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Abstract

Recent work has shown that explicitly iden-
tifying and filtering non-anaphoric mentions
prior to coreference resolution can improve
the performance of a coreference system.
We present a novel approach to this task of
anaphoricity determination based on graph
cuts, and demonstrate its superiority to com-
peting approaches by comparing their effec-
tiveness in improving a learning-based coref-
erence system on the ACE data sets.

1 Introduction

Coreference resolution is the problem of identifying
which noun phrases (NPs, ormentions) refer to the
same real-world entity in a text or dialogue. Accord-
ing to Webber (1979), coreference resolution can
be decomposed into two complementary tasks: “(1)
identifying what a text potentially makes available
for anaphoric reference and (2) constraining the can-
didate set of a given anaphoric expression down to
one possible choice.” The first task is nowadays typ-
ically formulated as ananaphoricity determination
task, which aims to classify whether a given men-
tion is anaphoric or not. Knowledge of anaphoric-
ity could improve the precision of a coreference sys-
tem, since non-anaphoric mentions do not have an
antecedent and therefore do not need to be resolved.

Previous work on anaphoricity determination can
be broadly divided into two categories (see Poe-
sio et al. (2004) for an overview). Research in the
first category aims to identify specific types of non-
anaphoric phrases, with some identifying pleonas-
tic it (using heuristics [e.g., Paice and Husk (1987),

Lappin and Leass (1994), Kennedy and Boguraev
(1996)], supervised approaches [e.g., Evans (2001),
Müller (2006), Versley et al. (2008)], and distribu-
tional methods [e.g., Bergsma et al. (2008)]), and
others identifying non-anaphoric definite descrip-
tions (using rule-based techniques [e.g., Vieira and
Poesio (2000)] and unsupervised techniques [e.g.,
Bean and Riloff (1999)]).

On the other hand, research in the second cat-
egory focuses on (1) determining the anaphoricity
of all types of mentions, and (2) using the result-
ing anaphoricity information to improve coreference
resolution. For instance, Ng and Cardie (2002a)
train an anaphoricity classifier to determine whether
a mention is anaphoric, and let an independently-
trained coreference system resolve only those men-
tions that are classified as anaphoric. Somewhat sur-
prisingly, they report that using anaphoricity infor-
mation adversely affects the performance of their
coreference system, as a result of an overlyconser-
vativeanaphoricity classifier that misclassifies many
anaphoric mentions as non-anaphoric. One solu-
tion to this problem is to use anaphoricity infor-
mation assoft constraints rather than as hard con-
straints for coreference resolution. For instance,
when searching for the best partition of a set of
mentions, Luo (2007) combines the probabilities re-
turned by an anaphoricity model and a coreference
model to score a coreference partition, such that a
partition is penalized whenever an anaphoric men-
tion is resolved. Another, arguably more popular,
solution is to “improve” the output of the anaphoric-
ity classifier by exploiting the dependency between
anaphoricity determination and coreference resolu-
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tion. For instance, noting that Ng and Cardie’s
anaphoricity classifier is too conservative, Ng (2004)
first parameterizes their classifier such that its con-
servativeness can be varied, and then tunes this pa-
rameter so that the performance of the coreference
system is maximized. As another example, De-
nis and Baldridge (2007) and Finkel and Manning
(2008) perform joint inference for anaphoricity de-
termination and coreference resolution, by using In-
teger Linear Programming (ILP) to enforce the con-
sistency between the output of the anaphoricity clas-
sifier and that of the coreference classifier.

While this ILP approach and Ng’s (2004) ap-
proach to improving the output of an anaphoricity
classifier both result in increased coreference per-
formance, they have complementary strengths and
weaknesses. Specifically, Ng’s approach can di-
rectly optimize the desired coreference evaluation
metric, but by treating the coreference system as a
black box during the optimization process, it does
not exploit the potentially useful pairwise probabil-
ities provided by the coreference classifier. On the
other hand, the ILP approach does exploit such pair-
wise probabilities, but optimizes an objective func-
tion that does not necessarily have any correlation
with the desired evaluation metric.

