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Abstract

In this paper, we discuss the benefits of tightly
coupling speech recognition and search com-
ponents in the context of a speech-driven
search application. We demonstrate that by in-
corporating constraints from the information
repository that is being searched not only im-
proves the speech recognition accuracy but
also results in higher search accuracy.

1 Introduction

With the exponential growth in the use of mobile de-
vices in recent years, the need for speech-driven in-
terfaces is becoming apparent. The limited screen
space and soft keyboards of mobile devices make it
cumbersome to type in text input. Furthermore, by
the mobile nature of these devices, users often would
like to use them in hands-busy environments, ruling
out the possibility of typing text.

In this paper, we focus on the problem of speech-
driven search to access information repositories us-
ing mobile devices. Such an application typically
uses a speech recognizer (ASR) for transforming the
user’s speech input to text and a search component
that uses the resulting text as a query to retrieve
the relevant documents from the information reposi-
tory. For the purposes of this paper, we use the busi-
ness listings containing the name, address and phone
number of businesses as the information repository.

Most of the literature on speech-driven search ap-
plications that are available in the consumer mar-
ket (Acero et al., 2008; Bacchiani et al., 2008;
VLingo FIND, 2009) have quite rightly emphasized
the importance of the robustness of the ASR lan-
guage model and the data needed to build such a ro-
bust language model. We acknowledge that this is a
significant issue for building such systems, and we
provide our approach to creating a language model.

However, in contrast to most of these systems that
treat speech-driven search to be largely an ASR
problem followed by a Search problem, in this pa-
per, we show the benefits of tightly coupling ASR
and Search tasks and illustrate techniques to im-
prove the accuracy of both components by exploit-
ing the co-constraints between the two components.

The outline of the paper is as follows. In Sec-
tion 2, we discuss the set up of our speech-driven
application. In Section 3, we discuss our method to
integrating the speech and search components. We
present the results of the experiments in Section 4
and conclude in Section 5.

2 Speech-driven Search

We describe the speech-driven search application in
this section. The user of this application provides
a speech utterance to a mobile device intending to
search for the address and phone number of a busi-
ness. The speech utterance typically contains a busi-
ness name, optionally followed by a city and state
to indicate the location of the business (e.g. pizza
hut near urbana illinois.). User input with a busi-
ness category (laundromats in madison) and without
location information (hospitals) are some variants
supported by this application. The result of ASR is
used to search a business listing database of over 10
million entries to retrieve the entries pertinent to the
user query.

The ASR used to recognize these utterances in-
corporates an acoustic model adapted to speech col-
lected from mobile devices and a trigram language
model that is built from over 10 million text query
logs obtained from the web-based text-driven ver-
sion of this application. The 1-best speech recogni-
tion output is used to retrieve the relevant business
listing entries.
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3 Tightly coupling ASR and Search
As mentioned earlier, most of the speech-driven
search systems use the the 1-best output from the
ASR as the query for the search component. Given
that ASR 1-best output is likely to be erroneous,
this serialization of the ASR and search components
might result in sub-optimal search accuracy. As will
be shown in our experiments, the oracle word/phrase
accuracy using n-best hypotheses is far greater than
the 1-best output. However, using each of the n-
best hypothesis as a query to the search compo-
nent is computationally sub-optimal since the strings
in the n-best hypotheses usually share large subse-
quences with each other. A lattice representation
of the ASR output, in particular, a word-confusion
network (WCN) transformation of the lattice, com-
pactly encodes the n-best hypothesis with the flexi-
bility of pruning alternatives at each word position.
An example of a WCN is shown in Figure 1. In or-
der to obtain a measure of the ambiguity per word
position in the WCN, we define the (average) arc
density of a WCN as the ratio of the total number
of arcs to the number of states in the WCN. As can
be seen, with very small increase in arc density, the
number of paths that are encoded in the WCN can
be increased exponentially. In Figure 2, we show
the improvement in oracle-path word and phrase ac-
curacies as a function of the arc density for our data
set. Oracle-path is a path in the WCN that has the
least edit-distance (Levenshtein, 1966) to the refer-
ence string. It is interesting to note that the oracle
accuracies can be improved by almost 10% absolute
over the 1-best accuracy with small increase in the
arc density.
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Figure 1: A sample word confusion network

