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Abstract 

This work focuses on generating children’s 
HMM-based acoustic models for speech rec-
ognition from adult acoustic models. Collect-
ing children’s speech data is more costly 
compared to adult’s speech. The patent-
pending method developed in this work re-
quires only adult data to estimate synthetic 
children’s acoustic models in any language 
and works as follows: For a new language 
where only adult data is available, an adult 
male and an adult female model is trained. A 
linear transformation from each male HMM 
mean vector to its closest female mean vector 
is estimated. This transform is then scaled to a 
certain power and applied to the female model 
to obtain a synthetic children’s model. In a 
pronunciation verification task the method 
yields 19% and 3.7% relative improvement on 
native English and Spanish children’s data, re-
spectively, compared to the best adult model. 
For Spanish data, the new model outperforms 
the available real children’s data based model 
by 13% relative. 

1 Introduction 

Language learning is becoming more and more 
important in the age of globalization. Depending 
on their work or cultural situation some people are 
confronted with various different languages on a 
daily basis. While it is very desirable to learn lan-
guages at any age, language learning, among other 
learning experiences, is comparably simpler for 
children than for adults and should therefore be 
encouraged at early ages. 
Even though the children’s language learning mar-
ket is highly important, comprising effective 
speech recognition tools for pronunciation assess-
ment is relatively hard due to the special characte-
ristics of children’s speech and the limited 

availability of children’s speech data in many lan-
guages in the speech research community. Adult 
speech data is usually easier to obtain. By under-
standing the characteristics of children’s speech the 
unconditional need for children’s speech data can 
be lessened by altering adult acoustic models such 
that they are suitable for children’s speech. 
Children’s speech has higher pitch and formants 
than female speech. Further, female speech has 
higher pitch and formants than male speech. Child-
ren’s speech is more variable than female speech, 
and, as research has shown, female speech is more 
variable than male speech (Lee et al., 1999). Given 
this transitive chain of argumentation, the trans-
formation from a male to a female acoustic model 
can be estimated for a language and applied (at a 
certain adjustable degree) to the female model. 
This process results in a synthetic children’s 
speech model designed on the basis of the female 
model. Therefore, for a new language an effective 
synthetic children’s acoustic model can be derived 
without the need of children’s data (Hagen et al., 
2008). 

2 Related Work  

Extensive research has been done in the field of 
children’s speech analysis and recognition in the 
past few years. A detailed overview of children’s 
speech characteristics can be found in (Lee et al., 
1999). The paper presents research results showing 
the higher variability in speech characteristics 
among children compared to adult speech. The 
properties of children’s speech that were re-
searched were duration of vowels and sentences, 
pitch, and formant locations. 
When designing acoustic models specially suited 
for children, properties as the formant locations 
and higher variability of children’s speech need to 
be accounted for. The best solution for building 
children’s speech models is to collect children’s 
speech data and to train models from scratch (Ha-
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gen et al., 2003, Cosi et al. 2005). Researchers 
have also tried to apply adult acoustic models us-
ing speaker normalization techniques to recognize 
children’s speech (Elenius et al., 2005, Potamianos 
et al. 1997). Adult acoustic models were adapted 
towards children’s speech. A limited amount of 
children’s speech data was available for adapta-
tion. In (Gustafson et al., 2002) children’s voices 
were transformed before being sent to the recog-
nizer using adult acoustic models. In (Claes et al., 
1997) children’s acoustic models were built based 
on a VTL adaptation of cepstral parameters based 
on the third formant frequency. The method 
showed to be effective for building children’s 
speech models. 

