature, we use thr@ROwN cor- us 30 tuning evaluation rounds and we pick our fea-
pus (Francis and Kutera, 1979) and the same diires to optimize our aggregate performance over all
vision as (Gildea, 2001; Bacchiani et al., 20060f them. A model that performs wellin this situation
McClosky et al., 2006b). We also use raw senhas proven that it has useful features which transfer
tences which we downloaded from Project Gutento unknown target domains.
berd as a self-trained corpus. The Switchboard cor- The next step is to determine the loss function
pus GwBD) consists of transcribed telephone conto minimize. Our primary guide isracle f-score
versations. While the original trees include disfluioss which we determine as follows. We take all
ency information, we assume our speech corpotast data points (i.e. mixed parsing models evalu-
have had speech repairs excised (e.g. using a syged on the target domain) and predict thiescores
tem such as Johnson et al. (2004)). Our biomedwith our model. In particular for this measure, we
cal data comes from theENIA treebanR (Tateisi are interested in the point with the highest predicted
et al., 2005), a corpus of abstracts from the Medf-score. We take its actugtscore which we call
line databas@.We downloaded additional sentenceshe candidate f-score. When tuning, we know the

®The transcription and translation were done by humans. true f-scores of all test points. The difference be-

"http://gutenberg.org/ tween the highestf-score (the oraclef-score for
8http://www-tsuijii.is.s.u-tokyo.ac.jp/

GENIA/ Phttp://nclt.computing.dcu.ie/ ~ jfoster/
®http:/iwww.ncbi.nim.nih.gov/PubMed/ resources/ , downloaded January 8th, 2009.
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Corpus Source? Target? Average length Train  Tune  Test
BNC o 28.3 — — 1,000
BROWN o o 20.0 19,786 2,082 2,439
ETT . . 25.6 2,639 1,029 1,166
GENIA o o 27.5 14,326 1,361 1,36(
MEDLINE ° 27.2 278,192 — —
SWBD o o 9.2 92,536 5,895 6,051
WSJ . . 25.5 39,832 1,346 2,416
NANC o 23.2 915,794  — —
GUTENBERG e 26.2 689,782 — —
MEDLINE ° 27.2 278,192 — —

Table 3: List of source and target domains, sizes of eactsidiviin trees, and average sentence length.
Indented rows indicate self-trained corpora parsed usiagnbn-indented row as a base parser.

this dataset) and the candidgtescore is the oracle results include thg-score macro-averaged over the
f-score loss. Ties need to be handled correctly tsix target domains and their standard deviation.
avoid degenerate modeisf there is a tie for high- |y poth situations, the IKED SET wsJ baseline

est predictedf-score, the candidaté-score is the performs fairly poorly. Not surprisingly, assuming
one with thelowest actual f-score. This approach i of our target domains are close enoughwtes
is conservative but ensures that regression modefgyks badly for our set of target domains and it
which give everything the same predictgdcore do ygeg particularly poorly osWBD and GENIA. On
not receive zero oraclg-score [0ss. average, the NIFORM baseline does slightly bet-
Armed with a tuning regime and a loss functionser for out-of-domain and over 3% better for in-

we created a procedure to pick the combination Qfomain. LniIForm actually does fairly well on out-
features to use. We used a parallelized best-firgt.qomain except oGENIA. In general, using more
search procedure. At each round, it expanded th@rce domains is better which partially explains the
current best set of features by adding or removing,ccess of NIFORM. This seems to be the case
each feature where ‘best’ was determined by the 10%nce even if a source domain is terribly mismatched
function. We explored over 6,000 settings, thouglyith the target domain, it may still be able to fil
the best setting of (NkWORDS COSINETOPSO,  jn some holes left by the other source domains. Of
ENTROPY) was found within the first 200 settings course, if it overpowers more relevant domains, per-
explored. The best setting obtains an orgékcore  formance may suffer. The ERF-TRAINED UNI-
loss of 0.37 and a root mean squared error of 0.48ry haseline uses even more source domains as
— these numbers are quite low and show the higlye|| a5 the largest ones. In both scenarios, this dra-
accuracy of our regression model (similar to thosgatically improves performance and is the second
in Ravi et al. (2008)). Additionally, the features arepest non-oracle system. This baseline provides more
complementary in that NKWORDSfocuses onlow  evidence as to the power of self-training for improv-
frequency words whereasdSINETOPSO0 looks only  ing parser adaptation. If we excluded all self-trained
at high frequency words andNEROPY functions as ¢orpora, our performance on this task would be sub-
aregularizer. stantially worse. We believe the self-trained cor-

pora are beneficial in this task since they help reduce
6.3 Results .

