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Abstract

In this paper, we explore a streaming al-
gorithm paradigm to handle large amounts
of data for NLP problems. We present an
efficient low-memory method for construct-
ing high-order approximaten-gram frequency
counts. The method is based on a determinis-
tic streaming algorithm which efficiently com-
putes approximate frequency counts over a
stream of data while employing a small mem-
ory footprint. We show that this method eas-
ily scales to billion-word monolingual corpora
using a conventional (8 GB RAM) desktop
machine. Statistical machine translation ex-
perimental results corroborate that the result-
ing high-n approximatesmall language model
is as effective as models obtained from other
count pruning methods.

1 Introduction

In many NLP problems, we are faced with the chal-
lenge of dealing with large amounts of data. Many
problems boil down to computing relative frequen-
cies of certain items on this data. Items can be
words, patterns, associations,n-grams, and others.
Language modeling (Chen and Goodman, 1996),
noun-clustering (Ravichandran et al., 2005), con-
structing syntactic rules for SMT (Galley et al.,
2004), and finding analogies (Turney, 2008) are
examples of some of the problems where we need
to compute relative frequencies. We use language
modeling as a canonical example of a large-scale
task that requires relative frequency estimation.

Computing relative frequencies seems like an
easy problem. However, as corpus sizes grow,
it becomes a highly computational expensive task.

Cutoff Size BLEU NIST MET
Exact 367.6m 28.73 7.691 56.32

2 229.8m 28.23 7.613 56.03
3 143.6m 28.17 7.571 56.53
5 59.4m 28.33 7.636 56.03
10 18.3m 27.91 7.546 55.64
100 1.1m 28.03 7.607 55.91
200 0.5m 27.62 7.550 55.67

Table 1: Effect of count-based pruning on SMT per-
formance using EAN corpus. Results are according to
BLEU, NIST and METEOR (MET) metrics. Bold #s are
not statistically significant worse than exact model.

Brants et al. (2007) used1500 machines for a
day to compute the relative frequencies ofn-grams
(summed over all orders from1 to 5) from 1.8TB
of web data. Their resulting model contained300
million uniquen-grams.

It is not realistic using conventional computing re-
sources to use all the300 million n-grams for ap-
plications like speech recognition, spelling correc-
tion, information extraction, and statistical machine
translation (SMT). Hence, one of the easiest way to
reduce the size of this model is to use count-based
pruning which discards alln-grams whose count is
less than a pre-defined threshold. Although count-
based pruning is quite simple, yet it is effective for
machine translation. As we do not have a copy of
the web, we will use a portion of gigaword i.e. EAN
(see Section 4.1) to show the effect of count-based
pruning on performance of SMT (see Section 5.1).
Table 1 shows that using a cutoff of100 produces a
model of size1.1 million n-grams with a Bleu score
of 28.03. If we compare this with an exact model
of size367.6 million n-grams, we see an increase of
0.8 points in Bleu (95% statistical significance level
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ǫ Size BLEU NIST MET
Exact 367.6m 28.73 7.691 56.32
1e-10 218.4m 28.64 7.669 56.33
5e-10 171.0m 28.48 7.666 56.38
1e-9 148.0m 28.56 7.646 56.51
5e-9 91.9m 28.27 7.623 56.16
1e-8 69.4m 28.15 7.609 56.19
5e-7 28.5m 28.08 7.595 55.91

Table 2: Effect of entropy-based pruning on SMT perfor-
mance using EAN corpus. Results are as in Table 1

is ≈ 0.53 Bleu). However, we need300 times big-
ger model to get such an increase. Unfortunately, it
is not possible to integrate such a big model inside a
decoder using normal computation resources.

A better way of reducing the size ofn-grams is to
use entropy pruning (Stolcke, 1998). Table 2 shows
the results with entropy pruning with different set-
tings ofǫ. We see that for three settings ofǫ equal to
1e-10, 5e-10 and1e-9, we get Bleu scores compara-
ble to the exact model. However, the size of all these
models is not at all small. The size of smallest model
is 25% of the exact model. Even with this size it is
still not feasible to integrate such a big model inside
a decoder. If we take a model of size comparable to
count cutoff of100, i.e., withǫ = 5e-7, we see both
count-based pruning as well as entropy pruning per-
forms the same.

