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Abstract

In this paper, we present an innovative chart

mining technique for improving parse cover-

age based on partial parse outputs from preci-

sion grammars. The general approach of min-

ing features from partial analyses is applica-

ble to a range of lexical acquisition tasks, and

is particularly suited to domain-specific lexi-

cal tuning and lexical acquisition using low-

coverage grammars. As an illustration of the

functionality of our proposed technique, we

develop a lexical acquisition model for En-

glish verb particle constructions which oper-

ates over unlexicalised features mined from

a partial parsing chart. The proposed tech-

nique is shown to outperform a state-of-the-art

parser over the target task, despite being based

on relatively simplistic features.

1 Introduction

Parsing with precision grammars is increasingly

achieving broad coverage over open-domain texts

for a range of constraint-based frameworks (e.g.,

TAG, LFG, HPSG and CCG), and is being used in

real-world applications including information ex-

traction, question answering, grammar checking and

machine translation (Uszkoreit, 2002; Oepen et al.,

2004; Frank et al., 2006; Zhang and Kordoni, 2008;

MacKinlay et al., 2009). In this context, a “preci-

sion grammar” is a grammar which has been engi-

neered to model grammaticality, and contrasts with

a treebank-induced grammar, for example.

Inevitably, however, such applications demand

complete parsing outputs, based on the assumption

that the text under investigation will be completely

analysable by the grammar. As precision grammars

generally make strong assumptions about complete

lexical coverage and grammaticality of the input,

their utility is limited over noisy or domain-specific

data. This lack of complete coverage can make

parsing with precision grammars less attractive than

parsing with shallower methods.

One technique that has been successfully applied

to improve parser and grammar coverage over a

given corpus is error mining (van Noord, 2004;

de Kok et al., 2009), whereby n-grams with low

“parsability” are gathered from the large-scale out-

put of a parser as an indication of parser or (pre-

cision) grammar errors. However, error mining is

very much oriented towards grammar engineering:

its results are a mixture of different (mistreated) lin-

guistic phenomena together with engineering errors

for the grammar engineer to work through and act

upon. Additionally, it generally does not provide

any insight into the cause of the parser failure, and it

is difficult to identify specific language phenomena

from the output.

In this paper, we instead propose a chart min-

ing technique that works on intermediate parsing re-

sults from a parsing chart. In essence, the method

analyses the validity of different analyses for words

or constructions based on the “lifetime” and prob-

ability of each within the chart, combining the con-

straints of the grammar with probabilities to evaluate

the plausibility of each.

For purposes of exemplification of the proposed

technique, we apply chart mining to a deep lexical

acquisition (DLA) task, using a maximum entropy-

based prediction model trained over a seed lexicon

and treebank. The experimental set up is the fol-

lowing: given a set of sentences containing puta-

tive instances of English verb particle constructions,
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extract a list of non-compositional VPCs optionally

with valence information. For comparison, we parse

the same sentence set using a state-of-the-art statisti-

cal parser, and extract the VPCs from the parser out-

put. Our results show that our chart mining method

produces a model which is superior to the treebank

parser.

To our knowledge, the only other work that has

looked at partial parsing results of precision gram-

mars as a means of linguistic error analysis is that of

Kiefer et al. (1999) and Zhang et al. (2007a), where

partial parsing models were proposed to select a set

of passive edges that together cover the input se-

quence. Compared to these approaches, our pro-

posed chart mining technique is more general and

can be adapted to specific tasks and domains. While

we experiment exclusively with an HPSG grammar

in this paper, it is important to note that the proposed

method can be applied to any grammar formalism

which is compatible with chart parsing, and where it

is possible to describe an unlexicalised lexical entry

for the different categories of lexical item that are to

be extracted (see Section 3.2 for details).

The remainder of the paper is organised as fol-

lows. Section 2 defines the task of VPC extraction.