Our goals in this paper are two-fold. First, moti-
vated in part by previous work, we propose a graph-
cut-based approach to anaphoricity determination
that combines the strengths of Ng’s approach and
the ILP approach, by exploiting pairwise corefer-
ence probabilities when co-ordinating anaphoricity
and coreference decisions, and at the same time al-
lowing direct optimization of the desired corefer-
ence evaluation metric. Second, we compare our
cut-based approach with the five aforementioned ap-
proaches to anaphoricity determination (namely, Ng
and Cardie (2002a), Ng (2004), Luo (2007), De-
nis and Baldridge (2007), and Finkel and Manning
(2008)) in terms of their effectiveness in improv-
ing a learning-based coreference system. To our
knowledge, there has been no attempt to perform
a comparative evaluation of existing approaches to
anaphoricity determination. It is worth noting, in
particular, that Luo (2007), Denis and Baldridge
(2007), and Finkel and Manning (2008) evaluate
their approaches ontrue mentions extracted from
the answer keys. Since true mentions are com-

posed of all the NPs involved in coreference rela-
tions but only a subset of the singleton NPs (i.e.,
NPs that are not coreferent with any other NPs) in
a text, evaluating the utility of anaphoricity deter-
mination on true mentions to some extent defeats
the purpose of performing anaphoricity determina-
tion, which precisely aims to identify non-anaphoric
mentions. Hence, we hope that our evaluation on
mentions extracted using an NP chunker can reveal
their comparative strengths and weaknesses.

We perform our evaluation on three ACE coref-
erence data sets using two commonly-used scor-
ing programs. Experimental results show that (1)
employing our cut-based approach to anaphoric-
ity determination yields a coreference system that
achieves the best performance for all six data-
set/scoring-program combinations, and (2) among
the five existing approaches, none performs consis-
tently better than the others.

The rest of the paper is organized as follows. Sec-
tion 2 describes our learning-based coreference sys-
tem. In Section 3, we give an overview of the five
baseline approaches to anaphoricity determination.
Section 4 provides the details of our graph-cut-based
approach. Finally, we present evaluation results in
Section 5 and conclude in Section 6.

2 Baseline Coreference Resolution System

Our baseline coreference system implements the
standard machine learning approach to coreference
resolution (see Ng and Cardie (2002b), Ponzetto and
Strube (2006), Yang and Su (2007), for instance),
which consists ofprobabilistic classificationand
clustering, as described below.

2.1 The Standard Machine Learning Approach

We use maximum entropy (MaxEnt) classification
(Berger et al., 1996) in conjunction with the 33 fea-
tures described in Ng (2007) to acquire a model,PC ,
for determining the probability that two mentions,
mi andmj, are coreferent. Hence,

PC(mi,mj) = P (COREFERENT | mi,mj).

In the rest of the paper, we will refer toPC(mi,mj)
as thepairwise coreference probabilitybetweenmi

and mj. To generate training instances, we em-
ploy Soon et al.’s (2001) procedure, relying on the
training texts to create (1) apositive instancefor
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each anaphoric mention,mj, and its closest an-
tecedent,mi; and (2) anegative instancefor mj

paired with each of the intervening mentions,mi+1,
mi+2,. . ., mj−1. When training the feature-weight
parameters of the MaxEnt model, we use 100 it-
erations of the improved iterative scaling (IIS) al-
gorithm (Della Pietra et al., 1997) together with a
Gaussian prior to prevent overfitting.

After training, the coreference model is used to
select an antecedent for each mention in a test text.
Following Soon et al. (2001), we select as the an-
tecedent of each mention,mj, the closestpreced-
ing mention that is classified as coreferent withmj,
where mention pairs with pairwise probabilities of at
least 0.5 are considered coreferent. If no such men-
tion exists, no antecedent will be selected formj . In
essence, we use aclosest-firstclustering algorithm
to impose a partitioning on the mentions.

