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Abstract

Combining the 1-best output of multiple
parsers via parse selection or parse hybridiza-
tion improves f-score over the best indi-
vidual parser (Henderson and Brill, 1999;
Sagae and Lavie, 2006). We propose three
ways to improve upon existing methods for
parser combination. First, we propose a
method of parse hybridization that recom-
binescontext-free productionsinstead ofcon-
stituents, thereby preserving the structure of
the output of the individual parsers to a greater
extent. Second, we propose an efficient linear-
time algorithm for computing expected f-score
using Minimum Bayes Risk parse selection.
Third, we extend these parser combination
methods from multiple1-best outputs to mul-
tiple n-best outputs. We present results on
WSJ section 23 and also on the English side
of a Chinese-English parallel corpus.

1 Introduction

Parse quality impacts the quality of downstream ap-
plications such as syntax-based machine translation
(Quirk and Corston-Oliver, 2006). Combining the
output of multiple parsers can boost the accuracy
of such applications. Parses can be combined in
two ways: parse selection(selecting the best parse
from the output of the individual parsers) orparse
hybridization(constructing the best parse by recom-
bining sub-sentential components from the output of
the individual parsers).

1.1 Related Work

(Henderson and Brill, 1999) perform parse selec-
tion by maximizing the expected precision of the
selected parse with respect to the set of parses be-
ing combined. (Henderson and Brill, 1999) and
(Sagae and Lavie, 2006) propose methods for parse
hybridization by recombining constituents.

1.2 Our Work

In this work, we propose three ways to improve upon
existing methods for parser combination.

First, while constituent recombination (Hender-
son and Brill, 1999; Sagae and Lavie, 2006) gives a
significant improvement in f-score, it tends to flatten
the structure of the individual parses. To illustrate,
Figures 1 and 2 contrast the output of the Charniak
parser with the output of constituent recombination
on a sentence from WSJ section 24. We recombine
context-free productionsinstead ofconstituents, pro-
ducing trees containing only context-free produc-
tions that have been seen in the individual parsers’
output (Figure 3).

Second, the parse selection method of (Hender-
son and Brill, 1999) selects the parse with maxi-
mum expectedprecision; here, we present an effi-
cient, linear-time algorithm for selecting the parse
with maximum expectedf-score within the Mini-
mum Bayes Risk (MBR) framework.

Third, we extend these parser combination meth-
ods from 1-best outputs ton-best outputs. We
present results on WSJ section 23 and also on the
English side of a Chinese-English parallel corpus.
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Figure 1: Output of Charniak Parser
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Figure 2: Output of Constituent Recombination

2 Parse Selection

In the MBR framework, although the true reference
parse is unknown, we assume that the individual
parsers’ output forms a reasonable distribution over
possible reference parses. We compute the expected
f-score of each parse treepi using this distribution:

expected f(pi) =
∑

pj

f(pi, pj) · pr(pj)

where f(pi, pj) is the f-score of parsepi with
respect to parsepj and pr(pj) is the prior prob-
ability of parsepj . We estimatepr(pj) as fol-
lows: pr(pj) = pr(parserk) · pr(pj |parserk),
where parserk is the parser generatingpj . We
setpr(parserk) according to the proportion of sen-
tences in the development set for which the1-best
output of parserk achieves the highest f-score of
any individual parser, breaking ties randomly.

When n = 1, pr(pj |parserk) = 1 for all pj ;
whenn > 1 we must estimatepr(pj |parserk), the
distribution over parses in then-best list output by
any given parser. We estimate this distribution us-
ing the model score, or log probability, given by
parserk to each entrypj in its n-best list:

pr(pj |parserk) =
eα∗scorej,k

∑n
j′=1 eα∗scorej′,k
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Figure 3: Output of Context-Free Production Recombi-
nation

Parser
wsj ce

dev test dev test
Berkeley

88.6 89.3 82.9 83.5
(Petrov and Klein, 2007)

Bikel–Collins Model 2
87.0 88.2 81.2 80.6

(Bikel, 2002)
Charniak

90.6 91.4 84.7 84.1
(Charniak and Johnson, 2005)

Soricut–Collins Model 2
87.3 88.4 82.3 82.1

(Soricut, 2004)
Stanford

85.4 86.4 81.3 80.1
(Klein and Manning, 2003)

Table 1: F-Scores of1-best Output of Individual Parsers

We tuneα on a development set to maximize f-
score,1 and select the parsepi with highest expected
f-score.

Computing exact expected f-score requires
O(m2) operations per sentence, wherem is the
number of parses being combined. We can compute
an approximate expected f-score inO(m) time. To
do so, we compute expected precision for all parses
in O(m) time by associating with each unique
constituentci a list of parses in which it occurs,
plus the total probabilityqi of those parses. For
each parsep associated withci, we increment the
expected precision of that parse byqi/size(p). This
computation yields the same result as theO(m2)
algorithm. We carry out a similar operation for
expected recall. We then compute the harmonic
mean of expected precision and expected recall,
which closely approximates the true expected
f-score.

