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Abstract

Combining the 1-best output of multiple
parsers via parse selection or parse hybridiza-
tion improves f-score over the best indi-
vidual parser (Henderson and Brill, 1999;
Sagae and Lavie, 2006). We propose three
ways to improve upon existing methods for
parser combination. First, we propose a
method of parse hybridization that recom-
binescontext-free productionisstead ofcon-
stituents thereby preserving the structure of
the output of the individual parsers to a greater
extent. Second, we propose an efficient linear-
time algorithm for computing expected f-score
using Minimum Bayes Risk parse selection.
Third, we extend these parser combination
methods from multipld -best outputs to mul-
tiple n-best outputs. We present results on
WSJ section 23 and also on the English side
of a Chinese-English parallel corpus.
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1.1 Related Work

(Henderson and Brill, 1999) perform parse selec-
tion by maximizing the expected precision of the
selected parse with respect to the set of parses be-
ing combined. (Henderson and Brill, 1999) and
(Sagae and Lavie, 2006) propose methods for parse
hybridization by recombining constituents.

1.2 Our Work

In this work, we propose three ways to improve upon
existing methods for parser combination.

First, while constituent recombination (Hender-
son and Brill, 1999; Sagae and Lavie, 2006) gives a
significant improvement in f-score, it tends to flatten
the structure of the individual parses. To illustrate,
Figures 1 and 2 contrast the output of the Charniak
parser with the output of constituent recombination
on a sentence from WSJ section 24. We recombine
context-free productioriastead otonstituentspro-
ducing trees containing only context-free produc-
tions that have been seen in the individual parsers’
output (Figure 3).

Parse quality impacts the quality of downstream ap- Second, the parse selection method of (Hender-
plications such as syntax-based machine translati§®" and Brill, 1999) selects the parse with maxi-
(Quirk and Corston-Oliver, 2006). Combining theMum expectegrecision here, we present an effi-
output of multiple parsers can boost the accuracgient, linear-time algorithm for selecting the parse
of such applications. Parses can be combined With maximum expected-score within the Mini-

two ways: parse selectiorfselecting the best parse Mum Bayes Risk (MBR) framework.

from the output of the individual parsers) parse Third, we extend these parser combination meth-
hybridization(constructing the best parse by recomods from 1-best outputs ton-best outputs. We
bining sub-sentential components from the output giresent results on WSJ section 23 and also on the
the individual parsers). English side of a Chinese-English parallel corpus.
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In the MBR framework, although the true referencelable 1: F-Scores af-best Output of Individual Parsers
parse is unknown, we assume that the individual
parsers’ output forms a reasonable distribution over o
possible reference parses. We compute the expectec}Neltunea on a developme_nt S?t to maximize -
f-score of each parse treg using this distribution: score; and select the pargg with highest expected
f-score.

Computing exact expected f-score requires
O(m?) operations per sentence, where is the
number of parses being combined. We can compute

where f(p;, p;) is the f-score of parse; with ~@n approximate expected f-score(_Dni_m) time. To
respect to parse; and pr(p;) is the prior prob- QO S0, we (_:ompute expeqtepl precision for all parses
ability of parsep;. We estimatepr(p;) as fol- N O(m) time by associating with each unique
lows: pr(p;) = pr(parsery) - pr(pjlparsery) constituentc; a list of parses in which it occurs,
where parser is the parser generating;. \We plus the total prob_abilityql-_ of thosc_e parses. For
setpr(parsery) according to the proportion of sen- €ach parse associated with;, we increment the
tences in the development set for which theest €xPected precision of that parse fay size(p). Th;s
output of parser; achieves the highest f-score of¢OmMputation yields the same result as then”)
any individual parser, breaking ties randomly. algorithm. We carry out a similar operation for
Whenn = 1, pr(p;|parsery) = 1 for all p;; expected recall. We then compute the harmonic
- 1 ] - WAl ..
whenn > 1 we must estimater (p; [parsery,), the mean of expected precision and expected recall,

distribution over parses in the-best list output by ¥Vh'Ch closely approximates the true expected
any given parser. We estimate this distribution us- SCOre.
ing the model score, or log probability, given byli _ S _
parsery, to each entryaj in its n-best list: _ A low value of o creates a_u_nlform distribution, Whll.e a
high value concentrates probability mass on tHeest entry in
then-best list. In practice, tuning: produces a higher f-score
than settingx to the value that exactly reproduces the individual
parser’s probability distribution.

expected f(p;) = Z f(pi,pj) - prpy)
Pj

ea*scorej,k

pr(pj |pa7“$e7“k) = n . akscore;r
‘] =
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Par se Selection: Minimum Bayes Risk
Svstem wsj-dev wsj-test ce-dev ce-test
Y P [R |F P [R [F P [R [F P [R |F
g:fsté?d""d”a' 91.3| 89.9| 90.6| 91.8| 91.0| 91.4| 86.1| 83.4 | 84.7 || 85.6 | 82.6 | 84.1
n=1 91.7| 905| 91.1 | 925| 91.8| 92.0|| 87.1 | 84.6 | 85.8 || 86.7 | 83.7 | 85.2
n=10 92.1| 90.8| 915 || 924 | 91.7| 92.0|| 87.9| 85.3| 86.6 || 87.7 | 84.4 | 86.0
n=25 92.1] 909 | 915 || 924 | 91.7| 92.0|| 88.0| 85.4 | 86.7 || 87.4 | 84.2 | 85.7
n=50 92.1| 91.0| 915 || 924 | 91.7| 921 || 88.0| 85.3 | 86.6 || 87.6 | 84.3 | 85.9
Table 2: Precision, Recall, and F-score Results from Pagteeton
3 Constituent Recombination ming pr(parsery) - pr(p;|parsery) over all parses

i generated byarsery, in which the production ap-
ears. We re-parse the sentence with these produc-

iaht h tituent b . Pons, returning the heaviest tree (where the weight
weight each constituent by summing(parserr) ¢ 5 yree is the sum of its context-free productions’

over all parsers: in whose output the ConSt'tuentweights). We optimize f-score by varying the trade-

appears. They |nclude+?ll constltugnts with We'ghéff between precision and recall using a derivation
above a threshold = ™3—=, wherem is the number