3 Baseline Approaches to Anaphoricity
Determination

As mentioned previously, we will use five existing
approaches to anaphoricity determination as base-
lines in our evaluation. Common to all five ap-
proaches is the acquisition of an anaphoricity model,
PA, for determining the probability that a mention,
mj, is anaphoric. Hence,

PA(mj) = P (ANAPHORIC | mj)

To trainPA, we again employ MaxEnt modeling,
and create one training instance from each mention
in a training text. Hence, each instance represents a
single mention and consists of 37 features that are
potentially useful for distinguishing anaphoric and
non-anaphoric mentions (see Ng and Cardie (2002a)
for a detailed description of these features).1

The classification of a training instance — one
of ANAPHORIC or NOT ANAPHORIC — is derived
directly from the coreference chains in the associ-
ated training text. Like the coreference model, the
anaphoricity model is trained by running 100 iter-
ations of IIS with a Guassian prior. The resulting
model is then applied to a test text to determine the

1While we train the anaphoricity model using the Ng and
Cardie (2002a) feature set, it should be clear that any features
that are useful for distinguishing anaphoric and non-anaphoric
mentions can be used (e.g., those proposed by Uryupina (2003)
and Elsner and Charniak (2007)).

probability that a mention is anaphoric.
In the rest of this section, we provide an overview

of the five baseline approaches to anaphoricity deter-
mination. We will characterize each approach along
two dimensions: (1) whether it attempts to improve
PA, and if so, how; and (2) whether the resulting
anaphoricity information is used as hard constraints
or soft constraints by the coreference system.

3.1 Ng and Cardie (2002a)

Ng and Cardie (N&C) do not attempt to improvePA,
simply using the anaphoricity information it pro-
vides as hard constraints for coreference resolution.
Specifically, the coreference system resolves only
those mentions that are determined as anaphoric by
PA, where a mention is classified as anaphoric if the
classification threshold is at least 0.5.

3.2 Ng (2004)

PA may not be “sufficiently” accurate, however,
as N&C report a significant drop in the perfor-
mance of their coreference system after incorpo-
rating anaphoricity information, owing in part to
their overly conservativeanaphoricity model that
misclassifies many anaphoric mentions as non-
anaphoric. To address this problem, Ng (2004) at-
tempts to improvePA by introducing a threshold
parameterc to adjust the conservativeness ofPA

as follows. Given a specificc (0 ≤ c ≤ 1), a
mentionmj is classified as anaphoric byPA if and
only if PA(mj) ≥ c. It should be easy to see
that decreasingc yields progressively less conserva-
tive anaphoricity models (i.e., more mentions will
be classified as anaphoric). The parameterc is tuned
using held-out development data to optimize the per-
formance of the coreference system that employs
anaphoricity information (as hard constraints).

In essence, Ng’s approach to improvingPA treats
the coreference system as a black box, merely se-
lecting the value forc that yields the best score ac-
cording to the desired coreference evaluation met-
ric on the held-out data. In particular, unlike some
of the anaphoricity determination approaches dis-
cussed later on, this approach does not attempt to co-
ordinate the anaphoricity decisions and the pairwise
coreference decisions. Nevertheless, as mentioned
before, a unique strength of this approach lies in its
ability to optimize directly the desired coreference

577



evaluation metric.

3.3 Luo (2007)

Among the five anaphoricity determination ap-
proaches, Luo’s (2007) is the only one where
anaphoricity information is exploited as soft con-
straints by the coreference model,PC .

Specifically, Luo’s algorithm attempts to find the
most probable coreference partition of a given set
of mentions. To do so, it scores a partition us-
ing the probabilities provided byPA andPC . Let
us illustrate how this can be done via the follow-
ing example. Given a document with four men-
tions, m1, . . . ,m4, and a partition of the mentions,
{[m1,m3,m4], [m2]}, automatically produced by
some coreference system, Luo’s algorithm scores
the partition by considering the mentions in the
document in a left-to-right manner. As the first
mention in the document,m1 is not anaphoric,
and the probability that it is non-anaphoric is 1 –
PA(m1). Then, the algorithm processesm2, which
according to the partition is non-anaphoric, and
the probability of its being non-anaphoric is 1 –
PA(m2). Next, it processesm3, which is coref-
erent with m1 with probability PC(m1,m3). Fi-
nally, it processesm4, which is coreferent withm1

andm3. The probability thatm4 is coreferent with
the cluster consisting ofm1 and m3 is defined to
be max(PC(m1,m4), PC (m3,m4)), according to
Luo’s algorithm. The score of this partition is the
product of these four probabilities, two provided by
PA and two byPC . As can be seen, a partition
is penalized whenever a mention that is unlikely to
be anaphoric (according toPA) is being resolved to
some antecedent according to the partition.

