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Abstract 

Relation extraction is a challenging task in 

natural language processing. Syntactic 

features are recently shown to be quite 

effective for relation extraction. In this 

paper, we generalize the state of the art 

syntactic convolution tree kernel 

introduced by Collins and Duffy. The 

proposed generalized kernel is more 

flexible and customizable, and can be 

conveniently utilized for systematic 

generation of more effective application 

specific syntactic sub-kernels. Using the 

generalized kernel, we will also propose a 

number of novel syntactic sub-kernels for 

relation extraction. These kernels show a 

remarkable performance improvement over 

the original Collins and Duffy kernel in the 

extraction of ACE-2005 relation types. 

1 Introduction 

One of the contemporary demanding NLP tasks is 

information extraction, which is the procedure of 

extracting structured information such as entities, 

relations, and events from free text documents. As 

an information extraction sub-task, semantic 

relation extraction is the procedure of finding 

predefined semantic relations between textual 

entity mentions. For instance, assuming a semantic 

relation with type Physical and subtype Located 

between an entity of type Person and another 

entity of type Location, the sentence "Police 

arrested Mark at the airport last week." conveys 

two mentions of this relation between "Mark" and 

"airport" and also between "police" and "airport" 

that can be shown in the following format. 

Phys.Located(Mark, airport) 

Phys.Located(police, airport) 

 Relation extraction is a key step towards 

question answering systems by which vital 

structured data is acquired from underlying free 

text resources. Detection of protein interactions in 

biomedical corpora (Li et al., 2008) is another 

valuable application of relation extraction. 

 Relation extraction can be approached by a 

standard classification learning method. We 

particularly use SVM (Boser et al., 1992; Cortes 

and Vapnik, 1995) and kernel functions as our 

classification method. A kernel is a function that 

calculates the inner product of two transformed 

vectors of a high dimensional feature space using 

the original feature vectors as shown in eq. 1. 

)().(),( jiji XXXXK φφ=  (1) 

Kernel functions can implicitly capture a large 

amount of features efficiently; thus, they have been 

widely used in various NLP tasks.  

 Various types of features have been exploited so 

far for relation extraction. In (Bunescu and 

Mooney, 2005b) sequence of words features are 

utilized using a sub-sequence kernel. In (Bunescu 

and Mooney, 2005a) dependency graph features 

are exploited, and in (Zhang et al., 2006a) syntactic 

features are employed for relation extraction. 

Although in order to achieve the best performance, 

it is necessary to use a proper combination of these 

features (Zhou et al., 2005), in this paper, we will 

concentrate on how to better capture the syntactic 

features for relation extraction. 
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 In CD’01 (Collins and Duffy, 2001) a 

convolution syntactic tree kernel is proposed that 

generally measures the syntactic similarity 

between parse trees. In this paper, a generalized 

version of CD’01 convolution tree kernel is 

proposed by associating generic weights to the 

nodes and sub-trees of the parse tree. These 

weights can be used to incorporate domain 

knowledge into the kernel and make it more 

flexible and customizable. The generalized kernel 

can be conveniently used to generate a variety of 

syntactic sub-kernels (including the original CD’01 

kernel), by adopting appropriate weighting 

mechanisms.  

 As a result, in this paper, novel syntactic sub-

kernels are generated from the generalized kernel 

for the task of relation extraction. Evaluations 

demonstrate that these kernels outperform the 

original CD’01 kernel in the extraction of ACE-

2005 main relation types  

 The remainder of this paper is structured as 

follows. In section 2, the most related works are 

briefly reviewed. In section 3, CD’01 tree kernel is 

described. The proposed generalized convolution 

tree kernel is explained in section 4 and its 

produced sub-kernels for relation extraction are 

illustrated in section 5. The experimental results 

are discussed in section 6. Our work is concluded 

in section 7 and some possible future works are 

presented in section 8. 

2 Related Work 

In (Collins and Duffy, 2001), a convolution parse 

tree kernel has been introduced. This kernel is 

generally designed to measure syntactic similarity 

between parse trees and is especially exploited for 

parsing English sentences in their paper. Since 

then, the kernel has been widely used in different 

applications such as semantic role labeling 

(Moschitti, 2006b) and relation extraction (Zhang 

et al., 2006a; Zhang et al., 2006b; Zhou et al., 

2007; Li et al. 2008). 

