
Proceedings of NAACL HLT 2009: Demonstrations, pages 5–8,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Building Conversational Agents with Basilica

Rohit Kumar Carolyn P. Rosé
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

rohitk@cs.cmu.edu cprose@cs.cmu.edu

Abstract

Basilica is an event-driven software architec-
ture for creating conversational agents as a
collection of reusable components. Software
engineers and computer scientists can use this
general architecture to create increasingly so-
phisticated conversational agents. We have
developed agents based on Basilica that have
been used in various application scenarios and
foresee that agents build on Basilica can cater
to a wider variety of interactive situations as
we continue to add functionality to our archi-
tecture.

1 Introduction

Conversational Interfaces apply the metaphor of
agent to an interface which allows the user to con-
versationally interact with the machine using natu-
ral language through speech or text. The current
state of the art in the area of conversational inter-
faces is largely dominated by spoken dialog sys-
tems (SDS). These SDS are most often used for
the purpose of accessing information from a data-
base over the telephone. Other common applica-
tions of conversational agents include computer
aided instruction (CAI) and human-robot interac-
tion (HRI).

Conversational Agents in most of today’s SDS,
CAI and HRI are designed to work within the
scope of specific task domains which allows the
scientists and engineers working on such systems
to ensure satisfactory and relevant interaction with
the user most of the time. Within the task domain,
such agents can display intelligent interactive be-
havior like helping the user use the interface, ask-

ing remedial questions (Bohus and Rudnicky,
2005), shaping the user behavior (Tomko and Ro-
senfeld, 2004) by using alternative phrasing of ut-
terances, responding to user affect (D’Mello et al.,
2008) through text, voice and gesture, engaging the
user through the display of presence via backchan-
nels (Ward, 1996) and embodiment (Cassell et al.,
1999).

As more and more of these intelligent interac-
tive agents get built for many task domains (Raux
et al., 2005; Bohus et al., 2007; Gockley et al.,
2005; Amtrak Julie; …) that surround our every-
day life, we observe a gradual transition in the use
of the conversational agent technology to be a form
of situated interaction. One of the characteristic
requirements of this transition towards ubiquity of
such interactive agents is the capability to sense
and trigger behavior in a context sensitive way.

In most conversational interfaces today, the on-
ly trigger used by the agents is that of initiation of
conversation usually by sensing user presence
through a telephone call, proximity detection or
user login into a virtual environment. The initiation
event is followed by a scripted task-oriented con-
versation with the agent. These scripts could be
fairly complex depending on the representational
formalism underlying the script. Most of the com-
mon software architectures/platforms used to
create conversational agents like TellMe Studio,
Voxeo Prophecy, Olympus (Bohus et al., 2007),
DIPPER (Bos and Oka, 2003), etc. use one or more
of these presence sensing techniques and one of the
many existing scripting languages including
VoiceXML, SALT, TuTalk (Jordan et al., 2007)
and Ravenclaw (Bohus and Rudnicky, 2003) task
specification language among others.

However, in our recent work on building con-
versational agents situated in collaborative learning

5

environments, we have discovered the need for a
software architecture for creating agents that pers-
ist in an interactive environment in which human
users interact with these agents as well as with
each other. In this situation, the agents need to be
able to sense many kinds of triggers at many points
of time and choose to respond to some of those
triggers through a variety of modalities including
conversation. This observation was the motivation
for creating Basilica which is our architecture for
building conversational agents. In section 2, we
talk more about the intricacies of Basilica and
agents built on this architecture. Section 3 de-
scribes some of application scenarios in which we
are using Conversational Agents based on Basilica.

2 Basilica Architecture

In order to meet the need for an architecture that
enables development of Conversational Agents as
a collection of behavioral components that can
sense triggers and respond to those appropriately,
we created the Basilica architecture.

In this architecture, we model sensing and res-
ponding as two types of components that make up
conversational agents. The sensing components
referred to as Filters observe stimuli from various
kinds of input sources and other components. They
can also generate stimuli for other components. On
the other hand, Actor components generate respon-
sive behavior that may be observed the user(s) and
other components. Basilica provides the software
elements required to tie Filters and Actors together
through Connections that carry Events over them.
We think that many of the state of the art intelli-
gent behaviors listed in section 1 can be imple-
mented as dyads of filter and actor components.

The minimal set of behavioral component
classes listed above can easily be extended. For
example, certain agent designs may need memory
components and coordination components which
bridge across multiple actors or filters that do not
necessarily share events with each others. Timer
components may be used to generate regulated
stimuli. Besides belonging to one of these classes
of components, certain components may act as
wrappers to external systems. For example, we use
wrapper components to integrate TuTalk dialog
management system (Jordan et al., 2007) for some
of the instructive behavior exhibited by our agents.
Also, certain components act as wrappers to the

environment in which the agent is present. These
wrappers help in easily integrating the same agent
with multiple environments without having to
change any underlying components except the
wrappers to the environment.