Nevertheless, it is computationally infeasible to
score all possible partitions given a set of mentions,
as the number of partitions is exponential in the
number of mentions. To cope with this computa-
tional complexity, Luo employs the algorithm pro-
posed in Luo et al. (2004) to heuristically search for
the most probable partition by performing a beam
search through aBell tree. In essence, only the most
promising nodes in the tree are expanded at each
step of the search process, where the “promise” of
a node is defined in terms of the probabilities pro-
vided byPA andPC , as described above. Details of
this process can be found in Luo et al. (2004).

3.4 Denis and Baldridge (2007)

As mentioned before, Denis and Baldridge (D&B)
aim to improve the outputs ofPA and PC by em-
ploying Integer Linear Programming (ILP) to per-
form joint inference for anaphoricity determination
and coreference resolution. The ILP approach is mo-
tivated by the observation that the outputs of these
two models have to satisfy certain constraints. For
instance, ifPC determines that a mention,mj, is
not coreferent with any other mentions in the as-
sociated text, thenPA should determine thatmj is
non-anaphoric. In practice, however, sincePA and
PC are trained independently of each other, this and
other constraints cannot be enforced.

ILP provides a framework forjointly determining
anaphoricity and coreference decisions for a given
set of mentions based on the probabilities provided
by PA and PC , such that the resulting joint deci-
sions satisfy the desired constraints while respecting
as much as possible the probabilistic decisions made
by the independently-trainedPA andPC . Specifi-
cally, an ILP program is composed of an objective
function to be optimized subject to a set of linear
constraints, and is created for each test textD as fol-
lows. LetM be the set of mentions inD, andP be
the set of mention pairs formed fromM (i.e., P =
{(mi,mj) | mi,mj ∈ M, i < j}). Each ILP pro-
gram has a set of indicatorvariables. In our case, we
have one binary-valued variable for each anaphoric-
ity decision and coreference decision to be made by
an ILP solver. Following D&B’s notation, we useyj

to denote the anaphoricity decision for mentionmj,
andx〈i,j〉 to denote the coreference decision involv-
ing mentionsmi andmj. In addition, each variable
is associated with anassignmentcost. Specifically,
let cC

〈i,j〉 = − log(PC(mi,mj)) be the cost of setting

x〈i,j〉 to 1, andc̄C
〈i,j〉 = − log(1 − PC(mi,mj)) be

the complementary cost of settingx〈i,j〉 to 0. We can
similarly define the cost associated with eachyj , let-
ting cA

j =− log(PA(mj)) be the cost of settingyj to
1, andc̄A

j = − log(1 − PA(mj)) be the complemen-
tary cost of settingyj to 0. Given these costs, we
aim to optimize the following objective function:

min
∑

(mi,mj)∈P

cC
〈i,j〉 · x〈i,j〉 + c̄C

〈i,j〉 · (1 − x〈i,j〉)

+
∑

mj∈M

cA
j · yj + c̄A

j · (1 − yj)
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subject to a set of manually-specifiedlinear con-
straints. D&B specify four types of constraints: (1)
each indicator variable can take on a value of 0 or 1;
(2) if mi andmj are coreferent (x〈i,j〉=1), thenmj is
anaphoric (yj=1); (3) if mj is anaphoric (yj=1), then
it must be coreferent with some preceding mention
mi; and (4) ifmj is non-anaphoric, then it cannot be
coreferent with any mention. Note that we aremini-
mizingthe objective function, since each assignment
cost is expressed as a negative logarithm value. We
uselp solve2, an ILP solver, to solve this program.

It is easy to see that enforcing consistency using
ILP amounts to employing anaphoricity informa-
tion as hard constraints for the coreference system.
Since transitivity is not guaranteed by the above con-
straints, we follow D&B and use theaggressive-
mergeclustering algorithm to put any two mentions
that are posited as coreferent into the same cluster.

3.5 Finkel and Manning (2008)

Finkel and Manning (F&M) present one simple ex-
tension to D&B’s ILP approach: augmenting the
set of linear constraints with the transitivity con-
straint. This ensures that ifx〈i,j〉=1 andx〈j,k〉=1,
thenx〈i,k〉=1. As a result, the coreference decisions
do not need to be co-ordinated by a separate cluster-
ing mechanism.