There also have been prior work on maintain-
ing approximate counts for higher-order language
models (LMs) ((Talbot and Osborne, 2007a; Tal-
bot and Osborne, 2007b; Talbot and Brants, 2008))
operates under the model that the goal is to store a
compressed representation of a disk-resident table of
counts and use this compressed representation to an-
swer count queries approximately.

There are two difficulties with scaling all the
above approaches as the order of the LM increases.
Firstly, the computation time to build the database of
counts increases rapidly. Secondly, the initial disk
storage required to maintain these counts, prior to
building the compressed representation is enormous.

The method we propose solves both of these prob-
lems. We do this by making use of thestreaming al-
gorithm paradigm (Muthukrishnan, 2005). Working
under the assumption that multiple-GB models are
infeasible, our goal is to instead of estimating a large
model and then compressing it, we directly estimate

a small model. We use a deterministic streaming al-
gorithm (Manku and Motwani, 2002) that computes
approximate frequency counts of frequently occur-
ring n-grams. This scheme is considerably more ac-
curate in getting the actual counts as compared to
other schemes (Demaine et al., 2002; Karp et al.,
2003) that find the set of frequent items without car-
ing about the accuracy of counts.

We use these counts directly as features in an
SMT system, and propose a direct way to integrate
these features into an SMT decoder. Experiments
show that directly storing approximate counts of fre-
quent5-grams compared to using count or entropy-
based pruning counts gives equivalent SMT perfor-
mance, while dramatically reducing the memory us-
age and getting rid of pre-computing a large model.

2 Background

2.1 n-gram Language Models

Language modeling is based on assigning probabil-
ities to sentences. It can either compute the proba-
bility of an entire sentence or predict the probability
of the next word in a sequence. Letwm

1 denote a se-
quence of words (w1, . . . , wm). The probability of
estimating wordwm depends on previousn-1 words
wheren denotes the size ofn-gram. This assump-
tion that probability of predicting a current word de-
pends on the previous words is called a Markov as-
sumption, typically estimated by relative frequency:

P (wm | wm−1
m−n+1) =

C(wm−1
m−n+1wm)

C(wm−1
m−n+1)

(1)

Eq 1 estimates then-gram probability by taking the
ratio of observed frequency of a particular sequence
and the observed frequency of the prefix. This is
precisely the relative frequency estimate we seek.

2.2 Large-scale Language modeling

Using higher order LMs to improve the accuracy
of SMT is not new. (Brants et al., 2007; Emami
et al., 2007) built5-gram LMs over web using dis-
tributed cluster of machines and queried them via
network requests. Since the use of cluster of ma-
chines is not always practical, (Talbot and Osborne,
2007b; Talbot and Osborne, 2007a) showed a ran-
domized data structure called Bloom filter, that can
be used to construct space efficient language models
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for SMT. (Talbot and Brants, 2008) presented ran-
domized language model based on perfect hashing
combined with entropy pruning to achieve further
memory reductions. A problem mentioned in (Tal-
bot and Brants, 2008) is that the algorithm that com-
putes the compressed representation might need to
retain the entire database in memory; in their paper,
they design strategies to work around this problem.
(Federico and Bertoldi, 2006) also used single ma-
chine and fewer bits to store the LM probability by
using efficient prefix trees.

(Uszkoreit and Brants, 2008) used partially class-
based LMs together with word-based LMs to im-
prove SMT performance despite the large size of
the word-based models used. (Schwenk and Koehn,
2008; Zhang et al., 2006) used higher language mod-
els at time of re-ranking rather than integrating di-
rectly into the decoder to avoid the overhead of
keeping LMs in the main memory since disk lookups
are simply too slow. Now using higher order LMs at
time of re-ranking looks like a good option. How-
ever, the targetn-best hypothesis list is not diverse
enough. Hence if possible it is always better to inte-
grate LMs directly into the decoder.

2.3 Streaming

Consider an algorithm that reads the input from a
read-onlystream from left to right, with no ability
to go back to the input that it has already processed.
This algorithm has working storage that it can use to
store parts of the input or other intermediate compu-
tations. However, (and this is a critical constraint),
this working storage space is significantly smaller
than the input stream length. For typical algorithms,
the storage size is of the order oflogk N , whereN
is the input size andk is some constant.

