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Abstract

This paper presents a first-order logic learn-
ing approach to determine rhetorical relations
between discourse segments. Beyond lin-
guistic cues and lexical information, our ap-
proach exploits compositional semantics and
segment discourse structure data. We report
a statistically significant improvement in clas-
sifying relations over attribute-value learn-
ing paradigms such as Decision Trees, RIP-
PER and Naive Bayes. For discourse pars-
ing, our modified shift-reduce parsing model
that uses our relation classifier significantly
outperforms a right-branching majority-class
baseline.

1 Introduction

Many theories postulate a hierarchical structure for
discourse (Mann and Thompson, 1988; Moser et.
al., 1996; Polanyi et. al., 2004). Discourse struc-
ture is most often based on semantic / pragmatic re-
lationships between spans of text and results in a tree
structure, as that shown in Figure 1. Discourse
parsing, namely, deriving such tree structures and
the rhetorical relations labeling their inner nodes is
still a challenging and mostly unsolved problem in
NLP. It is linguistically plausible that such structures
are determined at least in part on the basis of the
meaning of the related chunks of texts, and of the
rhetorical intentions of their authors. However, such
knowledge is extremely difficult to capture. Hence,
previous work on discourse parsing (Wellner et. al.,
2006; Sporleder and Lascarides, 2005; Marcu, 2000;
Polanyi et. al., 2004; Soricut and Marcu, 2003;

∗This work was done while the author was a student at the
University of Illinois at Chicago.

Baldridge and Lascarides, 2005) has relied only on
syntactic and lexical information, lexical chains and
shallow semantics.

We present an innovative discourse parser that
uses compositional semantics (when available) and
information on the structure of the segment being
built itself. Our discourse parser, based on a modi-
fied shift-reduce algorithm, crucially uses a rhetori-
cal relation classifier to determine the site of attach-
ment of a new incoming chunk together with the ap-
propriate relation label. Another novel aspect of our
work is the usage of Inductive Logic Programming
(ILP): ILP learns from first-order logic representa-
tions (FOL). The ILP-based relation classifier is
significantly more accurate than relation classifiers
that use competitive propositional ML algorithms
such as decision trees and Naive Bayes. In addi-
tion, it results in FOL rules that are linguistically
perspicuous. Our domain is that of instructional
how-to-do manuals, and we describe our corpus
in Section 2. In Section 3, we discuss the modified
shift-reduce parser we developed. The bulk of the
paper is devoted to the rhetorical relation classifier
in Section 4. Experimental results of both the rela-
tion classifier and the discourse parser in its entirety
are discussed in Section 5. Further details can be
found in (Subba, 2008).

2 Discourse Annotated Instructional
Corpus

Existing corpora annotated with rhetorical relations
(Carlson et. al., 2003; Wolf and Gibson, 2005;
Prasad et. al., 2008) focus primarily on news arti-
cles. However, for us the development of the dis-
course parser is parasitic on our ultimate goal: de-
veloping resources and algorithms for language in-
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Figure 1: Discourse Parse Tree of the Text in Example (1)

terfaces to instructional applications. Hence, we are
interested in working with instructional texts. We
worked with a corpus on home-repair that is about
5MB in size and is made up entirely of written En-
glish instructions,1 such as that shown in Exam-
ple (1). The text has been manually segmented
into Elementary Discourse Units (EDUs), the small-
est units of discourse. In total, our corpus contains
176 documents with an average of 32.6 EDUs for a
total of 5744 EDUs and 53,250 words. The structure
for Example (1) is shown in Figure 1.

