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Abstract Lappin and Leass (1994), Kennedy and Boguraev
S (1996)], supervised approaches [e.g., Evans (2001),

Rfe_cent wgr::l ha.s shown thathexpl'c'tly @en- Muller (2006), Versley et al. (2008)], and distribu-
tifying and filtering non-anaphoric mentions tional methods [e.g., Bergsma et al. (2008)]), and

prior to coreference resolution can improve : . . . .
the performance of a coreference system others identifying non-anaphoric definite descrip-

We present a novel approach to this task of  tions (using rule-based techniques [e.g., Vieira and
anaphoricity determination based on graph Poesio (2000)] and unsupervised techniques [e.g.,
cuts, and demonstrate its superiority to com- ~ Bean and Riloff (1999)]).

peting approaches by comparing their effec- .
tiveness in improving a learning-based coref- On the other hand, research in the second cat-

erence system on the ACE data sets. egory focuses on (1) determining the anaphoricity
of all types of mentions, and (2) using the result-
ing anaphoricity information to improve coreference
resolution. For instance, Ng and Cardie (2002a)
Coreference resolution is the problem of identifyingtrain an anaphoricity classifier to determine whether
which noun phrases (NPs, orention$ refer to the a mention is anaphoric, and let an independently-
same real-world entity in a text or dialogue. Accord4rained coreference system resolve only those men-
ing to Webber (1979), coreference resolution cations that are classified as anaphoric. Somewhat sur-
be decomposed into two complementary tasks: “(19risingly, they report that using anaphoricity infor-
identifying what a text potentially makes availablemation adversely affects the performance of their
for anaphoric reference and (2) constraining the camoreference system, as a result of an ovedyser-
didate set of a given anaphoric expression down teativeanaphoricity classifier that misclassifies many
one possible choice.” The first task is nowadays typanaphoric mentions as non-anaphoric. One solu-
ically formulated as amnaphoricity determination tion to this problem is to use anaphoricity infor-
task, which aims to classify whether a given menmation assoft constraints rather than as hard con-
tion is anaphoric or not. Knowledge of anaphoricstraints for coreference resolution. For instance,
ity could improve the precision of a coreference syswhen searching for the best partition of a set of
tem, since non-anaphoric mentions do not have anentions, Luo (2007) combines the probabilities re-
antecedent and therefore do not need to be resolvedrned by an anaphoricity model and a coreference
Previous work on anaphoricity determination carmodel to score a coreference partition, such that a
be broadly divided into two categories (see Poepartition is penalized whenever an anaphoric men-
sio et al. (2004) for an overview). Research in thdéion is resolved. Another, arguably more popular,
first category aims to identify specific types of nonsolution is to “improve” the output of the anaphoric-
anaphoric phrases, with some identifying pleonasty classifier by exploiting the dependency between
tic it (using heuristics [e.g., Paice and Husk (1987)xanaphoricity determination and coreference resolu-

1 Introduction

575

Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 575-583,
Boulder, Colorado, June 2009. (©)2009 Association for Computational Linguistics



tion. For instance, noting that Ng and Cardie’yposed of all the NPs involved in coreference rela-
anaphoricity classifier is too conservative, Ng (2004)ions but only a subset of the singleton NPs (i.e.,
first parameterizes their classifier such that its corNPs that are not coreferent with any other NPs) in
servativeness can be varied, and then tunes this @atext, evaluating the utility of anaphoricity deter-
rameter so that the performance of the coreferengeination on true mentions to some extent defeats
system is maximized. As another example, Dethe purpose of performing anaphoricity determina-
nis and Baldridge (2007) and Finkel and Mannindion, which precisely aims to identify non-anaphoric
(2008) perform joint inference for anaphoricity de-mentions. Hence, we hope that our evaluation on
termination and coreference resolution, by using Inmentions extracted using an NP chunker can reveal
teger Linear Programming (ILP) to enforce the contheir comparative strengths and weaknesses.
sistency between the output of the anaphoricity clas- We perform our evaluation on three ACE coref-
sifier and that of the coreference classifier. erence data sets using two commonly-used scor-