Section 3 presents the chart mining technique and

the feature extraction process for the VPC extraction

task. Section 4 evaluates the model performance

with comparison to two competitor models over sev-

eral different measures. Section 5 further discusses

the general applicability of chart mining. Finally,

Section 6 concludes the paper.

2 Verb Particle Constructions

The particular construction type we target for DLA

in this paper is English Verb Particle Constructions

(henceforth VPCs). VPCs consist of a head verb

and one or more obligatory particles, in the form

of intransitive prepositions (e.g., hand in), adjec-

tives (e.g., cut short) or verbs (e.g., let go) (Villav-

icencio and Copestake, 2002; Huddleston and Pul-

lum, 2002; Baldwin and Kim, 2009); for the pur-

poses of our dataset, we assume that all particles are

prepositional—by far the most common and produc-

tive of the three types—and further restrict our atten-

tion to single-particle VPCs (i.e., we ignore VPCs

such as get along together).

One aspect of VPCs that makes them a partic-

ularly challenging target for lexical acquisition is

that the verb and particle can be non-contiguous (for

instance, hand the paper in and battle right on).

This sets them apart from conventional collocations

and terminology (cf., Manning and Schütze (1999),

Smadja (1993) and McKeown and Radev (2000))

in that they cannot be captured effectively using n-

grams, due to their variability in the number and type

of words potentially interceding between the verb

and the particle. Also, while conventional colloca-

tions generally take the form of compound nouns

or adjective–noun combinations with relatively sim-

ple syntactic structure, VPCs occur with a range of

valences. Furthermore, VPCs are highly productive

in English and vary in use across domains, making

them a prime target for lexical acquisition (Dehé,

2002; Baldwin, 2005; Baldwin and Kim, 2009).

In the VPC dataset we use, there is an addi-

tional distinction between compositional and non-

compositional VPCs. With compositional VPCs,

the semantics of the verb and particle both corre-

spond to the semantics of the respective simplex

words, including the possibility of the semantics be-

ing specific to the VPC construction in the case of

particles. For example, battle on would be clas-

sified as compositional, as the semantics of bat-

tle is identical to that for the simplex verb, and

the semantics of on corresponds to the continua-

tive sense of the word as occurs productively in

VPCs (cf., walk/dance/drive/govern/... on). With

non-compositional VPCs, on the other hand, the

semantics of the VPC is somehow removed from

that of the parts. In the dataset we used for eval-

uation, we are interested in extracting exclusively

non-compositional VPCs, as they require lexicalisa-

tion; compositional VPCs can be captured via lexi-

cal rules and are hence not the target of extraction.

English VPCs can occur with a number of va-

lences, with the two most prevalent and productive

valences being the simple transitive (e.g., hand in

the paper) and intransitive (e.g., back off ). For the

purposes of our target task, we focus exclusively on

these two valence types.

Given the above, we define the English VPC ex-

traction task to be the production of triples of the

form 〈v, p, s〉, where v is a verb lemma, p is a prepo-

sitional particle, and s ∈ {intrans , trans} is the va-
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lence; additionally, each triple has to be semantically

non-compositional. The triples are extracted relative

to a set of putative token instances for each of the

intransitive and transitive valences for a given VPC.

That is, a given triple should be classified as positive

if and only if it is associated with at least one non-

compositional token instance in the provided token-

level data.