(1) [Another way to measure and mark panels for
cutting is to make a template from the protec-
tive sheets.(s1e1)] [Because these sheets are the
same size as the panels,(s2e1)] [you can tape
one to the wall as though it were a panel.(s2e2)]
[Mark the opening on the sheet(s3e1)] [or cut
it out with a razor blade.(s3e2)] [Then lay the
sheet on the panel.(s4e1)] [Using the template
as a pattern,(s5e1)] [mark the panel.(s5e2)]

To explore our hypothesis, that rich linguistic in-
formation helps discourse parsing, and that the state

1The raw corpus was originally assembled at the Informa-
tion Technology Research Institute, University of Brighton.

of the art in machine learning supports such an
approach, we needed training data annotated with
both compositional semantics and rhetorical rela-
tions. We performed the first type of annotation al-
most completely automatically, and the second man-
ually, as we turn now to describing.

2.1 Compositional Semantics Derivation

The type of compositional semantics we are inter-
ested in is heavily rooted in verb semantics, which
is particularly appropriate for the instructional text
we are working with. Therefore, we used VerbNet
(Kipper et. al., 2000) as our verb lexicon. VerbNet
groups together verbs that undergo the same syn-
tactic alternations and share similar semantics. It
accounts for 4962 distinct verbs classified into 237
main classes. Each verb class is described by the-
matic roles, selectional restrictions on the arguments
and frames consisting of a syntactic description and
semantic predicates. Such semantic classification of
verbs can be helpful in making generalizations, es-
pecially when data is not abundant. Generalization
can also be achieved by means of the semantic pred-
icates. Although the verb classes of two verb in-
stances may differ, semantic predicates are shared
across verbs. To compositionally build verb based
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semantic representations of our EDUs, we (Subba
et al., 2006) integrated a robust parser, LCFLEX
(Rosé, 2000), with a lexicon and ontology based
both on VerbNet and, for nouns, on CoreLex (Buite-
laar, 1998). The augmented parser was able to de-
rive complete semantic representations for 3257 of
the 5744 EDUs (56.7%). The only manual step was
to pick the correct parse from a forest of parse trees,
since the output of the parser can be ambiguous.

2.2 Rhetorical relation annotation
The discourse processing community has not yet
reached agreement on an inventory of rhetorical re-
lations. Among the many choices, our coding
scheme is a hybrid of (Moser et. al., 1996) and
(Marcu, 1999). We focused on what we call infor-
mational relations, namely, relations in the domain.
We used 26 relations, divided into 5 broad classes:
12 causal relations (e.g., preparation:act, goal:act,
cause:effect, step1:step2); 6 elaboration relations
(e.g., general:specific, set:member, object:attribute;
3 similarity relations (contrast1:contrast2, com-
parison, restatement); 2 temporal relations (co-
temp1:co-temp2, before:after); and 4 other rela-
tions, including joint and disjunction.

The annotation yielded 5172 relations, with rea-
sonable intercoder agreement. On 26% of the data,
we obtained κ = 0.66; κ rises to 0.78 when the two
most commonly confused relations, preparation:act
and step1:step2, are consolidated. We also anno-
tated the relata as nucleus (more important mem-
ber) and satellite (contributing member(s)) (Mann
and Thompson, 1988), with κ = 0.67.2 The most
frequent relation is preparation:act (24.46%), and in
general, causal relations are more frequently used in
our instructional corpus than in news corpora (Carl-
son et. al., 2003; Wolf and Gibson, 2005).

3 Shift-Reduce Discourse Parsing

Our discourse parser is a modified version of a shift-
reduce parser. The shift operation places the next
segment on top of the stack, TOP. The reduce oper-
ation will attach the text segment at TOP to the text
segment at TOP-1. (Marcu, 2000) also uses a shift-
reduce parser, though our parsing algorithm differs

2We don’t have space to explain why we annotate for nu-
cleus and satellite, even if (Moser et. al., 1996) argue that this
sort of distinction does not apply to informational relations.