While this ILP approach and Ng's (2004) ap-ing programs. Experimental results show that (1)
proach to improving the output of an anaphoricityemploying our cut-based approach to anaphoric-
classifier both result in increased coreference peity determination yields a coreference system that
formance, they have complementary strengths arathieves the best performance for all six data-
weaknesses. Specifically, Ng's approach can dset/scoring-program combinations, and (2) among
rectly optimize the desired coreference evaluatiothe five existing approaches, none performs consis-
metric, but by treating the coreference system astantly better than the others.
black box during the optimization process, it does The rest of the paper is organized as follows. Sec-
not exploit the potentially useful pairwise probabil-tion 2 describes our learning-based coreference sys-
ities provided by the coreference classifier. On theem. In Section 3, we give an overview of the five
other hand, the ILP approach does exploit such paibaseline approaches to anaphoricity determination.
wise probabilities, but optimizes an objective funcSection 4 provides the details of our graph-cut-based
tion that does not necessarily have any correlatioapproach. Finally, we present evaluation results in
with the desired evaluation metric. Section 5 and conclude in Section 6.

Our goals in this paper are two-fold. First, moti-
vated in part by previous work, we propose a graph2 Baseline Coreference Resolution System
cut-based approach to anaphoricity determinatio%

. ur baseline coreference system implements the
that combines the strengths of Ng's approach ang y P

the ILP roach. by exploitin Wi refer- andard machine learning approach to coreference
N approach, Ly eXpioling pairwise Corelero g i (see Ng and Cardie (2002b), Ponzetto and
ence probabilities when co-ordinating anaphoricit

and coreference decisions, and at the same time étf?be (200.6)’ Yang and_ .Sl.J (2007).’ _for_lnstance),
) ) T . which consists ofprobabilistic classificationand
lowing direct optimization of the desired corefer-

. . clustering as described below.
ence evaluation metric. Second, we compare our

cut-based approach with the five aforementioned ap-1  The Standard Machine Learning Approach

proaches _to anaphoricity determination (namely, N%Ve use maximum entropy (MaxEnt) classification
and Cardie (2002a), Ng (2004), Luo (2007), e-Berger et al., 1996) in conjunction with the 33 fea-

nis and Baldridge (2007), and Finkel and Mannin ures described in Ng (2007) to acquire a model,

2008)) in terms of their effectiveness in improv- - - :

.( ) . ProVso, determining the probability that two mentions,

ing a learning-based coreference system. To our
m; andm;, are coreferent. Hence,

knowledge, there has been no attempt to perform

a comparative evaluation of existing approaches to £'c(mi,m;) = P(COREFERENT | m;,m;).

anaphoricity determination. It is worth noting, in In the rest of the paper, we will refer - (m;, m;)

particular, that Luo (2007), Denis and Baldridgeas thepairwise coreference probabilitgetweenm;

(2007), and Finkel and Manning (2008) evaluat@nd m;. To generate training instances, we em-

their approaches otrue mentions extracted from ploy Soon et al.'s (2001) procedure, relying on the

the answer keys. Since true mentions are contraining texts to create (1) positive instancefor
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each anaphoric mentiony;, and its closest an- probability that a mention is anaphoric.
tecedent,m;; and (2) anegative instancdor m; In the rest of this section, we provide an overview
paired with each of the intervening mentioms;, 1, of the five baseline approaches to anaphoricity deter-
mi42,. .., mj—1. When training the feature-weight mination. We will characterize each approach along
parameters of the MaxEnt model, we use 100 ittwo dimensions: (1) whether it attempts to improve
erations of the improved iterative scaling (IIS) al-P,4, and if so, how; and (2) whether the resulting
gorithm (Della Pietra et al., 1997) together with aanaphoricity information is used as hard constraints
Gaussian prior to prevent overfitting. or soft constraints by the coreference system.
After training, the coreference model is used to ]
select an antecedent for each mention in a test text1 NG and Cardie (2002a)
Following Soon et al. (2001), we select as the arNg and Cardie (N&C) do not attempt to impro¥&,
tecedent of each mentiomy;, the closestpreced- simply using the anaphoricity information it pro-
ing mention that is classified as coreferent with, vides as hard constraints for coreference resolution.
where mention pairs with pairwise probabilities of atSpecifically, the coreference system resolves only
least 0.5 are considered coreferent. If no such methose mentions that are determined as anaphoric by
tion exists, no antecedent will be selectedifor. In Py, where a mention is classified as anaphoric if the
essence, we usedosest-firstclustering algorithm classification threshold is at least 0.5.
to impose a partitioning on the mentions.
3.2 Ng (2004)