4 Cut-Based Anaphoricity Determination

As mentioned in the introduction, our graph-cut-
based approach to anaphoricity determination is mo-
tivated by Ng’s (2004) and the ILP approach, aim-
ing to combine the strengths of the two approaches.
Specifically, like Ng (2004), our approach allows di-
rect optimization of the desired coreference evalua-
tion metric; and like the ILP approach, our approach
co-ordinates anaphoricity decisions and coreference
decisions by exploiting the pairwise probabilities
provided by a coreference model. In this section,
we will introduce our cut-based approach, starting
by reviewing concepts related to minimum cuts.

4.1 The Minimum Cut Problem Setting

Assume that we want to partition a set ofn objects,
{x1, x2, . . . , xn}, into two sets,Y1 andY2. We have
two types of scores concerning thex’s and theY ’s:

2Available from http://lpsolve.sourceforge.net/

membershipscores andsimilarity scores. The mem-
bership score,memYi(xj), is a non-negative quan-
tity that approximates the “affinity” ofxj to Yi. On
the other hand, the similarity score,sim(xj , xk), is
a non-negative quantity that provides an estimate of
the similarity betweenxj andxk.

Informally, our goal is to maximize each object’s
net happiness, which is computed by subtracting its
membership score of the class it isnot assigned to
from its membership score of the class it is assigned
to. However, at the same time, we want to avoid
assigning similar objects to different classes. More
formally, we seek to minimize the partition cost:∑

xj∈Y1,xk∈Y2

sim(xj, xk)+
∑

x∈Y1

memY2(x)+
∑

x∈Y2

memY1(x)

There exists an efficient algorithm for solving this
seemingly intractable problem when it is recast as
a graph problem. So, let us construct a graph,G,
based on the available scores as follows. First, we
create two nodes,s and t (called thesourceand
the sink, respectively), to represent the two classes.
Then, we create one “object” node for each of the
n objects. For each object,xj , we add two directed
edges, one froms to xj (with weight memY1(xj))
and the other fromxj to t (with weightmemY2(xj)).
Moreover, for each pair of object nodes,xj andxk,
we add two directed edges (one fromxj to xk and
another fromxk to xj), both of which have weight
sim(xj , xk). A cut in G is defined as a partition of
the nodes into two sets,S andT , such thats ∈ S,
t ∈ T ; and the cost of the cut,cost(S, T ), is the
sum of the weights of the edges going fromS to
T . A minimum cut is a cut that has the lowest cost
among all the cuts ofG. It can be proved that find-
ing a minimum cut ofG is equivalent to minimizing
the partition cost defined as above. The main advan-
tage of recasting the above minimization problem as
a graph-cut problem is that there exist polynomial-
time maxflow algorithms for finding a minimum cut.

4.2 Graph Construction

Next, we show how to construct the graph to which
the mincut-finding algorithm will be applied. The
ultimate goal is to use the mincut finder to parti-
tion a given set of mentions into two subsets, so that
our coreference system will attempt to resolve only
those mentions that are in the subset correspond-
ing to ANAPHORIC. In other words, the resulting
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anaphoricity information will be used to identify and
filter non-anaphoric mentions prior to coreference
resolution. The graph construction process, which
takes as input a set of mentions in a test text, is com-
posed of three steps, as described below.

Step 1: Mimicking Ng and Cardie (2002a)
To construct the desired graph,G, we first create
the source,s, and the sink,t, that represent the
classesANAPHORIC andNOT ANAPHORIC, respec-
tively. Then, for each mentionmn in the input text,
we create one node,n, and two edges,sn andnt,
connectingn to s and t. Next, we computewsn

and wnt, the weights associated withsn and nt.
A natural choice would be to usePA(mn) as the
weight ofsn and (1−wsn) as the weight ofnt. (We
will assume throughout thatwnt is always equal to
1 − wsn.) If we apply the mincut finder to the cur-
rent G, it should be easy to see that (1) any node
n wherewsn > 0.5 will be assigned tos, (2) any
node n where wsn < 0.5 will be assigned tot,
and (3) any remaining node will be assigned to one
of them. (Without loss of generality, we assume
that such nodes are assigned tos.) Hence, the set
of mentions determined as anaphoric by the mincut
finder is identical to the set of mentions classified as
anaphoric byPA, thus yielding a coreference system
that is functionally equivalent to N&C’s. This also
implies thatG shares the same potential weakness
asPA: being overly conservative in determining a
mention as anaphoric.