in two respects: 1) we do not learn shift operations
and 2) in contrast to (Marcu, 2000), the attachment
of an incoming text segment to the emerging tree
may occur at any node on the right frontier. This al-
lows for the more sophisticated type of adjunction
operations required for discourse parsing as mod-
eled in D-LTAG (Webber, 2004). A reduce op-
eration is determined by the relation identification
component. We check if a relation exists between
the incoming text segment and the attachment points
on the right frontier. If more than one attachment
site exists, then the attachment site for which the rule
with the highest score fired (see below) is chosen for
the reduce operation. A reduce operation can fur-
ther trigger additional reduce operations if there is
more than one tree left in the stack after the first re-
duce operation. When no rules fire, a shift occurs.
In the event that all the segments in the input list
have been processed and a full DPT has not been
obtained, then we reduce TOP and TOP-1 using the
joint relation until a single DPT is built.

4 Classifying Rhetorical Relations

Identifying the informational relations between text
segments is central to our approach for building the
informational tree structure of text. We believe that
the use of a limited knowledge representation for-
malism, essentially propositional logic, is not ad-
equate and that a relational model that can handle
compositional semantics is necessary. We cast the
problem of determining informational relations as a
classification task. We used the ILP system Aleph
that is based on (Muggleton, 1995). Formulation
of any problem within the ILP framework consists
of background knowledge B and the set of exam-
ples E (E+∪ E−). In our ILP framework, positive
examples are ground clauses describing a relation
and its relata, e.g. relation(s5e1,s5e2,act:goal), or
relation(s2e1-s3e2,s4e1,preparation:act) from Fig-
ure 1. If e is a positive example of a relation r, then
it is also a negative example for all the other rela-
tions.

Background Knowledge (B) can be thought of as
features used by ILP to learn rules, as in traditional
attribute-value learning algorithms. We use the fol-
lowing information to learn rules for classifying re-
lations. Figure 2 shows a sample of the background
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Verbs + Nouns: verb(’s5e2’,mark). noun(’s5e2’,panel).
Linguistic Cues: firstWordPOS(’s5e2’,’VB’). lastWordPOS(’s5e2’,’.’).

Similarity: segment sim score(’s5e1’,’s5e2’,0.0).
verbclass(’s5e2’,mark,’image impression-25.1’).
agent(’s5e2’,frame(mark),you).

Compositional Semantics: destination(’s5e2’,frame(mark),panel).
cause(’s5e2’,frame(mark),you,’s5e2-mark-e’).
prep(’s5e2’,frame(mark),end(’s5e2-mark-e’),mark,panel).
created image(’s5e2’,frame(mark),result(’s5e2-mark-e’),mark).

Structural Information: same sentence(’s5e1’,’s5e2’).

Figure 2: Example Background Knowledge

knowledge provided for EDU s5e2.
Verbs + Nouns: These features were derived by

tagging all the sentences in the corpus with a POS
tagger (Brill, 1995).

WordNet: For each noun in our data, we also use
information on hypernymy and meronymy relations
using WordNet. In a sense, this captures the domain
relations between objects in our data.

Linguistic Cues: Various cues can facilitate the
inference of informational relations, even if it is well
known that they are based solely on the content of
the text segments, various cues can facilitate the in-
ference of such relations. At the same time, it is
well known that relations are often non signalled:
in our corpus, only 43% of relations are signalled,
consistently with figures from the literature (44%
in (Williams and Reiter, 2003) and 45% in (Prasad
et. al., 2008)). Besides lexical cues such as but,
and and if, we also include modals, tense, compara-
tives and superlatives, and negation. E.g., wrong-act
in relations like prescribe-act:wrong-act is often ex-
pressed using a negation.

Similarity: For the two segments in question, we
compute the cosine similarity of the segments using
only nouns and verbs.

Compositional semantics: the semantic infor-
mation derived by our parser, as described in Sec-
tion 2.1. The semantic representation of segment
s5e2 from Example (1) is shown in Figure 2. Each
semantic predicate is a feature for the classifier.

Structural Information: For relations between
two EDUs, we use knowledge of whether the two
EDUs are intra-sentential or inter-sentential, since
some relations, e.g. criterion:act, are more likely to
be realized intra-sententially than inter-sententially.