3 Baseline Approaches to Anaphoricity P4 may not be “sufficiently” accurate, however,

Determination as N&C report a significant drop in the perfor-

] ) ] ] .. mance of their coreference system after incorpo-
As mentioned previously, we will use five eX|st|ngrating anaphoricity information, owing in part to

gpprogches to anaphoncny determination as basfﬁ'eir overly conservativeanaphoricity model that
lines in our evaluatlpn: Common to a!l _f'Ve AP~ misclassifies many anaphoric mentions as non-
proaches is the acquisition of an anaphoricity mOdeﬁnaphoric. To address this problem, Ng (2004) at-
Py, for determ_ining the probability that a mention’tempts to improveP, by introducing a threshold
mj, i$ anaphoric. Hence, parameterc to adjust the conservativeness Bf

Pa(mj) = P(ANAPHORIC | m;) as follows. Given a specific (0 < ¢ < 1), a

To train P4, we again employ MaxEnt modeling, mentionm; is classified as anaphoric by if and
and create one training instance from each mentig®nly if Pa(m;) > c. It should be easy to see
in a training text. Hence, each instance representsiat decreasing yields progressively less conserva-
single mention and consists of 37 features that at&/€ anaphoricity models (i.e., more mentions will
potentially useful for distinguishing anaphoric andoe classified as anaphoric). The parametsrtuned
non-anaphoric mentions (see Ng and Cardie (200285ing held-out development data to optimize the per-

for a detailed description of these featurés). formance of the coreference system that employs
The classification of a training instance — oneanaphoricity information (as haﬂ_j const_ralnts).
of ANAPHORIC Or NOT ANAPHORIC — is derived In essence, Ng's approach to improvify treats

directly from the coreference chains in the assocthe coreference system as a black box, merely se-
ated training text. Like the coreference model, théecting the value for that yields the best score ac-
anaphoricity model is trained by running 100 iter-cording to the desired coreference evaluation met-
ations of IS with a Guassian prior. The resultingfic on the held-out data. In particular, unlike some

model is then applied to a test text to determine thef the anaphoricity determination approaches dis-
cussed later on, this approach does not attempt to co-

"While we train the anaphoricity model using the Ng andprdinate the anaphoricity decisions and the pairwise

Cardie (2002a) feature set, it should be clear that any festu . ¢ rance decisions. Nevertheless, as mentioned
that are useful for distinguishing anaphoric and non-aneph

mentions can be used (e.g., those proposed by Uryupinay20d3efore, a unique strength of this approach lies in its
and Elsner and Charniak (2007)). ability to optimize directly the desired coreference
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evaluation metric. 3.4 Denis and Baldridge (2007)

3.3 Luo (2007) As mer_ltioned before, Denis and Baldridge (D&B)
] o o aim to improve the outputs aP4 and P- by em-

Among the five anaphor_|C|ty determination aPploying Integer Linear Programming (ILP) to per-
proaches, Luo's (2007) is the only one whergyqm joint inference for anaphoricity determination
anaphoricity information is exploited as soft con-ynq coreference resolution. The ILP approach is mo-
straints by the coreference modét;. tivated by the observation that the outputs of these