 For the first time, in (Zhang et al., 2006a), this 

convolution tree kernel was used for relation 

extraction. Since the whole syntactic parse tree of 

the sentence that holds the relation arguments 

contains a plenty of misleading features, several 

parse tree portions are studied to find the most 

feature-rich portion of the syntactic tree for 

relation extraction, and Path-Enclosed Tree (PT) is 

finally found to be the best performing tree 

portion. PT is a portion of parse tree that is 

enclosed by the shortest path between the two 

relation arguments. Moreover, this tree kernel is 

combined with an entity kernel to form a 

reportedly high quality composite kernel in (Zhang 

et al., 2006b). 

3 CD’01 Convolution Tree Kernel  

In (Collins and Duffy, 2001), a convolution tree 

kernel has been introduced that measures the 

syntactic similarity between parse trees. This 

kernel computes the inner products of the 

following feature vector. 
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Each feature of this vector is the occurrence count 

of a sub-tree type in the parse tree decayed 

exponentially by the parameter λ . Without this 

decaying mechanism used to retain the kernel 

values within a fairly small range, the value of the 

kernel for identical trees becomes far higher than 

its value for different trees. Term isize  is defined 

to be the number of rules or internal nodes of the i
th
 

sub-tree type. Samples of such sub-trees are shown 

in Fig. 1 for a simple parse tree. Since the number 

of sub-trees of a tree is exponential in its size 

(Collins and Duffy, 2001), direct inner product 

calculation is computationally infeasible. 

Consequently, Collins and Duffy (2001) proposed 

an ingenious kernel function that implicitly 

calculates the inner product in )( 21 NNO ×  time 

on the trees of size 1N  and 2N . 

4 A Generalized Convolution Tree 

Kernel  

In order to describe the kernel, a feature vector 

over the syntactic parse tree is firstly defined in eq. 

(3), in which the i
th
 feature equals the weighted 

sum of the number of instances of sub-tree type i
th
 

in the tree. 

Function )(nI
isubtree

 is an indicator function that 

returns 1 if the 
isubtree  occurs with its root at 

node n and 0 otherwise. As described in eq. (4), 
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function tw(T) (which stands for "tree weight") 

assigns a weight to a tree T which is equal to the 

product of the weights of all its nodes. 
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Figure 1. Samples of sub-trees used in convolution tree 

kernel calculation. 

 

 Since each node of the whole syntactic tree can 

either happen as an internal node or as an external 

node of a supposed sub-tree (presuming its 

existence in the sub-tree), two types of weights are 

respectively associated to each node by the 

functions )(ninw  and )(nenw  (which respectively 

stand for "internal node weight" and "external node 

weight"). For instance, in Fig. 1, the node with 

label PP is an external node for sub-trees (1) and 

(7) while it is an internal node of sub-trees (3) and 

(4). 
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(5) 

 As shown in eq. (5), A similar procedure to 

(Collins and Duffy, 2001) can be employed to 

develop a kernel function for the calculation of dot 

products on H(T) vectors. According to eq. (5) the 

calculation of the kernel finally leads to the sum of 

a ),( 21 nnCgc  function over all tree node pairs of T1 

and T2. Function ),( 21 nnCgc  is the weighted sum of 

the common sub-trees rooted at 1n  and n2, and can 

be recursively computed in a similar way to 

function ),( 21 nnC  of (Collins and Duffy, 2001) as 

follows. 

(1) if the production rules of nodes n1 and n2 are 

different then 0),( 21 =nnCgc
 

(2) else if n1 and n2 are the same pre-terminals (the 

same part of speeches) then 
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(3) else if both n1 and n2 have the same production 

rules then 
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 In the first case, when the two nodes represent 

different production rules they can't accordingly 

have any sub-trees in common. In the second case, 

there is exactly one common sub-tree of size two. 

It should be noted that all the leaf nodes of the tree 

(or words of the sentence) are considered identical 

in the calculation of the tree kernel. The value of 

the function in this case is the weight of this 

common sub-tree. In the third case, when the nodes 

generally represent the same production rules the 

weighted sum of the common sub-trees are 

calculated recursively. The equation holds because 

the existence of common sub-trees rooted at n1 and 

n2 implies the existence of common sub-trees 

rooted at their corresponding children, which can 

be combined multiplicatively to form their parents' 

common sub-trees. 