For larger segments, we also encode the hierarchi-
cal representation of text segments that contain more
than one nucleus, the distance between the nuclei
of the two segments and any relations that exist be-
tween the smaller inner segments.

At this point, the attentive reader will be wonder-
ing how we encode compositional semantics for re-
lations relating text segments larger than one EDU.
Clearly we cannot just list the semantics of each
EDU that is dominated by the larger segment. We
follow the intuition that nuclei represent the most
important portions of segments (Mann and Thomp-
son, 1988). For segments such as s5e1-s5e2 that
contains a single nucleus, we simply reduce the se-
mantic content of the larger segment to that of its
nucleus:

s5e1-s5e2

verb(’s5e1-s5e2’,mark).
...

verbclass(’s5e1-s5e2’,..).
agent(’s5e1-s5e2’,..).

In this case, the semantics of the complex text seg-
ment is represented by the compositional semantics
of the single most important EDU.

For segments that contain more than one nu-
cleus, such as s3e1-s3e2, the discourse struc-
ture information of the segment is represented with
the additional predicates internal relation and par-
ent segment. These predicates can be used recur-
sively at every level of the tree to specify the relation
between the most important segments. In addition,
they also provide a means to represent the compo-
sitional semantics of the most important EDUs and
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make them available to the relational learning algo-
rithm.

s3e1-s3e2

internal relation(s3e1,s3e2,’disjunction’).
parent segment(s3e1-s3e2,s3e1).
parent segment(s3e1-s3e2,s3e2).

LLLLLLLLLLLLLLLLLLLLL

rrrrrrrrrrrrrrrrrrrrr

verb(’s3e1’,mark).
noun(’s3e1’,opening).

...
verbclass(’s3e1’,..).

theme(’s3e1’,..).

verb(’s3e2’,cut).
noun(’s3e2’,opening).

...
noun(’s3e1’,blade).

4.1 Learning FOL Rules for Discourse Parsing
In Aleph, the hypothesis space is restricted to a set of
rules that conform to a predefined language L. This
is done with the use of mode declarations which, in
other words, introduces a language bias in the learn-
ing process. modeh declarations inform the learning
algorithm about what predicates to use as the head
of the rule and modeb specifies what predicates to
use in the body of the rule. Not all the information
in B needs to be included in the body of the rule.
This makes sense since we often learn definitions of
concepts based on more abstract higher level infor-
mation that is inferred from some other information
that is not part of our final definition. Mode decla-
rations are used by Aleph to build the most specific
clause (⊥) that can be learned for each example. ⊥
constrains the search for suitable hypotheses. ⊥i is
built by taking an example ei ∈ E+ and adding lit-
erals that are entailed by B and ei. We then have the
following property, where Hi is the hypothesis (rule)
we are trying to learn and� is a generality operator:

� � Hi � ⊥i

Finding the most specific clause (⊥) provides us
with a partially ordered set of clauses from which to
choose the best hypothesis based on some quantifi-
able qualitative criteria. This sub-lattice is bounded
by the most general clause (�, the empty clause)
from the top and the most specific clause (⊥) at the
bottom. We use the heuristic search in Aleph that is
similar to the A*-like search strategy presented by
(Muggleton, 1995) to find the best hypothesis (rule).
A noise threshold on the number of negative exam-
ples that can be covered by a rule can be set. We

learn a model that learns perfect rules first and then
one that allows for at most 5 negative examples. A
backoff model that first uses the model trained with
noise = 0 and then noise = 5 if no classification
has been made is used. We use the evaluation func-
tion in Equation 1 to guide our search through the
tree of possible hypotheses. This evaluation func-
tion is also called the compression function since it
prefers simpler explanations to more complex ones
(Occam’s Razor). fs is the score for clause cs that
is being evaluated, ps is the number of positive ex-
amples, ns is the number of negative examples, ls is
the length of the clause (measured by the number of
clauses).