Specifically, Luo's algorithm attempts to find theyyq models have to satisfy certain constraints. For
most probable coreference partition of a given S‘?ﬁstance, if P determines that a mentiomy;, is
of mentions. To do so, it scores a partition Uspot coreferent with any other mentions in the as-
ing the probabilities provided by’s and Pc. Let  gqciated text, thetP, should determine that; is
us illustrate how this can be done via the fo”OW‘non-anaphoric. In practice, however, sinBg and
ing example. Given a document with four men-p., are trained independently of each other, this and
tions, my,...,my, and a partition of the mentions, qiher constraints cannot be enforced.
{[ma,m3,ma], [mo]}, automatically produced by | p provides a framework fojointly determining
some coreference system, LUo's algorithm scOregnapnhoricity and coreference decisions for a given
the partition by considering the mentions in the&set of mentions based on the probabilities provided
document in a left-to-right manner. As the firstby P, and Pg, such that the resulting joint deci-
mention in the documentm, is not anaphoric, sjgns satisfy the desired constraints while respecting
and the probability that it is non-anaphoric is 1 g mych as possible the probabilistic decisions made
Py(m). Then, the algorithm processes;, which  y the independently-traine#y and P Specifi-
according to the partition is non-anaphoric, andaly, an ILP program is composed of an objective
the probability of its being non-anaphoric is 1 —nction to be optimized subject to a set of linear
Pa(mg). Next, it processesns, which is coref-  c,nstraints, and is created for each test f@xts fol-
erent withm, with probability Fo(m1,m3). Fi-  |ows. LetM be the set of mentions iP, and P be
nally, it processesn,, which is coreferent withn;  tne set of mention pairs formed froa¥ (i.e., P =
andmg. The probability thatn, is coreferent with {(mi,m;) | mi,m; € M,i < j}). Each ILP pro-
the cluster consisting ofn; andms is defined 10 gram has a set of indicateariables In our case, we
be max(Fo(mi,ma), Po(ms,ma)), according 10 paye one binary-valued variable for each anaphoric-
Luo's algorithm. The score of this partition is thejty, gecision and coreference decision to be made by
product of these four probabilities, two provided by, |Lp solver. Following D&B's notation, we use
P4 and two by Fe. As can be seen, a partition 1 genote the anaphoricity decision for mention,
is penalized whenever a mention that is unlikely t%ndx@- ;) to denote the coreference decision involv-
be anaphoric (according t) is being resolved 10 jng mentionsm; andm;. In addition, each variable
some antecedent according to the partition. is associated with aassignmentost. Specifically,

Nevertheless, it is computationally infeasible et € | = — log(Pp(m; m;)) be the cost of setting
score all possible partitions given a set of mentions <”i> 1 andeC .« = —log(l — P N b
as the number of partitions is exponential in th?r%jéor?]plie;nerftg@ cost gfgsfet; ‘Cj(:'gz(’)mvjv)e) c:n
number of mentions. To cope with this computa- wal ’

: . , similarly define the cost associated with egghlet-
tional complexity, Luo employs the algorithm pro-

: . ting ¢! = —log(Pa(m;)) be th t of setting t
posed in Luo et al. (2004) to heuristically search forlIng Cé—A _ Ogl( Al(mJ])D) © 4 ebcotsho S€ Ing 0
the most probable partition by performing a beam” 219 =~ 0g(1 — Pa(m;)) be the complemen-

search through Bell tree In essence, only the mostt"’_1ry tCOSt t(')f .Sett;EgJ]{ ﬁ) OS G|v;:_n tthes? coits,.we
promising nodes in the tree are expanded at eadi™ 10 OPliMIze Ihe Toflowing objective function.

step of the search process, where the “promise” of Min Z cg,p “TGg) Tt 55,j> (L=25)