Step 2: Mimicking Ng (2004)
One way to “improve”G is to make it functionally
equivalent to Ng’s (2004) approach. Specifically,
our goal in Step 2 is to modify the edge weights in
G (without adding new edges or nodes) such that the
mincut finder classifies a noden as anaphoric if and
only if PA(mn) ≥ c for somec ∈ [0, 1]. Now, recall
from Step 1 that the mincut finder classifies a node
n as anaphoric if and only ifwsn ≥ 0.5. Hence,
to achieve the aforementioned goal, we just need to
ensure the property thatwsn ≥ 0.5 if and only if
PA(mn) ≥ c. Consequently, we computewsn using
a sigmoid function:

wsn =
1

1 + e−α×(PA(mn)−c)

whereα is a constant that controls the “steepness”

of the sigmoid.3 It should be easy to verify that the
sigmoid satisfies the aforementioned property. As
noted before,wnt = 1 − wsn for each noden. In-
spired by Ng (2004), the value of the parameterc
will be tuned based on held-out development data to
maximize coreference performance.

Step 3: Incorporating coreference probabilities
Like Ng’s (2004) approach, the currentG suffers
from the weakness of not exploiting the pairwise
probabilities provided byPC . Fortunately, these
probabilities can be naturally incorporated intoG as
similarity scores. To see why these pairwise prob-
abilities are potentially useful, consider two men-
tions,mi andmj, in a textD that are coreferent and
are both anaphoric. Assume that the graphG con-
structed fromD has these edge weights:wsi = 0.8,
wsj = 0.3, andwij = wji = 0.8. Without the sim-
ilarity scores, the mincut finder will correctly deter-
minemi as anaphoric but incorrectly classifymj as
non-anaphoric. On the other hand, if the similarity
scores are taken into account, the mincut finder will
correctly determine both mentions as anaphoric.

The above discussion suggests that it is desirable
to incorporate edges between two nodes,i and j,
when mi and mj are likely to be coreferent (i.e.,
PC(mi,mj) ≥ c2 for some constantc2). In our im-
plementation, we tune this new parameter,c2, jointly
with c (see Step 2) on development data to maxi-
mize coreference performance. While it is possible
to imagine scenarios where incorporating pairwise
probabilities is not beneficial, we believe that these
probabilities represent a source of information that
could be profitably exploited via learning appropri-
ate values forc andc2.4

3One of the main reasons why we use a sigmoid function
(rather than a linear function) is that the weights will still fall
within the[0, 1] interval after the transformation, a property that
will turn out to be convenient when the pairwise coreference
probabilities are incorporated (see Step 3).α is chosen so that
the difference between two weights after the transformation is
as close as possible to their difference before the transformation.
With this criterion in mind, we setα to 0.42 in our experiments.

4Incorporating the coreference probabilities can potentially
identify some of the anaphoric mentions that would be misclas-
sified otherwise. However, note that the minimum cut algorithm
does not maintain the notion of directionality that would allow
one to determine that a discourse-new mention (i.e., the first
mention of a coreference chain) is not anaphoric. In particu-
lar, the algorithm tends to classify all members of a coreference
chain, including the first mention, as anaphoric. We did not ex-
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5 Evaluation

5.1 Experimental Setup

For evaluation, we use the ACE Phase II coreference
corpus, which is composed of three sections: Broad-
cast News (BNEWS), Newspaper (NPAPER), and
Newswire (NWIRE). Each section is in turn com-
posed of a training set and a test set. For each
section, we train an anaphoricity model,PA, and
a coreference model,PC , on the training set, and
evaluatePC (when used in combination with differ-
ent approaches to anaphoricity determination) on the
test set. As noted before, the mentions used are ex-
tracted automatically using an in-house NP chunker.
Results are reported in terms of recall (R), precision
(P), and F-measure (F), obtained using two corefer-
ence scoring programs: the MUC scorer (Vilain et
al., 1995) and the CEAF scorer (Luo, 2005).