fs = ps − (ns + (0.1× ls)) (1)

Classification in most ILP systems, including
Aleph, is restricted to binary classification (positive
vs. negative). In many applications with just two
classes, this is sufficient. However, we are faced
with a multi-classification problem. In order to per-
form multi-class classification, we use a decision
list. First, we build m binary classifiers for each
relation r ∈ R. Then, we form an ordered list of the
rules based on the following criterion:

1. Given two rules ri and rj , ri ,is ranked higher
than rj if (pi − ni) > (pj − nj).

2. if (pi−ni) = (pj−nj), then ri is ranked higher
than rj if ( pi

pi+ni
) > ( pj

pj+nj
).

3. if (pi − ni) = (pj − nj) and ( pi

pi+ni
) = ( pj

pj+nj
)

then ri is ranked higher than rj if (li) > (lj).

4. default: random order

Classifying an unseen example is done by using
the first rule in the ordered list that satisfies it.

5 Experiments and Results

We report our results from experiments on both the
classification task and the discourse parsing task.

5.1 Relation Classification Results

For the classification task, we conducted exper-
iments using the stratified k-fold (k = 5) cross-
validation evaluation technique on our data. Unlike

570



(Wellner et. al., 2006; Sporleder and Lascarides,
2005), we do not assume that we know the order
of the relation in question. Instead we treat reversals
of non-commutative relations (e.g. preparation:act
and act:goal) as separate relations as well. We
compare our ILP model to RIPPER, Naive Bayes
and the Decision Tree algorithm. We should point
out that since attribute-value learning models can-
not handle first-order logic data, they have been pre-
sented with features that lose at least some of this
information. While this may then seem to result in
an unfair comparison, to the contrary, this is pre-
cisely the point: can we do better than very effec-
tive attribute-value approaches that however inher-
ently cannot take richer information into account?
All the statistical significance tests were performed
using the value of F-Score obtained from each of the
folds. We report performance on two sets of data
since we were not able to obtain compositional se-
mantic data for all the EDUs in our corpus:

• Set A: Examples for which semantic data was
available for all the nuclei of the segments
(1789 total). This allows us to have a better
idea of how much impact semantic data has on
the performance, if any.

• Set B: All examples regardless of whether or
not semantic data was available for the nuclei
of the segments (5475 total).

Model Semantics No Semantics
ILP 62.78 60.25
Decision Tree 56.29 55.45
RIPPER 58.02 56.96
Naive Bayes 35.83 34.66
Majority Class 31.63 31.63

Table 1: Classification Performance: Set A (F-Score)

Table 1 shows the results on Set A. ILP outper-
forms all the other models. Via ANOVA, we first
conclude that there is a statistically significant differ-
ence between the 8 models (p < 2.2e−16). To then
pinpoint where the difference precisely lies, pair-
wise comparisons using Student’s t-test show that
the difference between ILP (using semantics) and all
of the other learning models is statistically signifi-
cant at p < 0.05. Additionally, ILP with semantics

is significantly better than ILP without it (p < 0.05).
For Decision Tree, Naive Bayes and RIPPER, the
improvement in using semantics is not statistically
significant.

Model Semantics No Semantics
ILP 59.43 59.22
Decision Tree 53.84 53.69
RIPPER 51.1 51.36
Naive Bayes 49.69 51.62
Majority Class 22.01 22.01

Table 2: Classification Performance: Set B (F-Score)

In Table 2, we list the results on Set B. Once
again, our ILP model outperforms the other three
learning models. Naive Bayes is much more com-
petitive when using all the examples compared to
using only examples with semantic data. In the case
of the attribute-value machine learning models, the
use of semantic data seems to marginally hurt the
performance of the classifiers. However, this is in
contrast to the relational ILP model which always
performs better when using semantics. This result
suggests that the use of semantic data with loss of in-
formation may not be helpful, and in fact, it may ac-
tually hurt performance. Based on ANOVA, the dif-
ferences in these 8 models is statistically significant
with p < 6.95e−12. A pairwise t-test between ILP
(using semantics) and each of the other attribute-
value learning models shows that our results are sta-
tistically significant at p < 0.05.