a node is defined in terms of the probabilities pro- (mi,mg)eP
V|qled byP4 andFP¢, as des_crlbed above. Details of + Y eyt (L-yy)
this process can be found in Luo et al. (2004). myeM
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subject to a set of manually-specifididear con- membershigcores andimilarity scores. The mem-
straints. D&B specify four types of constraints: (1)bership scorenemy; (x;), is a non-negative quan-
each indicator variable can take on a value of O or Xty that approximates the “affinity” of; to ¥;. On
(2) if m; andm; are coreferent«; ;y=1), themm; is  the other hand, the similarity scor€m(z;, zy), is
anaphoric ¢;=1); (3) if m; is anaphoricg;=1), then a non-negative quantity that provides an estimate of
it must be coreferent with some preceding mentiothe similarity betweern:; andzxy,.
m;, and (4) ifm; is non-anaphoric, then it cannot be  Informally, our goal is to maximize each object’s
coreferent with any mention. Note that we aneni- net happiness, which is computed by subtracting its
mizingthe objective function, since each assignmermembership score of the class itrist assigned to
cost is expressed as a negative logarithm value. Vilom its membership score of the class it is assigned
uselp_solvez, an ILP solver, to solve this program. to. However, at the same time, we want to avoid
It is easy to see that enforcing consistency usingssigning similar objects to different classes. More
ILP amounts to employing anaphoricity informa-formally, we seek to minimize the partition cost:
tion as hard constraints for the coreference system. Z sim(z;, ox) +Z memy, (z) +Z memy, ()
Since transitivity is not guaranteed by the above conscy, ey, zeY; zeYs
straints, we follow D&B and use thaggressive-  There exists an efficient algorithm for solving this
mergeclustering algorithm to put any two mentionsseemingly intractable problem when it is recast as
that are posited as coreferent into the same clustera graph problem. So, let us construct a gra@h,
_ _ based on the available scores as follows. First, we
3.5  Finkel and Manning (2008) create two nodess andt (called thesource and
Finkel and Manning (F&M) present one simple exthe sink respectively), to represent the two classes.
tension to D&B’s ILP approach: augmenting theThen, we create one “object” node for each of the
set of linear constraints with the transitivity con-n objects. For each object,;, we add two directed
straint. This ensures that if; =1 andz;y=1, edges, one from to x; (with weightmemy, (z;))
thenz; 1y=1. As aresult, the coreference decisiongand the other from:; to ¢ (with weightmemy, (x;)).
do not need to be co-ordinated by a separate clustévtoreover, for each pair of object nodes; andxzy,
ing mechanism. we add two directed edges (one fram to z;, and
o o another fromzy, to z;), both of which have weight
4 Cut-Based Anaphoricity Determination gy (x:; 2,). A cutin G is defined as a partition of
As mentioned in the introduction, our graph-cut-1® Nodes into two sets andT’, such thats € S,
4.€ T and the cost of the cutost(S,T), is the
sum of the weights of the edges going frashto
d’. A minimum cut is a cut that has the lowest cost

based approach to anaphoricity determination is m
tivated by Ng's (2004) and the ILP approach, aim
ing to combine the strengths of the two approache )
Specifically, like Ng (2004), our approach allows di-2mMong all the cuts of. It can be proved that find-
rect optimization of the desired coreference evalud?9 @ MiNimum cut of is equivalent to minimizing
tion metric; and like the ILP approach, our approacllihe partition cost defined as above. The main advan-

co-ordinates anaphoricity decisions and coreferend@9€ Of recasting the above minimization problem as
decisions by exploiting the pairwise probabilities® 9raph-cut problem is that there exist polynomial-

provided by a coreference model. In this sectiont,'me maxflow algorithms for finding a minimum cut.

we will introduce our cut-based approach, starting, 2  Graph Construction

by reviewing concepts related to minimum cuts. .
y g P Next, we show how to construct the graph to which

4.1 The Minimum Cut Problem Setting the mincut-finding algorithm will be applied. The
ultimate goal is to use the mincut finder to parti-
tion a given set of mentions into two subsets, so that
our coreference system will attempt to resolve only
those mentions that are in the subset correspond-
2pavailable from http://Ipsolve.sourceforge.net/ ing to ANAPHORIC. In other words, the resulting

Assume that we want to partition a setrobbjects,
{z1,z9,...,2,}, into two sets}; andY,. We have
two types of scores concerning th& and theY'’s:
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anaphoricity information will be used to identify andof the sigmoid® It should be easy to verify that the
filter non-anaphoric mentions prior to coreferencesigmoid satisfies the aforementioned property. As
resolution. The graph construction process, whichoted beforew,; = 1 — ws, for each node:. In-
takes as input a set of mentions in a test text, is conspired by Ng (2004), the value of the parameter
posed of three steps, as described below. will be tuned based on held-out development data to