 Due to the equivalent procedure of kernel 

calculation, this generalized version of the tree 

kernel preserves the nice )( 21 NNO ×  time 

complexity property of the original kernel. It is 

worthy of note that in (Moschitti, 2006b) a sorting 

based method is proposed for the fast 

implementation of such tree kernels that reduces 

the average running time to )( 21 NNO + . 

 The generalized kernel can be converted to 

CD’01 kernel by defining λ=)(ninw  and 

1)( =nenw . Likewise, other definitions can be 

utilized to produce other useful sub-kernels. 
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5 Kernels for Relation Extraction 

In this section, three sub-kernels of the generalized 

convolution tree kernel will be proposed for 

relation extraction. Using the embedded weights of 

the generalized kernel, these sub-kernels 

differentiate among sub-trees based on their 

expected relevance to semantic relations. More 

specifically, the sub-trees are weighted according 

to how their nodes interact to the arguments of the 

relation. 

5.1 Argument Ancestor Path Kernel (AAP) 

Definition of weighting functions is shown in eq. 

(6) and (7). Parameter 10 ≤< α  is a decaying 

parameter similar to λ . 
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This weighting method is equivalent to applying 

CD’01 tree kernel (by setting
2αλ = ) on a portion 

of the parse tree that exclusively includes the 

arguments ancestor nodes and their direct children. 

5.2 Argument Ancestor Path Distance Kernel 

(AAPD) 

DISTMAX

nAAPDistnAAPDistMin

ninw _
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(8) 

DISTMAX
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)( α=
 

(9) 

Definition of weighting functions is shown in eq. 

(8) and (9). Both functions have identical 

definitions for this kernel. 

Function AAPDist(n,arg) calculates the distance of 

the node n from the argument arg on the parse tree 

as illustrated by Fig. 2. MAX_DIST is used for 

normalization, and is the maximum of 

AAPDist(n,arg) in the whole tree. In this way, the 

closer a tree node is to one of the arguments 

ancestor path, the less it is decayed by this 

weighting method.  

 

 

 

 

 

 

5.3 Threshold Sensitive Argument Ancestor 

Path Distance Kernel (TSAAPD) 

This kernel is intuitively similar to the previous 

kernel but uses a rough threshold based decaying 

technique instead of a smooth one. The definition 

of weighting functions is shown in eq. (10) and 

(11). Both functions are again identical in this case.   
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6 Experiments 

6.1 Experiments Setting 

The proposed kernels are evaluated on ACE-2005 

multilingual corpus (Walker et al., 2006). In order 

to avoid parsing problems, the more formal parts 

of the corpus in "news wire" and "broadcast news" 

sections are used for evaluation as in (Zhang et al., 

2006b). 

 
 

AAPDist(airport, NP)=1 
 

S 

NN 

airport 

NP VP 

NNP 

Police 

VBN 

arrested 

NP 

NP PP 

IN NP 

DT NN 

NNP 

Mark at 

the 

NP 

JJ 

last week 

Figure 2. The syntactic parse tree of the sentence 

"Police arrested Mark at the airport last week" that 

conveys a Phys.Located(Mark, airport) relation. The 

ancestor path of the argument "airport" (dashed 

curve) and the distance of the node NP of "Mark" 

from it (dotted curve) is shown. 
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PER-SOC ART GEN-AFF ORG-AFF PART-WHOLE PHYS 

CD’01 0.62 0.51 0.09 0.43 0.30 0.32 

AAP 0.58 0.49 0.10 0.43 0.28 0.36 

AAPD 0.70 0.50 0.12 0.43 0.29 0.29 

TSAAPD-0 0.63 0.48 0.11 0.43 0.30 0.33 

TSAAPD-1 0.73 0.47 0.11 0.45 0.28 0.33 

Table 1: The F1-Measure value is shown for every kernel on each ACE-2005 main relation type. For every relation 

type the best result is shown in bold font. 

 

 We have used LIBSVM (Chang and Lin 2001) 

java source for the SVM classification and 

Stanford NLP package
1
 for tokenization, sentence 

segmentation and parsing.  

 Following [Bunescu and Mooney, 2007], every 

pair of entities within a sentence is regarded as a 

negative relation instance unless it is annotated as a 

positive relation in the corpus. The total number of 

negative training instances, constructed in this 

way, is about 20 times more than the number of 

annotated positive instances. Thus, we also 

imposed the restriction of maximum argument 

distance of 10 words. This constraint eliminates 

half of the negative constructed instances while 

slightly decreases positive instances. Nevertheless, 

since the resulted training set is still unbalanced, 

we used LIBSVM weighting mechanism. 