In Table 3, we report the performance of the two
ILP models on each relation.3 In general, the models
perform better on relations that have the most exam-
ples.

The evaluation of work in discourse parsing is
hindered by the lack of a standard corpus or task.
Hence, our results cannot be directly compared
to (Marcu, 2000; Sporleder and Lascarides, 2005;
Wellner et. al., 2006), but neither can those works
be compared among themselves, because of differ-
ences in underlying corpora, the type and number of
relations used, and various assumptions. However,
we can still draw some general comparisons. Our
ILP-based models provide as much or significantly

3Due to space limitations, only relations with > 10 examples
are shown.
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relation Semantics No Semantics
preparation:act 74.86 72.05
general:specific 31.74 28.24
joint 55.23 52
act:goal 86.12 83.85
criterion:act 77.37 75.32
goal:act 73.43 68.9
step1:step2 28.75 35.29
co-temp1:co-temp2 48.84 37.84
disjunction 83.33 80.81
act:criterion 54.29 54.79
contrast1:contrast2 22.22 5.0
act:preparation 65.31 70.59
act:reason 0 10.26
cause:effect 19.05 10.53
comparison 22.22 10.53

Table 3: Classification Performance (F-Score) by
Relation: ILP on Set A

more improvement over a majority-class baseline
when compared to these other works. This is the
case even though our work is based on less training
data, relatively more relations, relations both be-
tween just two EDUs and those involving larger text
segments, and we make no assumptions about the
order of the relations. Our results are comparable to
(Marcu, 2000), which reports an accuracy of about
61% for his classifier. His majority class baseline
performs at about 50% accuracy. (Wellner et. al.,
2006) reports an accuracy of up to 81%, with a ma-
jority class baseline performance of 45.7%. How-
ever, our task is more challenging than (Wellner et.
al., 2006). They use only 11 relations compared to
the 26 we use. They also assume the order of the
relation in the examples (i.e. examples for goal:act
would be treated as examples for act:goal by revers-
ing the order of the arguments) whereas we do not
make such assumptions. In addition, their training
data is almost twice as large as ours, based on re-
lation instances. (Sporleder and Lascarides, 2005)
also makes the same assumption on the ordering of
the relations as (Wellner et. al., 2006). They re-
port an accuracy of 57.75%. Their work, though,
was based on only 5 relations. Importantly, neither
(Wellner et. al., 2006; Sporleder and Lascarides,
2005) model examples with complex text segments

with more than one EDU.

5.2 How interesting are the rules?
Given that our ILP models learn first-order logic
rules, we can make some qualitative analysis of the
rules learned, such as those below, learnt by the ILP
model that uses semantics:

(2a) relation(A,B,’act:goal’) :-
firstWordPOS(A,’VBG’),
verbclass(A,D,’use-1’),
firstWordPOS(B,’VB’).
[pos cover = 23 neg cover = 1]

(2b) relation(A,B,’preparation:act’) :-
discourse cue(B,front,and),
cause(A,frame(C),D,E),
theme(B,frame(F),G), theme(A,frame(C),G).
[pos cover = 12 neg cover = 0]

(2c) relation(A,B,’preparation:act’) :-
discourse cue(B,front,then),
parent segment(A,C), parent segment(A,D),
internal relation(C,D,’preparation:act’).
[pos cover = 17 neg cover = 0]

(2a) is learned using examples such as
relation(s5e1,s5e2,’act:goal’) from Example (1).
(2b) uses relational semantic information. This rule
can be read as follows:

IF segment A contains a cause and a
theme, the same object that is the theme
in A is also the theme in segment B, and B
contains the discourse cue and at the front
THEN the relation between A and B is
preparation:act.

