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Abstract

We present an experiment aimed at under-
standing how to optimally use acoustic and
prosodic information to predict a speaker’s
level of certainty. With a corpus of utterances
where we can isolate a single word or phrase
that is responsible for the speaker’s level of
certainty we use different sets of sub-utterance
prosodic features to train models for predict-
ing an utterance’s perceived level of certainty.
Our results suggest that using prosodic fea-
tures of the word or phrase responsible for the
level of certainty and of its surrounding con-
text improves the prediction accuracy without
increasing the total number of features when
compared to using only features taken from
the utterance as a whole.

1 Introduction

Prosody is a fundamental part of human-to-human
spoken communication; it can affect the syntac-
tic and semantic interpretation of an utterance
(Hirschberg, 2003) and it can be used by speakers
to convey their emotional state. In recent years, re-
searchers have found prosodic features to be useful
in automatically detecting emotions such as annoy-
ance and frustration (Ang et al., 2002) and in dis-
tinguishing positive from negative emotional states
(Lee and Narayanan, 2005).

In this paper, we address the problem of predict-
ing the perceived level of certainty of a spoken ut-
terance. Specifically, we have a corpus of utter-
ances where it is possible to isolate a single word
or phrase responsible for the speaker’s level of cer-
tainty. With this corpus we investigate whether us-
ing prosodic features of the word or phrase causing
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uncertainty and of its surrounding context improves
the prediction accuracy when compared to using fea-
tures taken only from the utterance as a whole.

This work goes beyond existing research by look-
ing at the predictive power of prosodic features ex-
tracted from salient sub-utterance segments. Pre-
vious work on uncertainty has examined the pre-
dictive power of utterance- and intonational phrase-
level prosodic features (Liscombe et al., 2005) as
well as the relative strengths of correlations between
level of certainty and sub-utterance prosodic fea-
tures (Pon-Barry, 2008). Our results suggest that
we can do a better job at predicting an utterance’s
perceived level of certainty by using prosodic fea-
tures extracted from the whole utterance plus ones
extracted from salient pieces of the utterance, with-
out increasing the total number of features, than by
using only features from the whole utterance.

This work is relevant to spoken language applica-
tions in which the system knows specific words or
phrases that are likely to cause uncertainty. For ex-
ample, this would occur in a tutorial dialogue system
when the speaker answers a direct question (Pon-
Barry et al., 2006; Forbes-Riley et al., 2008), or in
language (foreign or ESL) learning systems and lit-
eracy systems (Alwan et al., 2007) when new vocab-
ulary is being introduced.

2 Previous Work

Researchers have examined certainty in spoken lan-
guage using data from tutorial dialogue systems
(Liscombe et al., 2005) and data from an uncertainty
corpus (Pon-Barry, 2008).

Liscombe et al. (2005) trained a decision tree
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classifier on utterance-level and intonational phrase-
level prosodic features to distinguish between cer-
tain, uncertain, and neutral utterances. They
achieved 76% accuracy, compared to a 66% accu-
racy baseline (choosing the most common class).

We have collected a corpus of utterances spoken
under varying levels of certainty (Pon-Barry, 2008).
The utterances were elicited by giving adult native
English speakers a written sentence containing one
or more gaps, then displaying multiple options for
filling in the gaps and telling the speakers to read
the sentence aloud with the gaps filled in according
to domain-specific criteria. We elicited utterances
in two domains: (1) using public transportation in
Boston, and (2) choosing vocabulary words to com-
plete a sentence. An example is shown below.

Q: How can I get from Harvard to the Silver Line?
A: Take the red line to
a. South Station
b. Downtown Crossing

The term ‘context’ refers to the fixed part of the re-
sponse ( “Take the red line to ” 1in this exam-
ple) and the term ‘target word’ refers to the word or
phrase chosen to fill in the gap.

The corpus contains 600 utterances from 20
speakers. Each utterance was annotated for level
of certainty, on a S-point scale, by five human
judges who listened to the utterances out of context.
The average inter-annotator agreement (Kappa) was
0.45. We refer to the average of the five ratings as
the ‘perceived level of certainty’ (the quantity we at-
tempt to predict in this paper).