3.1 Representing Search Index as an FST
In order to exploit WCNs for Search, we have im-
plemented our own search engine instead of using an
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Figure 2: Oracle accuracy graph for the WCNs at differ-
ent arc densities
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Figure 3: An example of an FST representing the search
index

off-the-shelf search engine such as Lucene (Hatcher
and Gospodnetic., 2004). We index each business
listing (d) in our data that we intend to search using
the words (wd) in that listing. The pair (wd, d) is
assigned a weight (c(wd,d)) using different metrics,
including the standard tf ∗ idf , as explained below.
This index is represented as a weighted finite-state
transducer (SearchFST) as shown in Figure 3 where
wd is the input symbol, d is the output symbol and
c(wd,d) is the weight of that arc.

3.2 Relevance Metrics
In this section, we describe six different weighting
metrics used to determine the relevance of a docu-
ment for a given query word that we have experi-
mented with in this paper.

idfw: idfw refers to the inverse document fre-
quency of the word, w, which is computed as
ln(D/dw), where D refers to the total number
of documents in the collection, and dw refers to
the total number of documents in the collection
that contain the word, w (Robertson and Jones,
1997; Robertson, 2004).

atfw: atfw refers to average term frequency, which
is computed as cfw/dw (Pirkola et al., 2002).

cfw × idfw: Here cfw refers to the collection fre-
quency, which is simply the total number of oc-
currences of the word, w in the collection.
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atfw × idfw: (Each term as described above).
∑ fw,d

|dw| × idfw: Here fw,d refers to the frequency of
the word, w, in the document, d, whereas |dw|
is the length of the document, d, in which the
word, w, occurs.

cfw∑
|dw| × idfw: (Each term as described above).

3.3 Search
By composing a query (Qfst) (either a 1-best
string represented as a finite-state acceptor, or a
WCN), with the SearchFST, we obtain all the arcs
(wq, dwq , c(wq ,dwq )) where wq is a query word, dwq

is a listing with the query word and, c(wq ,dwq ) is the
weight associated with that pair. Using this informa-
tion, we aggregate the weight for a listing (dq) across
all query words and rank the retrieved listings in the
descending order of this aggregated weight. We se-
lect the top N listings from this ranked list. The
query composition, listing weight aggregation and
selection of top N listings are computed with finite-
state transducer operations.

In Figure 4, we illustrate the result of reranking
the WCN shown in Figure 1 using the search rele-
vance weights of each word in the WCN. It must be
noted that the least cost path1 for the WCN in Fig-
ure 1 is ballys automobiles while the reranked 1-best
output in Figure 4 is audi automobiles. Given that
the user voice query was audi automobiles, the list-
ings retrieved from the 1-best output after reranking
are much more relevant than those retrieved before
reranking, as shown in Table 1.

0 1
audi/2.100

ballys/2.276
2/4

automobiles/0.251

Figure 4: A WCN rescored using word-level search rele-
vance weights.

4 Experiments and Results

We took 852 speech queries collected from users us-
ing a mobile device based speech search application.
We ran the speech recognizer on these queries us-
ing the language model described in Section 2 and
created word-confusion networks such as those il-
lustrated in Figure 1. These 852 utterances were
divided into 300 utterances for the development set
and 552 for the test set.

1We transform the scores into costs and search for minimum
cost paths.

Before rescoring After rescoring
ballys intl auburn audi repair
los angeles ca auburn wa
ballys las vegas audi bellevue repair
las vegas nv bellevue wa
ballys las health spa university audi seattle wa
las vegas nv
ballys cleaners beverly hills audi
palm desert ca los angeles ca
ballys brothers audi independent repairs
yorba linda ca by eurotech livermore ca

Table 1: Listings retrieved for query audi automobiles
before and after ASR WCNs were rescored using search
relevance weights.