The dataset used in this research is the one used

in the LREC 2008 Multiword Expression Workshop

Shared Task (Baldwin, 2008).1 In the dataset, there

is a single file for each of 4,090 candidate VPC

triples, containing up to 50 sentences that have the

given VPC taken from the British National Cor-

pus. When the valence of the VPC is ignored,

the dataset contains 440 unique VPCs among 2,898

VPC candidates. In order to be able to fairly com-

pare our method with a state-of-the-art lexicalised

parser trained over the WSJ training sections of the

Penn Treebank, we remove any VPC types from the

test set which are attested in the WSJ training sec-

tions. This removes 696 VPC types from the test

set, and makes the task even more difficult, as the

remaining testing VPC types are generally less fre-

quent ones. At the same time, it unfortunately means

that our results are not directly comparable to those

for the original shared task.2

3 Chart Mining for Parsing with a Large

Precision Grammar

3.1 The Technique

The chart mining technique we use in this paper

is couched in a constituent-based bottom-up chart

parsing paradigm. A parsing chart is a data struc-

ture that records all the (complete or incomplete) in-

termediate parsing results. Every passive edge on

the parsing chart represents a complete local analy-

sis covering a sub-string of the input, while each ac-

tive edge predicts a potential local analysis. In this

view, a full analysis is merely a passive edge that

spans the whole input and satisfies certain root con-

1Downloadable from http://www.csse.unimelb.

edu.au/research/lt/resources/vpc/vpc.tgz.
2In practice, there was only one team who participated in

the original VPC task (Ramisch et al., 2008), who used a vari-

ety of web- and dictionary-based features suited more to high-

frequency instances in high-density languages, so a simplistic

comparison would not have been meaningful.

ditions. The bottom-up chart parser starts with edges

instantiated from lexical entries corresponding to the

input words. The grammar rules are used to incre-

mentally create longer edges from smaller ones until

no more edges can be added to the chart.

Standardly, the parser returns only outputs that

correspond to passive edges in the parsing chart that

span the full input string. For those inputs without a

full-spanning edge, no output is generated, and the

chart becomes the only source of parsing informa-

tion.

A parsing chart takes the form of a hierarchy of

edges. Where only passive edges are concerned,

each non-lexical edge corresponds to exactly one

grammar rule, and is connected with one or more

daughter edge(s), and zero or more parent edge(s).

Therefore, traversing the chart is relatively straight-

forward.

There are two potential challenges for the chart-

mining technique. First, there is potentially a huge

number of parsing edges in the chart. For in-

stance, when parsing with a large precision gram-

mar like the HPSG English Resource Grammar

(ERG, Flickinger (2002)), it is not unusual for a

20-word sentence to receive over 10,000 passive

edges. In order to achieve high efficiency in pars-

ing (as well as generation), ambiguity packing is

usually used to reduce the number of productive

passive edges on the parsing chart (Tomita, 1985).

For constraint-based grammar frameworks like LFG

and HPSG, subsumption-based packing is used to

achieve a higher packing ratio (Oepen and Carroll,

2000), but this might also potentially lead to an in-

consistent packed parse forest that does not unpack

successfully. For chart mining, this means that not

all passive edges are directly accessible from the

chart. Some of them are packed into others, and the

derivatives of the packed edges are not generated.

Because of the ambiguity packing, zero or more

local analyses may exist for each passive edge on

the chart, and the cross-combination of the packed

daughter edges is not guaranteed to be compatible.

As a result, expensive unification operations must be

reapplied during the unpacking phase. Carroll and

Oepen (2005) and Zhang et al. (2007b) have pro-

posed efficient k-best unpacking algorithms that can

selectively extract the most probable readings from

the packed parse forest according to a discrimina-
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tive parse disambiguation model, by minimising the

number of potential unifications. The algorithm can

be applied to unpack any passive edges. Because

of the dynamic programming used in the algorithm

and the hierarchical structure of the edges, the cost

of the unpacking routine is empirically linear in the

number of desired readings, and O(1) when invoked

more than once on the same edge.

The other challenge concerns the selection of in-

formative and representative pieces of knowledge

from the massive sea of partial analyses in the pars-

ing chart. How to effectively extract the indicative

features for a specific language phenomenon is a

very task-specific question, as we will show in the

context of the VPC extraction task in Section 3.2.