We computed correlations between perceived
level of certainty and prosodic features extracted
from the whole utterance, the context, and the tar-
get word. Pauses preceding the target word were
considered part of the target word; all segmenta-
tion was done manually. Because the speakers had
unlimited time to read over the context before see-
ing the target words, the target word is considered
to be the source of the speaker’s confidence or un-
certainty; it corresponds to the decision that the
speaker had to make. Our correlation results sug-
gest that while some prosodic cues to level of cer-
tainty were strongest in the whole utterance, others
were strongest in the context or the target word. In
this paper, we extend this past work by testing the
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prediction accuracy of models trained on different
subsets of these prosodic features.

3 Prediction Experiments

In our experiments we used 480 of the 600 utter-
ances in the corpus, those which contained exactly
one gap. (Some had two or three gaps.) We ex-
tracted the following 20 prosodic feature-types from
each whole utterance, context, and target word (a to-
tal of 60 features) using WaveSurfer' and Praat”.

Pitch: minf0, maxf0, meanf0, stdevf0, rangef0, rel-
ative position minf0, relative position maxf0,
absolute slope (Hz), absolute slope (semitones)

Intensity: minRMS, maxRMS, meanRMS, stdev-
RMS, relative position minRMS, relative posi-
tion maxRMS

Temporal: total silence, percent silence, total dura-
tion, speaking duration, speaking rate

These features are comparable to those used in Lis-
combe et al.’s (2005) prediction experiments. The
pitch and intensity features were represented as
z-scores normalized by speaker; the temporal fea-
tures were not normalized.

Next, we created a ‘combination’ set of 20 fea-
tures based on our correlation results. Figure 1 il-
lustrates how the combination set was created: for
each prosodic feature-type (each row in the table) we
chose either the whole utterance feature, the context
feature, or the target word feature, whichever one
had the strongest correlation with perceived level of
certainty. The selected features (highlighted in Fig-
ure 1) are listed below.

Whole Utterance: total silence, total duration,
speaking duration, relative position maxf0, rel-
ative position maxRMS, absolute slope (Hz),
absolute slope (semitones)

Context: minf0, maxf0, meanf0, stdevf0, rangefO,
minRMS, maxRMS, meanRMS, relative posi-
tion minRMS

Target Word: percent silence, speaking rate, rela-
tive position minf0, stdevRMS

"http://www.speech.kth.se/wavesurfer/
2http://www.fon.hum.uva.nl/praat/



Feature-type Whole Utterance  Context  Target Word
min f0 0.107 0.119 0.041
max f0 —0.073 —0.153 —0.045
mean f0 0.033 0.070 —0.004
stdev {0 —0.035 —0.047 —0.043
range f0 —0.128 —0.211 —0.075
rel. position min f0 0.042 0.022 0.046
rel. position max f0 0.015 0.008 0.001
abs. slope f0 (Hz) 0.275 0.180 0.191
abs. slope f0 (Semi) 0.160 0.147 0.002
min RMS 0.101 0.172 0.027
max RMS —0.091 —0.110 —0.034
mean RMS —0.012 0.039 —0.031
stdev RMS —0.002 —0.003 —0.019
rel. position min RMS 0.101 0.172 0.027
rel. position max RMS —0.039 —0.028 —0.007
total silence —0.643 —0.507 —0.495
percent silence —0.455 —0.225 —0.532
total duration —0.592 —0.502 —0.590
speaking duration —0.430 —0.390 —0.386
speaking rate 0.090 0.014 0.136

Figure 1: The Combination feature set (highlighted in ta-
ble) was produced by selecting either the whole utterance
feature, the context feature, or the target word feature
for each prosodic feature-type, whichever one was most
strongly correlated with perceived level of certainty.

To compare the prediction accuracies of different
subsets of features, we fit five linear regression mod-
els to the feature sets. The five subsets are: (A)
whole utterance features only, (B) target word fea-
tures only, (C) context features only, (D) all fea-
tures, and (E) the combination feature set. We di-
vided the data into 20 folds (one fold per speaker)
and performed a 20-fold cross-validation for each
set of features. Each experiment fits a model us-
ing data from 19 speakers and tests on the remain-
ing speaker. Thus, when we test our models, we are
testing the ability to classify utterances of an unseen
speaker.