3 Building Synthetic Children’s Models 
from Adult Models 

As mentioned in Section 1, research has shown 
that pitch and formants of children’s speech are 
higher than for female speech. Female speech has 
higher pitch and formants than male speech. In 
order to exploit these research results a transforma-
tion from a male acoustic model to a female acous-
tic model can be derived. This transformation will 
map a male model as close as possible to a female 
model. The transformation can be adjusted and 
applied to the female model. The resulting synthet-
ic model can be tested on children’s data. 
Parameters that are subject to transformation in 
this process are the mean vectors of the HMM 
states. The transformation can be represented as a 
square matrix in the dimension of the mean vec-
tors. The transformation chosen in this approach is 
therefore linear and is for example capable of 
representing a vocal tract length adaptation as it 
was shown in (Pitz et al., 2005). Linear transfor-
mations (i.e. matrices) are also chosen in adapta-
tion approaches as MAPLR and MLLR, whose 
benefit has been shown to be additive to the benefit 
of VTLN in speaker adaptation applications. A 
linear transform in the form of a matrix is therefore 
well suited due to its expressive power as well as 
its mathematical manageability. 

3.1 Transformation Matrix 

The transformation matrix used in this approach is 
estimated by mapping the male to the female 
acoustic model, such that each HMM state mean 
vector in the male model is assigned a correspond-

ing mean vector in the female model. Information 
used in the mapping process is the basic phoneme 
and context. The resulting mean vector pairs are 
used as source and target features in the training 
process of the transformation matrix. During train-
ing the matrix is initialized as the identity matrix 
and the estimate of the mapping is refined by gra-
dient descent. In a typical acoustic model there are 
several hundred, sometimes thousands, of these 
mean vector pairs to train the transformation ma-
trix. The expression that needs to be minimized is: 
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where T is the error-minimizing transformation 
matrix; x is a male model’s source vector and y it 
corresponding female model’s target vector.  
In this optimization process the Matrix A is initia-
lized as the identity matrix. Each matrix entry ija is 

updated (to the new value'ija ) in the following way 

by gradient descent: 
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where iA  is the i-th line of matrix A and k deter-

mines the descent step size (k<0 and incorporates 
the factor of 2 resulting from the differentiation). 
The gradient descent needs to be run multiple 
times over all vector pairs (x,y) for the matrix to 
converge to an acceptable approximation which is 
called the transformation matrix T. 

3.2 Synthetic Children’s Model Creation 

The transformation matrix can be applied to the 
female model in order to create a new synthetic 
acoustic model which should suit children’s speech 
better than adult acoustic models. It is unlikely that 
the transformation applied “as is” will result in the 
best model possible, therefore the transformation 
can be altered (amplified or weakened) in order to 
yield the best results. An intuitive way to alter the 
impact of the transformation is taking the matrix T 
to a certain power p. Synthetic models can be 
created by applying pT  to the female model1, for 
various values p. If children’s data is available for 
evaluation purposes, the best value of p can be de-
termined. The power p is claimed to be language 
independent. It might vary in nuances, but experi-
                                                           
1 Taking a matrix to the power of p is meant in the sense 
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ments have shown that a value around 0.25 is a 
reasonable choice. 

3.3 Transformation Algorithm 

The previous section presented the theoretical 
means necessary for the synthetic children’s model 
creation process. The precise, patent-pending algo-
rithm to create a synthetic children’s model in a 
new language is as follows (Hagen et al., 2008): 
 

1. Train a male and a female acoustic model 
2. Estimate the transform T from the male 

to the female model 
3. Determine the power p by which the 

transform T should be adjusted 

4. Apply 
pT  to the female acoustic model 

to create the synthetic children’s model 
 

Step 3, the determination of the power p, can be 
done in two different ways. If children’s test data 
in the relevant language is available, various mod-
els based on different p-values can be evaluated 
and the best one chosen. If there is no children’s 
data available in a new language, p can be esti-
mated by evaluations in a language where there is 
enough male, female, and children’s speech data 
available. The claim here is that the power p is rel-
atively language independent and estimating p in a 
different language is superior to a simple guess. 