However, general strategies can be applied to gener-

ate parse ranking scores on each passive edge. The

most widely used parse ranking model is the log-

linear model (Abney, 1997; Johnson et al., 1999;

Toutanova et al., 2002). When the model does not

use non-local features, the accumulated score on a

sub-tree under a certain (unpacked) passive edge can

be used to approximate the probability of the partial

analysis conditioned on the sub-string within that

span.3

3.2 The Application: Acquiring Features for

VPC Extraction

As stated above, the target task we use to illustrate

the capabilities of our chart mining method is VPC

extraction.

The grammar we apply our chart mining method

to in this paper is the English Resource Grammar

(ERG, Flickinger (2002)), a large-scale precision

HPSG for English. Note, however, that the method

is equally compatible with any grammar or grammar

formalism which is compatible with chart parsing.

The lexicon of the ERG has been semi-

automatically extended with VPCs extracted

by Baldwin (2005). In order to show the effective-

ness of chart mining in discovering “unknowns”

and remove any lexical probabilities associated

with pre-existing lexical entries, we block the

3To have a consistent ranking model on any sub-analysis,

one would have to retrain the disambiguation model on every

passive edge. In practice, we find this to be intractable. Also,

the approximation based on full-parse ranking model works rea-

sonably well.

lexical entries for the verb in the candidate VPC

by substituting the input token with a DUMMY-V

token, which is coupled with four candidate lexical

entries of type: (1) intransitive simplex verb (v - e),

(2) transitive simplex verb (v np le), (3) intransitive

VPC (v p le), and (4) transitive VPC (v p-np le),

respectively. These four lexical entries represent the

two VPC valences we wish to distinguish between

in the VPC extraction task, and the competing

simplex verb candidates. Based on these lexical

types, the features we extract with chart mining are

summarised in Table 1. The maximal constituent

(MAXCONS) of a lexical entry is defined to be the

passive edge that is an ancestor of the lexical entry

edge that: (i) must span over the particle, and (ii)

has maximal span length. In the case of a tie,

the edge with the highest disambiguation score is

selected as the MAXCONS. If there is no edge found

on the chart that spans over both the verb and the

particle, the MAXCONS is set to be NULL, with a

MAXSPAN of 0, MAXLEVEL of 0 and MAXCRANK

of 4 (see Table 1). The stem of the particle is also

collected as a feature.

One important characteristic of these features is

that they are completely unlexicalised on the verb.

This not only leads to a fair evaluation with the ERG

by excluding the influence from the lexical coverage

of VPCs in the grammar, but it also demonstrates

that complete grammatical coverage over simplex

verbs is not a prerequisite for chart mining.

To illustrate how our method works, we present

the unpacked parsing chart for the candidate VPC

show off and input sentence The boy shows off his

new toys in Figure 1. The non-terminal edges are

marked with their syntactic categories, i.e., HPSG

rules (e.g., subjh for the subject-head-rule, hadj for

the head-adjunct-rule, etc.), and optionally their dis-

ambiguation scores. By traversing upward through

parent edges from the DUMMY-V edge, all features

can be efficiently extracted (see the third column in

Table 1).

It should be noted that none of these features are

used to deterministically dictate the predicted VPC

category. Instead, the acquired features are used as

inputs to a statistical classifier for predicting the type

of the VPC candidate at the token level (in the con-

text of the given sentence). In our experiment, we

used a maximum entropy-based model to do a 3-
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Feature Description Examples

LE:MAXCONS
A lexical entry together with the maximal constituent

constructed from it

v - le:subjh, v np le:hadj,

v p le:subjh, v p-np le:subj

LE:MAXSPAN
A lexical entry together with the length of the span of

the maximal constituent constructed from the LE

v - le:7, v np le:5, v p le:4,

v p-np le:7

LE:MAXLEVEL
A lexical entry together with the levels of projections

before it reaches its maximal constituent

v - le:2, v np le:1, v p le:2,

v p-np le:3

LE:MAXCRANK
A lexical entry together with the relative disambigua-

tion score ranking of its maximal constituent among

all MaxCons from different LEs

v - le:4, v np le:3, v p le:1,

v p-np le:2

PARTICLE The stem of the particle in the candidate VPC off

Table 1: Chart mining features used for VPC extraction

his new toysoffshows

PREPPRTL

v_−_le

NP1

VP4−hcomp

NP2

VP5−hcomp

PP−hcomp

0 2 3 4 7

DUMMY−V

S1−subjh(.125)