Precisely, if there are P positive and N negative 

instances in the training set, a weight value of 

PN /  is used for positive instances while the 

default weight value of 1 is used for negative ones. 

 A binary SVM is trained for every relation type 

separately, and type compatible annotated and 

constructed relation instances are used to train it. 

For each relation type, only type compatible 

relation instances are exploited for training. For 

example to learn an ORG-AFF relation (which 

applies to (PER, ORG) or (ORG, ORG) argument 

types) it is meaningless to use a relation instance 

between two entities of type PERSON. Moreover, 

the total number of training instances used for 

training every relation type is restricted to 5000 

instances to shorten the duration of the evaluation 

process. The reported results are achieved using a 

5-fold cross validation method. 

 The kernels AAP, AAPD and TSAAPD-0 

(TSAAPD with threshold = 0) and TSAAPD-1 

(TSAAPD with threshold = 1) are compared with 

CD’01 convolution tree kernel. All the kernels 

                                                           
1 http://nlp.stanford.edu/software/index.shtml 

except for AAP are computed on the PT portion 

described in section 2. AAP is computed over the 

MCT tree portion which is also proposed by 

(Zhang et al., 2006a) and is the sub-tree rooted at 

the first common ancestor of relation arguments.  

 For the proposed kernels α  is set to 0.44 which 

is tuned on a development set that contained 5000 

instances of type PHYS. The λ  parameter of 

CD’01 kernel is set to 0.4 according to (Zhang et 

al., 2006a). The C parameter of SVM classification 

is set to 2.4 for all the kernels after tuning it 

individually for each kernel on the mentioned 

development set. 

6.2 Experiments Results 

The results of the experiments are shown in Table 

1. The proposed kernels outperform the original 

CD’01 kernel in four of the six relation types. The 

performance of TSAAPD-1 is especially 

remarkable because it is the best kernel in ORG-

AFF and PER-SOC relations. It particularly 

performs very well in the extraction of PER-SOC 

relation with an F1-measure of 0.73. It should be 

noted that the general low performance of all the 

kernels on the GEN-AFF type is because of its 

extremely small number of annotated instances in 

the training set (40 in 5000). The AAPD kernel has 

the best performance with a remarkable 

improvement over the Collins kernel in GEN-AFF 

relation type. 

 The results clearly demonstrate that the nodes 

closer to the ancestor path of relation arguments 

contain the most useful syntactic features for 

relation extraction 

7 Conclusion  

In this paper, we proposed a generalized 

convolution tree kernel that can generate various 

syntactic sub-kernels including the CD’01 kernel. 

Kernel 
Relation 
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The kernel is generalized by assigning weights to 

the sub-trees. The weight of a sub-tree is the 

product of the weights assigned to its nodes by two 

types of weighting functions. In this way, impacts 

of the tree nodes on the kernel value can be 

discriminated purposely based on the application. 

Context information can also be injected to the 

kernel via context sensitive weighting mechanisms. 

 Using the generalized kernel, various sub-

kernels can be produced by different definitions of 

the two weighting functions. We consequently 

used the generalized kernel for systematic 

generation of useful kernels in relation extraction. 

In these kernels, the closer a node is to the relation 

arguments ancestor paths, the less it is decayed by 

the weighting functions. Evaluation on the ACE-

2005 main relation types demonstrates the 

effectiveness of the proposed kernels. They show 

remarkable performance improvement over CD’01 

kernel.  

8 Future Work 

Although the path-enclosed tree portion (PT) 

(Zhang et al., 2006a) seems to be an appropriate 

portion of the syntactic tree for relation extraction, 

it only takes into account the syntactic information 

between the relation arguments, and discards many 

useful features (before and after the arguments 

features). It seems that the generalized kernel can 

be used with larger tree portions that contain 

syntactic features before and after the arguments, 

because it can be more easily targeted to related 

features. 

 Currently, the proposed weighting mechanisms 

are solely based on the location of the tree nodes in 

the parse tree; however other useful information 

such as labels of nodes can also be used in 

weighting. 

 Another future work can be utilizing the 

generalized kernel for other applicable NLP tasks 

such as co-reference resolution. 
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