We believe that fairly intelligent conversational
agents can be built for situated interaction applica-
tions by incrementally building a large number of
behavioral components. Each of these components
represent a decomposition of the agent’s perceptive
and cognitive capabilities. Among the agents we
have built using Basilica, we observe that some of
these capabilities are common across agents.
Hence the corresponding behavioral components
get re-used in many cases. Some instances of com-
ponent re-use are mentioned in Section 3.

Note that recently there has been other work on
modeling conversational agents as a decomposition
of components. Jaspis (Turunen and Hakulinen,
2003) models the agent as a collection of manag-
ers, agents and evaluators which synchronize with
each other through transactions. RIME (Nakano et
al., 2008) distributes cognitive capabilities across a
collection of experts of two types. However, eva-
luators and agents are configured as a pile of com-
ponents whereas our filters and actors are
configured as a network. Hence, designing conver-
sational agents with Basilica gives the flexibility to
change the network topology. Also, while Jaspis
agents are stateless, actors in our architecture need
not be stateless. In other work on event-based mul-
ti-layered architectures (Raux and Eskenazi, 2007),
events are used for communication between layers
as a mean to provide higher reactive compared to
pipeline architectures. While we share this motiva-
tion, definition of events is extended here as events
are used for all kinds of communication, coordina-
tion and control in Basilica.

3 Current Application Scenarios

In 2008, we built three conversational agents to
support learners in collaborative learning environ-
ments. Also, we are currently using Basilica to de-
velop a cross-lingual assistive agent to support
non-Spanish speaking 911 dispatchers in the
southern states of the US. In this section, we will
discuss these four conversational agents briefly.

CycleTalk is an intelligent tutoring system that
helps college sophomores studying Thermodynam-
ics learn about principles of designing Steam

6

cycles. In our recent experiments, we have studied
the effectiveness of conversational agents in this
intelligent tutoring system (Kumar et al., 2007;
Chaudhuri et al., 2008). Student use the system
both individually and in pairs. The conversational
agent monitors student interaction in a chat room
as the students work on solving a design problem.
The tutor provides the students with hints to help
touch upon all the underlying concepts while the
students work on the design exercise. Also the
agent brings up reflective dialogs when it detects a
relevant topic in the students conversation. One of
the problems we observed over the years with the
use of instructional dialogs in collaborative envi-
ronments is that the students tend to ignore the tu-
toring agent if it interrupts the students when they
are talking to each other. Basilica helped us in re-
solving this problem by implementing a compo-
nent that tells that student that help is available on
the topic they are talking about and they can ask
for the dialog support when they are ready. Basili-
ca gives the flexibility to change the intervention
strategy used by the agent when it is speaking with
more than one student.

In another version of this system, the tutoring
agent prompted the students with some motiva-
tional prompts occasionally as we observed that
many of the students found the design exercise
very demanding to complete in the time permitted
for this lab exercise. We found that the use of mo-
tivational prompts improved the student’s attitude
towards the automated agent.

We developed another agent to help college
level mathematics students working on problem
solving. This agent operates in a collaborative en-
vironment which includes a whiteboard. As in the
case with the CycleTalk agent, the agent used here
also helps the students with hints and dialogs. The
component required for those behaviors were re-
used as-is with modifications only their configura-
tion files. Besides these behaviors, the agent coor-
dinates the problem solving sessions for the team
by presenting the team with problems as images
placed on the whiteboard and helping the students
stay on track by answering questions about the
amount of time left in the problem solving session.

Recently, we modified the environment wrap-
per components of our CycleTalk agent and inte-
grated them with a SecondLife application
(Weusijana et al., 2008). This integration helps

developers of conversational agents create interac-
tive agents in the SecondLife virtual environment.

Finally, in a currently ongoing project, we are
building an agent that would interpret Spanish ut-
terances from a distressed 9-1-1 caller and work
with a human dispatcher who does not know Span-
ish to attend to the call. We model the agent in this
scenario after a human translator who does not just
translate the caller’s input to English and vice ver-
sa. Instead the translator partners with the dis-
patcher to provide service to the caller. Partnering
conversational agents with a human user to help
another human user in a different role is a novel
application of interactive agents.

4 Building Agents using Basilica

Figure 1. Components of the CycleTalk Agent

Building conversational agents using Basilica in-
volves the process of representing the desired
agent as a decomposition of components. Figure 1
above shows the components that make up the
CycleTalk conversational agent we mentioned in
Section 3. The rectangles represent Filters and the
parallelograms represent Actors. Connections are
shown as solid lines. In a detailed design, these
lines are annotated with the events they carry.

Once an agent is designed, the agents and filters
required for the implementation of the agent can be
either re-used from the pre-existing components of
Basilica or implemented as Java objects that ex-
tend the corresponding component class. Often the
programming task is limited to implementing han-
dlers and generators for the events received and
sent out by the component. Theoretically, the va-
lidity of a component can be verified if it can han-
dle and generate all the events as specified in the
design diagram.

As we continue to develop more conversational
agents on this architecture, we intend to create de-
velopment tools which would easily translate a

7

design like Figure 1 to the implementation and fa-
cilitate validation and debugging of the agent.