4 Experiments 

The algorithm was tested on two languages: US 
English and Spanish. For both languages sufficient 
male, female, and children’s speech data was 
available (more than 20 hours) in order to train 
valid acoustic models and to have reference child-
ren’s acoustic models available. For English test 
data we used a corpus of 22 native speakers in the 
age range of 5 to 14. The number of utterances is 
2,182. For Spanish test data the corpus is com-
prised of 19 speakers in the age range of 8 to 13 
years. The number of utterances is 2,598. 
The transform from the male to the female model 
was estimated in English. The power of p was 
gradually increased and the transformation matrix 
was adjusted. With this adjusted matrix pT  a syn-
thetic children’s model was built. This synthetic 
children’s model was evaluated on children’s test 
data and the results were compared to the reference 
children’s model’s and the female model’s perfor-
mance. 

When speech is evaluated in a language learning 
system, the first step is utterance verification, 
meaning the task of evaluating if the user actually 
tried to produce the desired utterance. The Equal 
Error Rate (EER) on the utterance level is a means 
of evaluating this performance. For each utterance 
an in- and out-of-grammar likelihood score is de-
termined. The EER operating points, determined 
by the cutting point of the two distributions (in-
grammar and out-of-grammar), are reported as an 
error metric. Figure 1 shows the EER values of the 
synthetic model applied to children’s data. 
 

 
 

Figure 1: Synthetic model’s EER performance de-
pending on the power p used for model creation. 
 

It can be seen that the best performance is reached 
at about p=0.25. The overview of the results is 
given in Table 1. 
 

 Equal Error Rate  

Real Children’s Model 1.90% 
Male Model 4.07% 

Female Model 2.92% 
Synthetic Model 2.36% 

 

Table 1: EER numbers when using a real children’s 
model compared to a male, female, and synthetic 
model for children’s data evaluation. 
 

The results show that the synthetic children’s mod-
el yields good classification results when applied 
to children’s data. The gold standard, the real 
children’s model application, results in the best 
EER performance. 
If the same evaluation scenario is applied to Span-
ish, a very similar picture evolves. Figure 2 shows 
the EER results versus transformation power p for 
Spanish children’s data. 
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Figure 2: Spanish synthetic model’s EER perfor-
mance depending on the power p used for model 
creation. 
 

In Figure 2 it can be seen that the optimal setting 
for p is about 0.27. This value is very similar to the 
one found for US English, which supports, but cer-
tainly does not prove, the language independence 
claim. Results for Spanish are given in Table 2. 
 

 Equal Error Rate 

Real Children’s model 2.40% 
Male model 5.62% 

Female model 2.17% 
Synthetic model 2.09% 

 

Table 2: EER numbers for Spanish when using a 
real children’s model compared to a male, female, 
and synthetic model for Spanish children’s data 
evaluation. 
 

Similar to English, the Spanish synthetic model 
performs better than the female model on child-
ren’s speech. Interestingly, the acoustic model 
purely trained on children’s data performs worse 
than the female and the synthetic model. It is not 
clear why the children’s model does not outper-
form the female and the synthetic model; an expla-
nation could be diverse and variable training data 
that hurts classification performance. 
It can be seen that for US English and Spanish the 
power p used to adjust the transformation is about 
0.25. Therefore, for a new language where only 
adult data is available, the transformation from the 
male to the female model can be estimated and 
applied to the female model (after being adjusted 
by p=0.25). The resulting synthetic model will 
work reasonably well and could be refined as soon 
as children’s data becomes available. 
 

5 Conclusion 

This work presented a new technique to create 
children’s acoustic models from adult acoustic 
models without the need for children’s training 
data when applied to a new language. While it can 
be assumed that the availability of children’s data 
would improve the resulting acoustic models, the 
approach is effective if children’s data is not avail-
able. It will be interesting to see how performance 
of this technique compares to adapting adult mod-
els by adaptation techniques, i.e. MLLR, when li-
mited amounts of children’s data are available. 
Two scenarios are possible: With increasing 
amount of children’s data speaker adaptation will 
draw even and/or be superior. The other possibility 
is that the presented technique yields better results 
regardless how much real children’s data is availa-
ble, due to the higher variability and noise-
pollution of children’s data. 
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