S3−subjh(.875)

VP1−hadj VP3−hcomp

S2−subjh(.925)

VP2−hadj(.325)

v_p−np_lev_np_le v_p_le

the boy

Figure 1: Example of a parsing chart in chart-mining for VPC extraction with the ERG

category classification: non-VPC, transitive VPC,

or intransitive VPC. For the parameter estimation

of the ME model, we use the TADM open source

toolkit (Malouf, 2002). The token-level predictions

are then combined with a simple majority voting to

derive the type-level prediction for the VPC candi-

date. In the case of a tie, the method backs off to

the naı̈ve baseline model described in Section 4.2,

which relies on the combined probability of the verb

and particle forming a VPC.

We have also experimented with other ways of de-

riving type-level predictions from token-level classi-

fication results. For instance, we trained a separate

classifier that takes the token-level prediction as in-

put in order to determine the type-level VPC predic-

tion. Our results indicate no significant difference

between these methods and the basic majority vot-

ing approach, so we present results exclusively for

this simplistic approach in this paper.

4 Evaluation

4.1 Experiment Setup

To evaluate the proposed chart mining-based VPC

extraction model, we use the dataset from the LREC

2008 Multiword Expression Workshop shared task

(see Section 2). We use this dataset to perform three

distinct DLA tasks, as detailed in Table 2.

The chart mining feature extraction is imple-

mented as an extension to the PET parser (Callmeier,
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Task Description

GOLD VPC Determine the valence for a verb–preposition combination which is known to occur

as a non-compositional VPC (i.e. known VPC, with unknown valence(s))

FULL Determine whether each verb–preposition combination is a VPC or not, and further

predict its valence(s) (i.e. unknown if VPC, and unknown valence(s))

VPC Determine whether each verb–preposition combination is a VPC or not ignoring va-

lence (i.e. unknown if VPC, and don’t care about valence)

Table 2: Definitions of the three DLA tasks

2001). We use a slightly modified version of the

ERG in our experiments, based on the nov-06 re-

lease. The modifications include 4 newly-added

dummy lexical entries for the verb DUMMY-V and

the corresponding inflectional rules, and a lexical

type prediction model (Zhang and Kordoni, 2006)

trained on the LOGON Treebank (Oepen et al., 2004)

for unknown word handling. The parse disambigua-

tion model we use is also trained on the LOGON

Treebank. Since the parser has no access to any of

the verbs under investigation (due to the DUMMY-

V substitution), those VPC types attested in the

LOGON Treebank do not directly impact on the

model’s performance. The chart mining feature ex-

traction process took over 10 CPU days, and col-

lected a total of 44K events for 4,090 candidate VPC

triples.4 5-fold cross validation is used to train/test

the model. As stated above (Section 2), the VPC

triples attested in the WSJ training sections of the

Penn Treebank are excluded in each testing fold for

comparison with the Charniak parser-based model

(see Section 4.2).

4.2 Baseline and Benchmark

For comparison, we first built a naı̈ve baseline model

using the combined probabilities of the verb and par-

ticle being part of a VPC. More specifically, P (c|v)
and P (c|p) are the probabilities of a given verb

v and particle p being part of a VPC candidate

of type s ∈ {intrans , trans , null}, for transitive

4Not all sentences in the dataset are successfully chart-

mined. Due to the complexity of the precision grammar we

use, the parser is unlikely to complete the parsing chart for ex-

tremely long sentences (over 50 words). Moreover, sentences

which do not receive any spanning edge over the verb and the

particle are not considered as an indicative event. Nevertheless,

the coverage of the chart mining is much higher than the full-

parse coverage of the grammar.