Table 1 shows the accuracies of the models
trained on the five subsets of features. The num-
bers reported are averages of the 20 cross-validation
accuracies. We report results for two cases: 5 pre-
diction classes and 3 prediction classes. We first
computed the prediction accuracy over five classes
(the regression output was rounded to the nearest
integer). Next, in order to compare our results to
those of Liscombe et al. (2005), we recoded the
5-class results into 3-class results, following Pon-
Barry (2008), in the way that maximized inter-
annotator agreement. The naive baseline numbers
are the accuracies that would be achieved by always
choosing the most common class.
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4 Discussion

Assuming that the target word is responsible for the
speaker’s level of certainty, it is not surprising that
the target word feature set (B) yields higher accura-
cies than the context feature set (C). It is also not sur-
prising that the set of all features (D) yields higher
accuracies than sets (A), (B), and (C).

The key comparison to notice is that the combi-
nation feature set (E), with only 20 features, yields
higher average accuracies than the utterance fea-
ture set (A): a difference of 6.42% for 5 classes
and 5.83% for 3 classes. This suggests that using a
combination of features from the context and target
word in addition to features from the whole utter-
ance leads to better prediction of the perceived level
of certainty than using features from only the whole
utterance.

One might argue that these differences are just
due to noise. To address this issue, we compared
the prediction accuracies of sets (A) and (E) per fold.
This is illustrated in Figure 2. Each fold in our cross-
validation corresponds to a different speaker, so the
folds are not identically distributed and we do not
expect each fold to yield the same prediction accu-
racy. That means that we should compare predic-
tions of the two feature sets within folds rather than
between folds. Figure 2 shows the correlations be-
tween the predicted and perceived levels of certainty
for the models trained on sets (A) and (E). The com-
bination set (E) predictions were more strongly cor-
related than whole utterance set (A) predictions in
16 out of 20 folds. This result supports our claim
that using a combination of features from the con-
text and target word in addition to features from the
whole utterance leads to better prediction of level of
certainty.

Our best prediction accuracy for the 3 class case,
74.79%, was slightly lower than the accuracy re-
ported by Liscombe et al. (2005), 76.42%. However,
our difference from the naive baseline was 18.54%
where Liscombe et al.’s was 10.42%. Liscombe et
al. randomly divided their data into training and test
sets, so it is unclear whether they tested on seen or
unseen speakers. Further, they ran one experiment
rather than a cross-validation, so their reported ac-
curacy may not be indicative of the entire data set.

We also trained support vector models on these
subsets of features. The main result was the same:



Table 1: Average prediction accuracies for the linear regression models trained on five subsets of prosodic features.
The models trained on the Combination feature set and the All feature set perform better than the other three models

in both the 3- and 5-class settings.

Feature Set Num Features

Accuracy (5 classes) Accuracy (3 classes)

Naive Baseline N/A 31.46% 56.25%
(A) Utterance 20 39.00% 68.96%
(B) Target Word 20 43.13% 68.96%
(C) Context 20 37.71% 67.50%
(D) All 60 48.54% 74.58%
(E) Combination 20 45.42% 74.79%
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Figure 2: Correlations with perceived level of certainty
per fold for the Combination (O) and the Utterance (X)
feature set predictions, sorted by the size of the difference.
In 16 of the 20 experiments, the correlation coefficients
for the Combination feature set are greater than those of
the Utterance feature set.

the set of all features (D) and the combination set
(E) had better prediction accuracies than the utter-
ance feature set (A). In addition, the combination set
(E) had the best prediction accuracies (of all models)
in both the 3- and 5-class settings. The raw accura-
cies were approximately 5% lower than those of the
linear regression models.

5 Conclusion and Future Work

The results of our experiments suggest a better pre-
dictive model of level of certainty for systems where
words or phrases likely to cause uncertainty are
known ahead of time. Without increasing the total
number of features, combining select prosodic fea-
tures from the target word, the surrounding context
and the whole utterance leads to better prediction of
level of certainty than using features from the whole
utterance only. In the near future, we plan to exper-
iment with prediction models of the speaker’s self-
reported level of certainty.
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