Step 1: Mimicking Ng and Cardie (2002a) maximize coreference performance.
To construct the desired graphs, we first create Step 3:Incorporating coreference probabilities
the source,s, and the sink,t, that represent the Like Ng's (2004) approach, the curreft suffers
classesANAPHORIC andNOT ANAPHORIC, respec- from the weakness of not exploiting the pairwise
tively. Then, for each mentiom,, in the input text, probabilities provided byPc. Fortunately, these
we create one node;, and two edgessn andnt, probabilities can be naturally incorporated irftcas
connectingn to s andt. Next, we computev,, Similarity scores. To see why these pairwise prob-
and w,,;, the weights associated withn and nt. abilities are potentially useful, consider two men-
A natural choice would be to usB4(m,) as the tions,m; andmy, in atextD that are coreferent and
weight of sn and (L — w,,,) as the weight ofit. (We are both anaphoric. Assume that the graplron-
will assume throughout that,,, is always equal to Structed fromD has these edge weights; = 0.8,
1 — wsy,.) If we apply the mincut finder to the cur- ws; = 0.3, andw;; = w;; = 0.8. Without the sim-
rent G, it should be easy to see that (1) any nod#arity scores, the mincut finder will correctly deter-
n wherew,, > 0.5 will be assigned tos, (2) any minem; as anaphoric but incorrectly classify; as
noden wherew,, < 0.5 will be assigned tat, hon-anaphoric. On the other hand, if the similarity
and (3) any remaining node will be assigned to ongcores are taken into account, the mincut finder will
of them. (Without loss of generality, we assumecorrectly determine both mentions as anaphoric.
that such nodes are assignedstd Hence, the set  The above discussion suggests that it is desirable
of mentions determined as anaphoric by the mincuo incorporate edges between two nodésind j,
finder is identical to the set of mentions classified awhenm; andm; are likely to be coreferent (i.e.,
anaphoric byP,, thus yielding a coreference systemPc(m;, m;) > co for some constant,). In our im-
that is functionally equivalent to N&C’s. This also plementation, we tune this new parametgrjointly
implies thatG shares the same potential weakneswith ¢ (see Step 2) on development data to maxi-
as P4: being overly conservative in determining amize coreference performance. While it is possible
mention as anaphoric. to imagine scenarios where incorporating pairwise
Step 2: Mimicking Ng (2004) probab?l?t?es is not beneficial, we be_Iieve thgt these
oy - . . probabilities represent a source of information that
One way to “improve”G is to make it functionally . . ; : .

. \ o could be profitably exploited via learning appropri-
equivalent to Ng's (2004) approach. Specifically, 4
our goal in Step 2 is to modify the edge weights inate values for andcs.
G (without adding new edges or nodes) such that the 30ne of the main reasons why we use a sigmoid function
mincut finder classifies a nodeas anaphoric if and (rather than a linear function) is that the weights will Isfell
only if P4(m,,) > cfor somec € [0, 1]. Now, recall within the[0, 1] interval after the transformation, a property that

will turn out to be convenient when the pairwise coreference

from Step 1 that the mincut finder classifies a nOdsrobabilities are incorporated (see Step @)is chosen so that

n as anaphoric if and only ifv,,, > 0.5. Hence, the difference between two weights after the transfornmaitio
to achieve the aforementioned goal, we just need & close as possible to their difference before the tramstion.
ensure the property that,, > 0.5 if and only if With this criterion in mind, we set to 0.42 in our experiments.

. “Incorporating the coreference probabilities can potéigtia
PA(m”) > c. Consequently, we compute,, using identify some of the anaphoric mentions that would be mgscla

a sigmoid function: sified otherwise. However, note that the minimum cut algonit
1 does not maintain the notion of directionality that woultbai
Wep = one to determine that a discourse-new mention (i.e., the firs
1 + e~ox(Pa(mn)=c) mention of a coreference chain) is not anaphoric. In particu

' lar, the algorithm tends to classify all members of a corsiee
whereq is a constant that controls the “steepnesséhain, including the first mention, as anaphoric. We did met e
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5 Evaluation rely on additional data for parameter tuning. Rather,
we reserve% of the available training data for tuning
¢, for which we tested values from 0 to 1 in steps of
For evaluation, we use the ACE Phase Il coreferenago1, and use the remainir%g)f the data for training
corpus, which is composed of three sections: Broads, and P.. Results are shown in row 3 of Tables
cast News (BNEWS), Newspaper (NPAPER), and and 2, where MUC F-score ranges from 57.0 to
Newswire (NWIRE). Each section is in turn com-61.9 and CEAF F-score ranges from 55.5 to 60.6. In
posed of a training set and a test set. For eadbmparison to the first baseline, we obtain mixed re-
section, we train an anaphoricity modet,, and sults: MUC F-score increases by 2.0% and 0.2% for
a coreference model’c, on the training set, and BNEWS and NPAPER, respectively, but drops by
evaluatel’c (when used in combination with differ- 0,194 for N\WIRE; CEAF F-score increases by 0.2%
ent approaches to anaphoricity determination) on thgnd 1.1% for BNEWS and NPAPER, respectively,
test set. As noted before, the mentions used are et drops by 0.6% for NWIRE.