. ) ) length penalty, which we tune on a development
of input parses, in the combined parse. gne Y P

) . set?
(Sagae and Lavie, 2006) extend this method by
tuning ¢ on a development set to maximize f-5 Experiments
score? They populate a chart with constituents

whose weight meets the threshold, and use a CK\'}'_able 1 illustrates the 5 parsers used in our combi-

style parsing algorithm to find the heaviest treeNation experiments and the f-scores of thebest

where the weight of a tree is the sum of its con®UtPut on our data sets. We use thdest output
Charniak, and Soricut parsers, and

stituents’ weights. Parsing is not constrained by 8f the Berkeley, :
grammar; any context-free production is permittedt.he 1-best output of the Bikel and Stanford parsers.

Thus, the combined parses may contain context—fré_%l parsers were trained on the standard WSJ train-

productions not seen in the individual parsers’ outd Sections. We use two corpora: the WSJ (sec-

puts. While this failure to preserve the structure ofoNS 24 and 23 are the development and test sets, re-
individual parses does not affect f-score, it may hinSPectively) and English text from the LDC2007T02
der downstream applications. Chinese-English parallel corpus (the development

To extend this method from-best to n-best and test sets contain 400 sentences each).

lists, we weight each constituent by sUmMMIiNg  piscussion & Conclusion

pr(parsery)-pr(pj|parsery) over all parseg; gen-

erated byparsery, in which the constituent appears. Results are shown in Tables 2, 3, and 4. On both
test sets, constituent recombination achieves the best

4 Context-Free Production Recombination  f-score (1.0 points on WSJ test and 2.3 points on

. . hinese-English test), follow ntext-fr ro-

To ensure that all context-free productions in thg €Se-ENGTIS _es), ollowed by co ext-iree pro
vctlon combination, then parse selection, though

. : oo d
combined parses have been seen in the InOIIVldutahe differences in f-score among the combination
methods are not statistically significant. Increasing

parsers’ outputs, we recombine context-free produc-
tions rather than constituents. We convert each para%e L .
. . . e n-best list size from 1 to 10 improves parse se-
into context-free productions, labelling each cons

. . . L lection an ntext-fr r ion recombination
stituent in the production with its span and syntac—ec'[O and context-free production recombination,

tic category and weighting each production by sum- °By subtracting higher(lower) values of this length penalty
from the weight of each production, we can encourage the com-
2A high threshold results in high precision, while a low bination method to favor trees with shorter(longer) derivations
threshold results in high recall. and therefore higher precision(recall) at the constituent level.

(Henderson and Brill, 1999) convert each parse in
constituents with syntactic labels and spans, a
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Parse Hybridization: Constituent Recombination
Svstem wsj-dev wsj-test ce-dev ce-test
Y P [R |F P [R [F P [R [F P [R |F
g:fsté?d""d”a' 91.3| 89.9| 90.6| 91.8| 91.0| 91.4| 86.1| 83.4 | 84.7 || 85.6 | 82.6 | 84.1
n=1 9251 90.3| 914 93.0| 916 | 92.3| 89.2 | 84.6| 86.8 || 89.1| 83.6 | 86.2
n=10 926 | 90.5| 915 | 93.1| 91.7| 924 || 89.9 | 84.4 | 87.1 || 89.9| 83.2 | 864
n=25 926 | 90.5| 915 | 93.2| 91.7| 924 || 89.9 | 84.4| 87.0|| 89.7 | 83.4 | 86.4
n=50 92.6 | 90.5| 915 | 93.1| 91.7| 924 || 89.9 | 84.4| 87.1 || 89.7| 83.2 | 86.3
Table 3: Precision, Recall, and F-score Results from Cuuesti Recombination
Parse Hybridization: Context-Free Production Recombination
Svstem wsj-dev wsj-test ce-dev ce-test
y P IR [F |P [R [F [P [R [F [P [R [F
Eifsté?d""d”a' 91.3| 89.9 | 90.6 || 91.8| 91.0| 91.4 | 86.1 | 83.4 | 84.7 || 85.6 | 82.6 | 84.1
n=1 91.7|1 91.0| 914 92.1| 91.9| 92.0|| 86.9 | 85.4| 86.2 || 86.2| 84.3 | 85.2
n=10 9211909 | 9151 925|91.8| 922 || 87.8| 85.1| 864 || 86.2 | 84.3| 86.1
n=25 9221 91.0| 916 || 925| 91.8| 922 || 87.8 | 85.1 | 864 || 87.6 | 84.6 | 86.1
n=50 92.1| 90.8| 914 924 | 91.7| 92.1|| 87.6 | 84.9| 86.2 || 87.7| 84.6 | 86.1

Table 4: Precision, Recall, and F-score Results from Coiieee Production Recombination
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the diminishing gains in f-score of the oracle parse produced by
each individual parser asincreases.
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