(2c) is a rule that makes use of the structural in-
formation about complex text segments. When us-
ing Set A, more than about 60% of the rules in-
duced include at least one semantic predicate in its
body. They occur more frequently in rules for re-
lations like preparation:act while less in rules for
general:specific and act:goal.

5.3 Discourse Parsing Results
In order to test our discourse parser, we used 151
documents for training and 25 for testing. We eval-
uated the performance of our parser on both the
discourse parse trees it builds at the sentence level
and at the document level. The test set contained
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Sentence Level Document Level
model Semantics span nuclearity relation span nuclearity relation
SR-ILP yes 92.91 71.83 63.06 70.35 49.47 35.44
SR-ILP no 91.98 69.59 58.58 68.95 48.16 33.33
Baseline - 93.66 74.44 34.32 70.26 47.98 22.46

Table 4: Parsing Performance (F-Score): (Baseline = right-branching majority)

341 sentences out of which 180 sentences were seg-
mented into more than one EDU. We ran experi-
ments using our two ILP models for the relation
identifier, namely ILP with semantics and without
semantics. Our ILP based discourse parsing models
are named SR-ILP. We compare the performance of
our models against a right branching majority class
baseline. We used the sign-test to determine statis-
tical significance of the results. Using the automatic
evaluation methodology in (Marcu, 2000), preci-
sion, recall and F-Score measures are computed for
determining the hierarchical spans, nucleus-satellite
assignments and rhetorical relations. The perfor-
mance on labeling relations is the most important
measure since the results on nuclearity and hierar-
chical spans are by-products of the decisions made
to attach segments based on relations.

On labeling relations, the parser that uses all the
features (including compositional semantics) for de-
termining relations performs the best with an F-
Score of 63.06%. The difference of about 4.5% (be-
tween ILP with semantics and without semantics)
in F-Score is statistically significant at p = 0.006.
Our best model, SR-ILP (using semantics) beats the
baseline by about 28% in F-Score. Since the task at
the document level is much more challenging than
building the discourse structure at the sentence level,
we were not surprised to see a considerable drop in
performance. For our best model, the performance
on labeling relations drops to 35.44%. Clearly, the
mistakes made when attaching segments at lower
levels have quite an adverse effect on the overall
performance. A less greedy approach to parsing dis-
course structure is warranted.

While we would have hoped for a better perfor-
mance than 35.44%, to start with, (Forbes et. al.,
2001), (Polanyi et. al., 2004), and (Cristea, 2000) do
not report the performance of their discourse parsers
at all. (Marcu, 2000) reports precision and recall of

up to 63.2% and 59.8% on labeling relations using
manually segmented EDUs on three WSJ articles.
(Baldridge and Lascarides, 2005) reports 43.2% F-
Score on parsing 10 dialogues using a probabilistic
head-driven parsing model.

6 Conclusions

In conclusion, we have presented a relational ap-
proach for classifying informational relations and a
modified shift-reduce parsing algorithm for building
discourse parse trees based on informational rela-
tions. To our knowledge, this is the first attempt
at using a relational learning model for the task of
relation classification, or even discourse parsing in
general. Our approach is linguistically motivated.
Using ILP, we are able to account for rich composi-
tional semantic data of the EDUs based on VerbNet
as well as the structural relational properties of the
text segments. This is not possible using attribute-
value based models like Decision Trees and RIP-
PER and definitely not using probabilistic models
like Naive Bayes. Our experiments have shown that
semantics can be useful in classifying informational
relations. For parsing, our modified shift-reduce al-
gorithm using the ILP relation classifier outperforms
a right-branching baseline model significantly. Us-
ing semantics for parsing also yields a statistically
significant improvement. Our approach is also do-
main independent as the underlying model and data
are not domain specific.
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