1A low value of α creates a uniform distribution, while a
high value concentrates probability mass on the1-best entry in
then-best list. In practice, tuningα produces a higher f-score
than settingα to the value that exactly reproduces the individual
parser’s probability distribution.
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Parse Selection: Minimum Bayes Risk

System
wsj-dev wsj-test ce-dev ce-test

P R F P R F P R F P R F
best individual

91.3 89.9 90.6 91.8 91.0 91.4 86.1 83.4 84.7 85.6 82.6 84.1
parser
n=1 91.7 90.5 91.1 92.5 91.8 92.0 87.1 84.6 85.8 86.7 83.7 85.2
n=10 92.1 90.8 91.5 92.4 91.7 92.0 87.9 85.3 86.6 87.7 84.4 86.0
n=25 92.1 90.9 91.5 92.4 91.7 92.0 88.0 85.4 86.7 87.4 84.2 85.7
n=50 92.1 91.0 91.5 92.4 91.7 92.1 88.0 85.3 86.6 87.6 84.3 85.9

Table 2: Precision, Recall, and F-score Results from Parse Selection

3 Constituent Recombination

(Henderson and Brill, 1999) convert each parse into
constituents with syntactic labels and spans, and
weight each constituent by summingpr(parserk)
over all parsersk in whose output the constituent
appears. They include all constituents with weight
above a thresholdt = m+1

2 , wherem is the number
of input parses, in the combined parse.

(Sagae and Lavie, 2006) extend this method by
tuning t on a development set to maximize f-
score.2 They populate a chart with constituents
whose weight meets the threshold, and use a CKY-
style parsing algorithm to find the heaviest tree,
where the weight of a tree is the sum of its con-
stituents’ weights. Parsing is not constrained by a
grammar; any context-free production is permitted.
Thus, the combined parses may contain context-free
productions not seen in the individual parsers’ out-
puts. While this failure to preserve the structure of
individual parses does not affect f-score, it may hin-
der downstream applications.

To extend this method from1-best to n-best
lists, we weight each constituent by summing
pr(parserk)·pr(pj |parserk) over all parsespj gen-
erated byparserk in which the constituent appears.

4 Context-Free Production Recombination

To ensure that all context-free productions in the
combined parses have been seen in the individual
parsers’ outputs, we recombine context-free produc-
tions rather than constituents. We convert each parse
into context-free productions, labelling each con-
stituent in the production with its span and syntac-
tic category and weighting each production by sum-

2A high threshold results in high precision, while a low
threshold results in high recall.

ming pr(parserk) · pr(pj |parserk) over all parses
pj generated byparserk in which the production ap-
pears. We re-parse the sentence with these produc-
tions, returning the heaviest tree (where the weight
of a tree is the sum of its context-free productions’
weights). We optimize f-score by varying the trade-
off between precision and recall using a derivation
length penalty, which we tune on a development
set.3

5 Experiments

Table 1 illustrates the 5 parsers used in our combi-
nation experiments and the f-scores of their1-best
output on our data sets. We use then-best output
of the Berkeley, Charniak, and Soricut parsers, and
the1-best output of the Bikel and Stanford parsers.
All parsers were trained on the standard WSJ train-
ing sections. We use two corpora: the WSJ (sec-
tions 24 and 23 are the development and test sets, re-
spectively) and English text from the LDC2007T02
Chinese-English parallel corpus (the development
and test sets contain 400 sentences each).

6 Discussion & Conclusion

Results are shown in Tables 2, 3, and 4. On both
test sets, constituent recombination achieves the best
f-score (1.0 points on WSJ test and 2.3 points on
Chinese-English test), followed by context-free pro-
duction combination, then parse selection, though
the differences in f-score among the combination
methods are not statistically significant. Increasing
then-best list size from 1 to 10 improves parse se-
lection and context-free production recombination,

3By subtracting higher(lower) values of this length penalty
from the weight of each production, we can encourage the com-
bination method to favor trees with shorter(longer) derivations
and therefore higher precision(recall) at the constituent level.
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Parse Hybridization: Constituent Recombination

System
wsj-dev wsj-test ce-dev ce-test

P R F P R F P R F P R F
best individual

91.3 89.9 90.6 91.8 91.0 91.4 86.1 83.4 84.7 85.6 82.6 84.1
parser
n=1 92.5 90.3 91.4 93.0 91.6 92.3 89.2 84.6 86.8 89.1 83.6 86.2
n=10 92.6 90.5 91.5 93.1 91.7 92.4 89.9 84.4 87.1 89.9 83.2 86.4
n=25 92.6 90.5 91.5 93.2 91.7 92.4 89.9 84.4 87.0 89.7 83.4 86.4
n=50 92.6 90.5 91.5 93.1 91.7 92.4 89.9 84.4 87.1 89.7 83.2 86.3

Table 3: Precision, Recall, and F-score Results from Constituent Recombination

Parse Hybridization: Context-Free Production Recombination

System
wsj-dev wsj-test ce-dev ce-test

P R F P R F P R F P R F
best individual

91.3 89.9 90.6 91.8 91.0 91.4 86.1 83.4 84.7 85.6 82.6 84.1
parser
n=1 91.7 91.0 91.4 92.1 91.9 92.0 86.9 85.4 86.2 86.2 84.3 85.2
n=10 92.1 90.9 91.5 92.5 91.8 92.2 87.8 85.1 86.4 86.2 84.3 86.1
n=25 92.2 91.0 91.6 92.5 91.8 92.2 87.8 85.1 86.4 87.6 84.6 86.1
n=50 92.1 90.8 91.4 92.4 91.7 92.1 87.6 84.9 86.2 87.7 84.6 86.1

Table 4: Precision, Recall, and F-score Results from Context-Free Production Recombination

though further increasingn does not, in general,
help.4 Chinese-English test set f-score gets a bigger
boost from combination than WSJ test set f-score,
perhaps because the best individual parser’s baseline
f-score is lower on the out-of-domain data.

We have presented an algorithm for parse hy-
bridization by recombining context-free produc-
tions. While constituent recombination results in
the highest f-score of the methods explored, context-
free production recombination produces trees which
better preserve the syntactic structure of the indi-
vidual parses. We have also presented an efficient
linear-time algorithm for selecting the parse with
maximum expected f-score.
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4These diminishing gains in f-score asn increases reflect
the diminishing gains in f-score of the oracle parse produced by
each individual parser asn increases.
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