tracted automatically using an in-house NP Chunkebuplicated Luo (2007) baseline. Results of our

Results are reported in terms of recall (R), preCiSio'flourth baseline, in which the anaphoricity and pair-

(P), and F'-measure (F)j obtained using two _Co,refeWise coreference probabilities are combined to score
ence scoring programs: the MUC scorer (Vilain eg partition using Luo's system, are shown in row 4

al., 1995) and the CEAF scorer (Luo, 2005). of Tables 1 and 2. Here, we see that MUC F-score
5.2 Results and Discussions ranges from 55.8 to 62.1 and CEAF F-score ranges
from 56.3 to 61.5. In comparison to the first base-

“No Anaphoricity” baseline.  Our first baseline is . . L
. -~ line, performance improves, though insignificartly,
the learning-based coreference system described.in ) .
) . . in all cases: MUC F-score increases by 0.2-0.8%,
Section 2, which does not employ any anaphorICWhereas CEAF E-score increases by 0.3—1.0%
ity determination algorithm. Results using the MUC y 9.57 LU

scorer and the CEAF scorer are shown in row 1 gpuplicated Denis and Baldridge (2007) base-
Tables 1 and 2, respectively. As we can see, mudéne. Our fifth baseline performs joint inference
F-score ranges from 55.0 to 61.7 and CEAF F-scor®@’ anaphoricity determination and coreference res-
ranges from 55.3 to 61.2. olution using D&B’s ILP approach. Results are

Duplicated Ng and Cardie (2002a) baseline. shown in row 5 of Tables 1 and 2, where MUC
Next, we evaluate our second baseline, which ig-score ranges from 56.2 to 63.8 and CE_AF F-
N&C'’s coreference system. As seen from row 2 Oiscorg ranges from 96.9 10 61.5. In comparlson to
Tables 1 and 2, MUC F-score ranges from 50.5 tgq_e f',rSt baseline, MUC F-score always increases,
60.0 and CEAF F-score ranges from 54.5 to 59.4’.\'Ith improvements ranging from 1.2% to 2.1%.

In comparison to the first baseline, we see drops iﬁEAF results are mixed: F-sporg_ increases signifi-
F-score in all cases as a result of considerable prggntly for BNEWS, drops insignificantly for NPA-

cipitation in recall, which can in turn be attributed " ER: and rises insignificantly for NWIRE. The dif-

to the misclassification of many anaphoric mentionfEr€"ce |nbperforT)ancde tren(:]s bfetweehn thehtwo scor-
by the anaphoricity model. More specifically, Muc®s can be attriputed to t.e act that the MUC
F-score decreases by 1.7-5.5%, whereas CEAF gcorer typically under-penalizes errors due to over-

score decreases by 0.5-1.8%. These trends are cGRE"9INg. Which occurs as a resuit of D&B’s using
sistent with those reported in N&C's paper. the aggressive-merge clustering algorithm. In addi-

Duplicated Ng (2004) baseline. Our third base- tion, we can see that D&B's approach performs at

line is Ng’'s (2004) coreference system. Recall th lpast as good as Luo's approach in all but one case

: . . . (NPAPER/CEAF).
this resolver requires the tuning of the conservative: = * _ _ _
ness parameter, on held-out data. To ensure a fairPuplicated Finkel and Manning (2008) baseline.

comparison between different resolvers, we do ndpur sixth baseline is F&M's coreference system,

plicitly address this issue, simply letting the coreferemtus- SLike the MUC organizers, we use Approximate Random-
tering algorithm discover that first mentions are non-amajeh ization (Noreen, 1989) for significance testing, wjith0.05.