5 Demonstration Outline

The demonstration of our architecture will give the
audience an opportunity to interact with the agents
we have described in section 3 and discuss how we
can design such agents using Basilica. We will
have a poster to aid the discussion along with abili-
ty to probe into the code underlying the design of
these agents. Attendees will be able to understand
the process involved in building agents with Basi-
lica and assess the effort required. Additionally, if
we have any specialized development tools to au-
tomatically map agent design as described in Sec-
tion 4 to Java code, we will demonstrate those
tools. Up to date information about Basilica can be
found at http://basilica.rohitkumar.net/wiki/

Acknowledgements

This work is supported by NSF REESE/REC grant
number 0723580.

References

Dan Bohus and Alex Rudnicky, 2005. Error Handling

in the RavenClaw dialog management architecture,
HLT-EMNLP-2005, Vancouver

Stefanie Tomko and Roni Rosenfeld, 2004. Shaping
Spoken Input in User-Initiative Systems. Interspeech
2004, Jeju, Korea

Antoine Raux, Brian Langner, Dan Bohus, Alan Black,
and Maxine Eskenazi, 2005. Let's Go Public! Taking
a Spoken Dialog System to the Real World, Inters-
peech 2005, Lisbon, Portugal

Dan Bohus, Sergio Grau, David Huggins-Daines, Ven-
katesh Keri, Gopala Krishna A., Rohit Kumar, An-
toine Raux, and Stefanie Tomko, 2007. Conquest -
an Open-Source Dialog System for Conferences,
HLT-NAACL 2007, Rochester, NY

Amtrack Julie, http://www.networkworld.com/news/
2003/0619julie.html

Justin Cassell, Timothy Bickmore, Billinghurst, M.,
Campbell, L., Chang, K., Vilhjálmsson, H. and Yan,
H., 1999. Embodiment in Conversational Interfaces:
Rea, CHI'99, Pittsburgh, PA

Nigel Ward, 1996. Using Prosodic Clues to decide
when to produce Back-channel Utterances, ICSLP 96

Sidney D' Mello, Tanner Jackson, Scotty Craig, Brent
Morgan, Patrick Chipman, Holly White, Natalie Per-
son, Barry Kort, Rana el Kaliouby, Rosalid W. Pi-
card and Arthur Graesser, 2008, AutoTutor Detects

and Responds to Learners Affective and Cognitive
States, Workshop on Emotional and Cognitive Is-
sues, ITS 2008, Montreal

Rachel Gockley, Allison Bruce, Jodi Forlizzi, Marek
Michalowski, Anne Mundell, Stephanie Rosenthal,
Brennan Sellner, Reid Simmons, Kevin Snipes, Alan
C. Schultz and Jue Wang, 2005. Designing Robots
for Long-Term Social Interaction, IROS 2005

Dan Bohus, Antoine Raux, Thomas Harris, Maxine
Eskenazi and Alex Rudnicky, 2007. Olympus: an
open-source framework for conversational spoken
language interface research HLT-NAACL 2007
Workshop on Bridging the Gap: Academic and In-
dustrial Research in Dialog Technology, Rochester,
NY

Johan Bos and Tetsushi Oka, 2003. Building Spoken
Dialogue Systems for Believable Characters, 7th
workshop on the semantics & pragmatics of dialogue

TellMe, https://studio.tellme.com/
Voxeo Prophecy, http://www.voxeo.com/products/
Pamela Jordan, Brian Hall, Michael Ringenberg, Yue

Cui, Carolyn P. Rosé, 2007. Tools for Authoring a
Dialogue Agent that Participates in Learning Stu-
dies, AIED 2007

Dan Bohus and Alex Rudnicky, 2003. RavenClaw: Di-
alog Management Using Hierarchical Task Decom-
position and an Expectation Agenda, Eurospeech
2003, Geneva, Switzerland

Markku Turunen, Jaakko Hakulinen, 2003. Jaspis - An
Architecture for Supporting Distributed Spoken Di-
alogues, Eurospeech’ 2003, Geneva, Switzerland

Mikio Nakano, Kotaro Funakoshi, Yuji Hasegawa, Hi-
roshi Tsujino, 2008. A Framework for Building Con-
versational Agents Based on a Multi-Expert Model,
9th SigDial Workshop on Discourse and Dialog, Co-
lumbus, Ohio

Antoine Raux and Maxine Eskenazi, 2007. A Multi-
Layer Architecture for Semi-Synchronous Event-
Driven Dialogue Management, ASRU 2007, Kyoto

Rohit Kumar, Carolyn Rose, Mahesh Joshi, Yi-Chia
Wang, Yue Cui, Allen Robinson, Tutorial Dialogue
as Adaptive Collaborative Learning Support, 13th
AIED 2007, Los Angeles, California

Sourish Chaudhuri, Rohit Kumar, Carolyn P. Rose,
2008. It’s not easy being green - Supporting Colla-
borative Green Design Learning, ITS 2008, Montreal

Baba Kofi A. Weusijana, Rohit Kumar, Carolyn P.
Rose, 2008. MultiTalker: Building Conversational
Agents in Second Life using Basilica, Second Life
Education Community Convention, Purple Strand:
Educational Tools and Products, 2008, Tampa, FL

8