VPC, intransitive VPC, and non-VPC, respectively.

P̃ (s|v, p) = P (s|v) · P (s|p) is used to approxi-

mate the joint probability of verb-particle (v, p) be-

ing of type s, and the prediction type is chosen ran-

domly based on this probabilistic distribution. Both

P (s|v) and P (s|p) can be estimated from a list of

VPC candidate types. If v is unseen, P (s|v) is set to

be 1

|V |

∑
vi∈V P (s|vi) estimated over all verbs |V |

seen in the list of VPC candidates. The naı̈ve base-

line performed poorly, mainly because there is not

enough knowledge about the context of use of VPCs.

This also indicates that the task of VPC extraction

is non-trivial, and that context (evidence from sen-

tences in which the VPC putatively occurs) must be

incorporated in order to make more accurate predic-

tions.

As a benchmark VPC extraction system, we use

the Charniak parser (Charniak, 2000). This sta-

tistical parser induces a context-free grammar and

a generative parsing model from a training set of

gold standard parse trees. Traditionally, it has been

trained over the WSJ component of the Penn Tree-

bank, and for this work we decided to take the same

approach and train over sections 1 to 22, and use sec-

tion 23 for parameter-tuning. After parsing, we sim-

ply search for the VPC triples in each token instance

with tgrep2,5 and decide on the classification of

the candidate by majority voting over all instances,

breaking ties randomly.

5Noting that the Penn POS tagset captures essentially the

compositional vs. non-compositional VPC distinction required

in the extraction task, through the use of the RP (prepositional

particle, for non-compositional VPCs) and RB (adverb, for com-

positional VPCs) tags.
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4.3 Results

The results of our experiments are summarised in

Table 3. For the naı̈ve baseline and the chart mining-

based models, the results are averaged over 5-fold

cross validation.

We evaluate the methods in the form of the three

tasks described in Table 2. Formally, GOLD VPC

equates to extracting 〈v, p, s〉 tuples from the sub-

set of gold-standard 〈v, p〉 tuples; FULL equates to

extracting 〈v, p, s〉 tuples for all VPC candidates;

and VPC equates to extracting 〈v, p〉 tuples (ignor-

ing valence) over all VPC candidates. In each case,

we present the precision (P), recall (R) and F-score

(β = 1: F). For multi-category classifications (i.e.

the two tasks where we predict the valence s, indi-

cated as “All” in Table 3), we micro-average the pre-

cision and recall over the two VPC categories, and

calculate the F-score as their harmonic mean.

From the results, it is obvious that the chart

mining-based model performs best overall, and in-

deed for most of the measures presented. The Char-

niak parser-based extraction method performs rea-

sonably well, especially in the VPC+valence extrac-

tion task over the FULL task, where the recall was

higher than the chart mining method. Although

not reported here, we observe a marked improve-

ment in the results for the Charniak parser when

the VPC types attested in the WSJ are not filtered

from the test set. This indicates that the statisti-

cal parser relies heavily on lexicalised VPC infor-

mation, while the chart mining model is much more

syntax-oriented. In error analysis of the data, we ob-

served that the Charniak parser was noticeably more

accurate at extracting VPCs where the verb was fre-

quent (our method, of course, did not have access

to the base frequency of the simplex verb), under-

lining again the power of lexicalisation. This points

to two possibilities: (1) the potential for our method

to similarly benefit from lexicalisation if we were to

remove the constraint on ignoring any pre-existing

lexical entries for the verb; and (2) the possibility

for hybridising between lexicalised models for fre-

quent verbs and unlexicalised models for infrequent

verbs. Having said this, it is important to reinforce

that lexical acquisition is usually performed in the

absence of lexicalised probabilities, as if we have

prior knowledge of the lexical item, there is no need

to extract it. In this sense, the first set of results in

Table 3 over Gold VPCs are the most informative,

and illustrate the potential of the proposed approach.