5.1 Experimental Setup
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Table 1: MUC scores for the three ACE data sets. F-scoresapeatsent statistically significant gains and drops with

Broadcast News Newspaper Newswire
Approach to Anaphoricity Determination P R P R P F
1 | No Anaphoricity 577 526 55.0/ 608 626 61.7] 59.1 581 58.6
2 | Duplicated Ng and Cardie (200Z2a) 40.3 67.7 505|521 706 ©60.0] 430 693 531
3 | Duplicated Ng (2004) 51.9 632 ©57.0]/ 60.0 63.8 61.9] 59.3 57.7 58.5
4 | Duplicated Luo (2007) 554 56.1 558|606 63.7 621|584 592 5838
5 [ Duplicated Denis and Baldridge (2007) | 57.3  55.1 56.2 [ 63.8 63.7 63.8| 60.4 593 ©59.8
6 | Duplicated Finkel and Manning (2008) | 56.4 55.3 55.8| 63.8 63.7 63.8| 59.7 59.2 59.5
7 [ Graph Minimum Cut 531 675 59.4 [ 579 712 639 | 541 69.0 60.6

respect to the “No Anaphoricity” baseline are marked witreaterisk (*) and a dagget), respectively.

Broadcast News Newspaper Newswire
Approach to Anaphoricity Determination R P F P F R P F
1 | No Anaphoricity 63.2 492 553|645 543 59.0(67.3 561 612
2 | Duplicated Ng and Cardie (2002a) 559 533 545 60.7 56.3 585]60.6 582 59.4
3 | Duplicated Ng (2004) 625 499 555[ 635 57.0 60.I] 656 56.3 60.6
4 | Duplicated Luo (2007) 62.7 511 56.3|] 646 554 59.6] 67.0 56.8 ©61.5
5 [ Duplicated Denis and Baldridge (2007) | 63.8 5I.4 569 | 626 536 57.8| 67.0 56.8 615
6 | Duplicated Finkel and Manning (2008) | 63.2 51.3 56.7 | 62.6 53.6 57.8| 66.7 56.7 61.3
7 [ Graph Minimum Cut 61.4 576 59.4 | 641 594 61.7 | 65.7 61.9 63.8

Table 2: CEAF scores for the three ACE data sets. F-scorésgpiesent statistically significant gains and drops with
respect to the “No Anaphoricity” baseline are marked witreaterisk (*) and a dagget), respectively.

which is essentially D&B’s approach augmentedrhis implies that our mincut algorithm has success-
with transitivity constraints. Results are shown irfully identified many non-anaphoric mentions, but
row 6 of Tables 1 and 2, where MUC F-score rangem comparison to N&C’s approach, it misclassifies
from 55.8 to 63.8 and CEAF F-score ranges frona smaller number of anaphoric mentions. Moreover,
56.7 t0 61.3. In comparison to the D&B baseline, weur approach achieves the best F-score for each data-
see that F-score never improves, regardless of whiget/scoring-program combination, and significantly
scoring program is used. In fact, recall slightly de-outperforms the best baseline (D&B) in all but two
teriorates, and this can be attributed to F&M’s ob€ases, NPAPER/MUC and NWIRE/MUC.
servation that transitivity constraints tend to produce
smaller clusters. Overall, these results suggest thgt Conclusions
enforcing transitivity for coreference resolution is
not useful for improving coreference performance. We have presented a graph-cut-based approach to
anaphoricity determination that (1) directly opti-
Our graph-cut-based approach. Finally, we mizes the desired coreference evaluation metric
evaluate the coreference system using the anaphortbrough parameterization and (2) exploits the proba-
ity information provided by our cut-based approachbilities provided by the coreference model when co-
As before, we reserv&% of the training data for ordinating anaphoricity and coreference decisions.
jointly tuning the two parameters,andcy, and use Another major contribution of our work is the em-
the remaining% for training P4 and Po. For tun- pirical comparison of our approach against five ex-
ing, we tested values from 0 to 1 in steps of 0.1 foisting approaches to anaphoricity determination in
both ¢ andc,. Results are shown in row 7 of Ta-terms of their effectiveness in improving a coref-
bles 1 and 2. As we can see, MUC F-score rangesence system using automatically extracted men-
from 59.4 to 63.9 and CEAF F-score ranges frontions. Our approach demonstrates effectiveness and
59.4 to 63.8, representing a significant improvemenbbustness by achieving the best result on all three
over the first baseline in all six cases: MUC F-scordCE data sets according to both the MUC scorer
rises by 2.0-4.4% and CEAF F-score rises by 2.6and the CEAF scorer. We believe that our cut-based
4.1%. Such an improvement can be attributed to approach provides a flexible mechanism for co-
large gain in precision and a smaller drop in recallordinating anaphoricity and coreference decisions.
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