5.2 Results and Discussions

“No Anaphoricity” baseline. Our first baseline is
the learning-based coreference system described in
Section 2, which does not employ any anaphoric-
ity determination algorithm. Results using the MUC
scorer and the CEAF scorer are shown in row 1 of
Tables 1 and 2, respectively. As we can see, MUC
F-score ranges from 55.0 to 61.7 and CEAF F-score
ranges from 55.3 to 61.2.
Duplicated Ng and Cardie (2002a) baseline.
Next, we evaluate our second baseline, which is
N&C’s coreference system. As seen from row 2 of
Tables 1 and 2, MUC F-score ranges from 50.5 to
60.0 and CEAF F-score ranges from 54.5 to 59.4.
In comparison to the first baseline, we see drops in
F-score in all cases as a result of considerable pre-
cipitation in recall, which can in turn be attributed
to the misclassification of many anaphoric mentions
by the anaphoricity model. More specifically, MUC
F-score decreases by 1.7–5.5%, whereas CEAF F-
score decreases by 0.5–1.8%. These trends are con-
sistent with those reported in N&C’s paper.
Duplicated Ng (2004) baseline. Our third base-
line is Ng’s (2004) coreference system. Recall that
this resolver requires the tuning of the conservative-
ness parameter,c, on held-out data. To ensure a fair
comparison between different resolvers, we do not

plicitly address this issue, simply letting the coreference clus-
tering algorithm discover that first mentions are non-anaphoric.

rely on additional data for parameter tuning. Rather,
we reserve13 of the available training data for tuning
c, for which we tested values from 0 to 1 in steps of
0.01, and use the remaining23 of the data for training
PA andPC . Results are shown in row 3 of Tables
1 and 2, where MUC F-score ranges from 57.0 to
61.9 and CEAF F-score ranges from 55.5 to 60.6. In
comparison to the first baseline, we obtain mixed re-
sults: MUC F-score increases by 2.0% and 0.2% for
BNEWS and NPAPER, respectively, but drops by
0.1% for NWIRE; CEAF F-score increases by 0.2%
and 1.1% for BNEWS and NPAPER, respectively,
but drops by 0.6% for NWIRE.

Duplicated Luo (2007) baseline. Results of our
fourth baseline, in which the anaphoricity and pair-
wise coreference probabilities are combined to score
a partition using Luo’s system, are shown in row 4
of Tables 1 and 2. Here, we see that MUC F-score
ranges from 55.8 to 62.1 and CEAF F-score ranges
from 56.3 to 61.5. In comparison to the first base-
line, performance improves, though insignificantly,5

in all cases: MUC F-score increases by 0.2–0.8%,
whereas CEAF F-score increases by 0.3–1.0%.

Duplicated Denis and Baldridge (2007) base-
line. Our fifth baseline performs joint inference
for anaphoricity determination and coreference res-
olution using D&B’s ILP approach. Results are
shown in row 5 of Tables 1 and 2, where MUC
F-score ranges from 56.2 to 63.8 and CEAF F-
score ranges from 56.9 to 61.5. In comparison to
the first baseline, MUC F-score always increases,
with improvements ranging from 1.2% to 2.1%.
CEAF results are mixed: F-score increases signifi-
cantly for BNEWS, drops insignificantly for NPA-
PER, and rises insignificantly for NWIRE. The dif-
ference in performance trends between the two scor-
ers can be attributed to the fact that the MUC
scorer typically under-penalizes errors due to over-
merging, which occurs as a result of D&B’s using
the aggressive-merge clustering algorithm. In addi-
tion, we can see that D&B’s approach performs at
least as good as Luo’s approach in all but one case
(NPAPER/CEAF).

Duplicated Finkel and Manning (2008) baseline.
Our sixth baseline is F&M’s coreference system,

5Like the MUC organizers, we use Approximate Random-
ization (Noreen, 1989) for significance testing, withp=0.05.
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Broadcast News Newspaper Newswire
Approach to Anaphoricity Determination R P F R P F R P F

1 No Anaphoricity 57.7 52.6 55.0 60.8 62.6 61.7 59.1 58.1 58.6
2 Duplicated Ng and Cardie (2002a) 40.3 67.7 50.5† 52.1 70.6 60.0 43.0 69.3 53.1†
3 Duplicated Ng (2004) 51.9 63.2 57.0 60.0 63.8 61.9 59.3 57.7 58.5
4 Duplicated Luo (2007) 55.4 56.1 55.8 60.6 63.7 62.1 58.4 59.2 58.8
5 Duplicated Denis and Baldridge (2007) 57.3 55.1 56.2∗ 63.8 63.7 63.8∗ 60.4 59.3 59.8∗

6 Duplicated Finkel and Manning (2008) 56.4 55.3 55.8 63.8 63.7 63.8∗ 59.7 59.2 59.5
7 Graph Minimum Cut 53.1 67.5 59.4∗ 57.9 71.2 63.9∗ 54.1 69.0 60.6∗

Table 1: MUC scores for the three ACE data sets. F-scores thatrepresent statistically significant gains and drops with
respect to the “No Anaphoricity” baseline are marked with anasterisk (*) and a dagger (†), respectively.