From the results of all the models, it would ap-

pear that intransitive VPCs are more difficult to ex-

tract than transitive VPCs. This is partly because the

dataset we use is unbalanced: the number of transi-

tive VPC types is about twice the number of intran-

sitive VPCs. Also, the much lower numbers over

the FULL set compared to the GOLD VPC set are due

to the fact that only 1/8 of the candidates are true

VPCs.

5 Discussion and Future Work

The inventory of features we propose for VPC ex-

traction is just one illustration of how partial parse

results can be used in lexical acquisition tasks.

The general chart mining technique can easily be

adapted to learn other challenging linguistic phe-

nomena, such as the countability of nouns (Bald-

win and Bond, 2003), subcategorization properties

of verbs or nouns (Korhonen, 2002), and general

multiword expression (MWE) extraction (Baldwin

and Kim, 2009). With MWE extraction, e.g., even

though some MWEs are fixed and have no internal

syntactic variability, such as ad hoc, there is a very

large proportion of idioms that allow various de-

grees of internal variability, and with a variable num-

ber of elements. For example, the idiom spill the

beans allows internal modification (spill mountains

of beans), passivisation (The beans were spilled in

the latest edition of the report), topicalisation (The

beans, the opposition spilled), and so forth (Sag et

al., 2002). In general, however, the exact degree of

variability of an idiom is difficult to predict (Riehe-

mann, 2001). The chart mining technique we pro-

pose here, which makes use of partial parse results,

may facilitate the automatic recognition task of even

more flexible idioms, based on the encouraging re-

sults for VPCs.

The main advantage, though, of chart mining is

that parsing with precision grammars does not any

longer have to assume complete coverage, as has

traditionally been the case. As an immediate con-

sequence, the possibility of applying our chart min-

ing technique to evolving medium-sized grammars

makes it especially interesting for lexical acquisi-
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Task VPC Type
Naı̈ve Baseline Charniak Parser Chart-Mining

P R F P R F P R F

GOLD VPC

Intrans-VPC 0.300 0.018 0.034 0.549 0.753 0.635 0.845 0.621 0.716

Trans-VPC 0.676 0.348 0.459 0.829 0.648 0.728 0.877 0.956 0.915

All 0.576 0.236 0.335 0.691 0.686 0.688 0.875 0.859 0.867

FULL

Intrans-VPC 0.060 0.018 0.028 0.102 0.593 0.174 0.153 0.155 0.154

Trans-VPC 0.083 0.348 0.134 0.179 0.448 0.256 0.179 0.362 0.240

All 0.080 0.236 0.119 0.136 0.500 0.213 0.171 0.298 0.218

VPC 0.123 0.348 0.182 0.173 0.782 0.284 0.259 0.332 0.291

Table 3: Results for the different methods over the three VPC extraction tasks detailed in Table 2

tion over low-density languages, for instance, where

there is a real need for rapid-prototyping of language

resources.

The chart mining approach we propose in this

paper is couched in the bottom-up chart parsing

paradigm, based exclusively on passive edges. As

future work, we would also like to look into the

top-level active edges (those active edges that are

never completed), as an indication of failed assump-

tions. Moreover, it would be interesting to investi-

gate the applicability of the technique in other pars-

ing strategies, e.g., head-corner or left-corner pars-

ing. Finally, it would also be interesting to in-

vestigate whether by using the features we acquire

from chart mining enhanced with information on the

prevalence of certain patterns, we could achieve per-

formance improvements over broader-coverage tree-

bank parsers such as the Charniak parser.

6 Conclusion

We have proposed a chart mining technique for lex-

ical acquisition based on partial parsing with preci-

sion grammars. We applied the proposed method

to the task of extracting English verb particle con-

structions from a prescribed set of corpus instances.

Our results showed that simple unlexicalised fea-

tures mined from the chart can be used to effec-

tively extract VPCs, and that the model outperforms

a probabilistic baseline and the Charniak parser at

VPC extraction.
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