data sparsity of smaller corpora. The®r SINGLE
We present an overview of our final results for outCorpusbaseline is poor in the out-of-domain sce-
of-domain and in-domain evaluation in Table 4. Theyario primarily because the actual best single corpus
~ TiFor example, regression models which assign every parsifig €xcluded by the task specification in most cases.
model the sam¢-score. When we move to in-domain, this baseline improves
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Oracle Baseline or model Averagiescore | | Oracle Baseline or model Averagfescore
° Worst seen 62.6- 6.1 Fixed set:.wsJ 82.0+ 4.8
° Best single corpus 8148 2.9 Uniform 854+ 24
Fixed set:.wsJ 81.0+ 3.5 ° Best single corpus 8546 2.9
Uniform 81.4+ 3.6 Self-trained uniform 86.1% 2.0
Self-trained uniform 83.4-25 ° Best overall model 86.2 1.9
Our model 84.0+25 Our model 86.9+24
° Best seen 84.3 2.6 ° Best seen 87521
(a) Out-of-domain evaluation (b) In-domain evaluation

Table 4: Baselines and final results for the two multiplerseudomain adaptation evaluation scenarios.
Results includef-scores, macro-averaged over all six target domains airdsthedard deviations.

but is still worse than SLF-TRAINED UNIFORM On  ing accuracy. Using the parsing model with the
average. It beatsesF-TRAINED UNIFORM primar-  highest predicted-score leads to great performance
ily on wsJ swBD, andGENIA indicating that these in practice. There is a substantial benefit to doing
three domains are best when not diluted by otherthis over existing approaches (using the same model
By definition, the WORST SEENbaseline does terri- for all domains or mixing all training data together
bly, almost 20% worse thenesT SINGLE CORPUS  uniformly). Creating a number of domain-specific
Our model is the best non-oracle system for botimodels and mixing them together as needed is a vi-
evaluation scenarios. For out-of-domain evaluatiorgble approach.
our system is only 0.3% worse than the 8 SEEN One can think of our system as trying to esti-
models for each target domain. For the in-domaimate document-level context. Our representation of
scenario, we are within 0.6% of theEBT SEEN this context is simply a distribution over our source
models. For a sense of scale, our out-of-domain antbmains, but one can imagine more complex op-
in-domain f-scores onwsJ are 83.1% and 89.8% tions such as a high-dimensional vector space. Ad-
respectively. Both numbers are quite close to theitionally, our model separates domain and syntax
BEST SEEN baseline. Additionally, our model is estimation, but a future direction is to learn these
0.7% better than the BT OVERALL MODEL. Re- jointly. This would combine our work with (Daumé
call that the BEST OVERALL MODEL is the single 1lI, 2007; Finkel and Manning, 2009).
model with the best performance across all six tar- We have focused on the Charniak (2000) parser,
get domains? By beating this baseline, we showthe first stage in the two stage Charniak and John-
that there is value in customizing parsing modelgon (2005) reranking parser. Applying our methods
to the target domain. It is also interesting that theéo other generative parsers (such as (Collins, 1999:
BEST OVERALL MODEL is only marginally better Petrov and Klein, 2007)) is trivial, but it is less clear
than SELF-TRAINED UNIFORM. Without any fur-  how our methods can be applied to the discrimina-
ther information about the target corpus, an unintive reranker component of the two stage parser. One

formed prior appears best. avenue of approach is to incorporate the domain rep-
_ _ resentation into the feature space, as in Daumeé Il
7 Discussion (2007) but with more complex domain information.

We have shown that for both out-of-domain and in-
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