Broadcast News Newspaper Newswire
Approach to Anaphoricity Determination R P F R P F R P F

1 No Anaphoricity 63.2 49.2 55.3 64.5 54.3 59.0 67.3 56.1 61.2
2 Duplicated Ng and Cardie (2002a) 55.9 53.3 54.5 60.7 56.3 58.5 60.6 58.2 59.4
3 Duplicated Ng (2004) 62.5 49.9 55.5 63.5 57.0 60.1 65.6 56.3 60.6
4 Duplicated Luo (2007) 62.7 51.1 56.3 64.6 55.4 59.6 67.0 56.8 61.5
5 Duplicated Denis and Baldridge (2007) 63.8 51.4 56.9∗ 62.6 53.6 57.8 67.0 56.8 61.5
6 Duplicated Finkel and Manning (2008) 63.2 51.3 56.7∗ 62.6 53.6 57.8 66.7 56.7 61.3
7 Graph Minimum Cut 61.4 57.6 59.4∗ 64.1 59.4 61.7∗ 65.7 61.9 63.8∗

Table 2: CEAF scores for the three ACE data sets. F-scores that represent statistically significant gains and drops with
respect to the “No Anaphoricity” baseline are marked with anasterisk (*) and a dagger (†), respectively.

which is essentially D&B’s approach augmented
with transitivity constraints. Results are shown in
row 6 of Tables 1 and 2, where MUC F-score ranges
from 55.8 to 63.8 and CEAF F-score ranges from
56.7 to 61.3. In comparison to the D&B baseline, we
see that F-score never improves, regardless of which
scoring program is used. In fact, recall slightly de-
teriorates, and this can be attributed to F&M’s ob-
servation that transitivity constraints tend to produce
smaller clusters. Overall, these results suggest that
enforcing transitivity for coreference resolution is
not useful for improving coreference performance.

Our graph-cut-based approach. Finally, we
evaluate the coreference system using the anaphoric-
ity information provided by our cut-based approach.
As before, we reserve13 of the training data for
jointly tuning the two parameters,c andc2, and use
the remaining2

3 for training PA andPC . For tun-
ing, we tested values from 0 to 1 in steps of 0.1 for
both c and c2. Results are shown in row 7 of Ta-
bles 1 and 2. As we can see, MUC F-score ranges
from 59.4 to 63.9 and CEAF F-score ranges from
59.4 to 63.8, representing a significant improvement
over the first baseline in all six cases: MUC F-score
rises by 2.0–4.4% and CEAF F-score rises by 2.6–
4.1%. Such an improvement can be attributed to a
large gain in precision and a smaller drop in recall.

This implies that our mincut algorithm has success-
fully identified many non-anaphoric mentions, but
in comparison to N&C’s approach, it misclassifies
a smaller number of anaphoric mentions. Moreover,
our approach achieves the best F-score for each data-
set/scoring-program combination, and significantly
outperforms the best baseline (D&B) in all but two
cases, NPAPER/MUC and NWIRE/MUC.

6 Conclusions

We have presented a graph-cut-based approach to
anaphoricity determination that (1) directly opti-
mizes the desired coreference evaluation metric
through parameterization and (2) exploits the proba-
bilities provided by the coreference model when co-
ordinating anaphoricity and coreference decisions.
Another major contribution of our work is the em-
pirical comparison of our approach against five ex-
isting approaches to anaphoricity determination in
terms of their effectiveness in improving a coref-
erence system using automatically extracted men-
tions. Our approach demonstrates effectiveness and
robustness by achieving the best result on all three
ACE data sets according to both the MUC scorer
and the CEAF scorer. We believe that our cut-based
approach provides a flexible mechanism for co-
ordinating anaphoricity and coreference decisions.
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