4.1 ASR Experiments

The baseline ASR word and sentence (complete
string) accuracies on the development set are 63.1%
and 57.0% while those on the test set are 65.1% and
55.3% respectively.

Metric Word Sent. Scaling AD
Acc. Acc. Factor

idfw 63.1 57.0 10−3 all
cfw × idfw 63.5 58.3 15 ∗ 10−4 1.37
atfw 63.6 57.3 1 all
atfw × idf 63.1 57.0 10−3 all∑ fw,d

|dfw| × idf 63.9 58.3 15 ∗ 10−4 1.25
cfw∑
|dfw|

× idfw 63.5 57.3 1 all

Table 2: Performance of the metrics used for rescoring
the WCNs output by ASR. (AD refers to arc density.)

In Table 2, we summarize the improvements ob-
tained by rescoring the ASR WCNs based on the dif-
ferent metrics used for computing the word scores
according to the search criteria. The largest im-
provement in word and sentence accuracies is ob-
tained by using the rescoring metric:

∑ fw,d

|dfw| × idf .
The word-level accuracy improved from the baseline
accuracy of 63.1% to 63.9% after rescoring while
the sentence-level accuracy improved from 57.0%
to 58.3%. Thus, this rescoring metric, and the cor-
responding pruning AD and the scaling factor was
used to rerank the 552 WCNs in the test set. After
rescoring, on the test set, the word-level accuracy
improved from 65.1% to 65.9% and sentence-level
accuracy improved from 55.3% to 56.2%.

283



Number of Scores Baseline Rerankeddocuments

All
Precision 0.708 0.728

Documents
Recall 0.728 0.742
F-Score 0.718 0.735

Table 3: Table showing the relevancy of the search results
obtained by the baseline ASR output compared to those
obtained by the reranked ASR output.

4.2 Search Experiments
To analyze the Search accuracy of the baseline ASR
output in comparison to the ASR output, reranked
using the

∑ fw,d

|dfw| × idf reranking metric, we used
each of the two sets of ASR outputs (i.e., base-
line and reranked) as queries to our search engine,
SearchFST (described in Section 3). For the search
results produced by each set of queries, we com-
puted the precision, recall, and F-score values of the
listings retrieved with respect to the listings retrieved
by the set of human transcribed queries (Reference).
The precision, recall, and F-scores for the baseline
ASR output and the reranked ASR output, averaged
across each set, is presented in Table 3. For the pur-
poses of this experiment, we assume that the set re-
turned by our SearchFST for the human transcribed
set of queries is the reference search set. This is
however an approximation for a human annotated
search set.

In Table 3, by comparing the search accuracy
scores corresponding to the baseline ASR output to
those corresponding to the reranked ASR output, we
see that reranking the ASR output using the informa-
tion repository produces a substantial improvement
in the accuracy of the search results.

It is interesting to note that even though the
reranking of the ASR as shown in Table 2 is of the
order of 1%, the improvement in Search accuracy is
substantially higher. This indicates to the fact that
exploiting constraints from both components results
in improving the recognition accuracy of that subset
of words that are more relevant for Search.

5 Conclusion

In this paper, we have presented techniques for
tightly coupling ASR and Search. The central idea
behind these techniques is to rerank the ASR out-
put using the constraints (encoded as relevance met-
rics) from the Search task. The relevance metric that
best improved accuracy is

∑ fw,d

|dw| × idfw, as deter-

mined on our development set. Using this metric
to rerank the ASR output of our test set, we im-
proved ASR accuracy from 65.1% to 65.9% at the
word-level and from 55.3% to 56.2% at the phrase
level. This reranking also improved the F-score of
the search component from 0.718 to 0.735. These
results bear out our expectation that tightly coupling
ASR and Search can improve the accuracy of both
components.

Encouraged by the results of our experiments, we
plan to explore other relevance metrics that can en-
code more sophisticated constraints such as the rel-
ative coherence of the terms within a query.
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