Stream algorithms were first developed in the
early 80s, but gained in popularity in the late 90s
as researchers first realized the challenges of dealing
with massive data sets. A good survey of the model
and core challenges can be found in (Muthukrish-
nan, 2005). There has been considerable work on the
problem of identifying high-frequency items (items
with frequency above a threshold), and a detailed re-
view of these methods is beyond the scope of this ar-
ticle. A new survey by (Cormode and Hadjielefthe-
riou, 2008) comprehensively reviews the literature.

3 Space-Efficient Approximate Frequency
Estimation

Prior work on approximate frequency estimation for
language models provide a “no-false-negative” guar-
antee, ensuring that counts forn-grams in the model
are returned exactly, while working to make sure the
false-positive rate remains small (Talbot and Os-
borne, 2007a). The notion of approximation we use
is different: in our approach, it is the actual count
values that will be approximated. We also exploit
the fact that low-frequency n-grams, while consti-
tuting the vast majority of the set of unique n-grams,
are usually smoothed away and are less likely to in-
fluence the language model significantly. Discard-
ing low-frequencyn-grams is particularly important
in a stream setting, because it can be shown in gen-
eral that any algorithm that generates approximate
frequency counts for alln-grams requires space lin-
ear in the input stream (Alon et al., 1999).

We employ an algorithm for approximate fre-
quency counting proposed by (Manku and Motwani,
2002) in the context of database management. Fix
parameterss ∈ (0, 1), andǫ ∈ (0, 1), ǫ ≪ s. Our
goal is to approximately find alln-grams with fre-
quency at leastsN . For an input stream ofn-grams
of length N , the algorithm outputs a set of items
(and frequencies) and guarantees the following:

• All items with frequencies exceedingsN are
output (no false negatives).

• No item with frequency less than(s − ǫ)N is
output (few false positives).

• All reported frequencies are less than the true
frequencies by at mostǫN (close-to-exact fre-
quencies).

• The space used by the algorithm is
O(1

ǫ log ǫN).

A simple example illustrates these properties. Let
us fixs = 0.01, ǫ = 0.001. Then the algorithm guar-
antees that alln-grams with frequency at least1%
will be returned, no element with frequency less than
0.9% will be returned, and all frequencies will be no
more than0.1% away from the true frequencies. The
space used by the algorithm isO(log N), which can
be compared to the much larger (close toN ) space
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needed to store the initial frequency counts. In addi-
tion, the algorithm runs in linear time by definition,
requiring only one pass over the input. Note that
there might be1

ǫ elements with frequency at least
ǫN , and so the algorithm uses optimal space (up to
a logarithmic factor).

3.1 The Algorithm

We present a high-level overview of the algorithm;
for more details, the reader is referred to (Manku
and Motwani, 2002). The algorithm proceeds by
conceptually dividing the stream intoepochs, each
containing1/ǫ elements. Note that there areǫN
epochs. Each such epoch has an ID, starting from
1. The algorithm maintains a list of tuples1 of the
form (e, f,∆), wheree is an n-gram, f is its re-
ported frequency, and∆ is the maximum error in the
frequency estimation. While the algorithm readsn-
grams associated with the current epoch, it does one
of two things: if the new elemente is contained in
the list of tuples, it merely increments the frequency
countf . If not, it creates a new tuple of the form
(e, 1, T −1), whereT is the ID of the current epoch.

After each epoch, the algorithm “cleans house” by
eliminating tuples whose maximum true frequency
is small. Formally, if the epoch that just ended
has IDT , then the algorithm deletes all tuples sat-
isfying conditionf + ∆ ≤ T . SinceT ≤ ǫN ,
this ensures that no low-frequency tuples are re-
tained. When all elements in the stream have been
processed, the algorithm returns all tuples(e, f,∆)
wheref ≥ (s−ǫ)N . In practice, however we do not
care about s and return all tuples. At a high level,
the reason the algorithm works is that if an element
has high frequency, it shows up more than once each
epoch, and so its frequency gets updated enough to
stave off elimination.

4 Intrinsic Evaluation

We conduct a set of experiments with approxi-
maten-gram counts (stream counts) produced by
the stream algorithm. We define various metrics on
which we evaluate the quality of stream counts com-
pared with exactn-gram counts (true counts). To

1We use hash tables to store tuples; however smarter data
structures like suffix trees could also be used.

Corpus Gzip-MB M-wrds Perplexity
EP 63 38 1122.69
afe 417 171 1829.57
apw 1213 540 1872.96
nyt 2104 914 1785.84
xie 320 132 1885.33

Table 3: Corpus Statistics and perplexity of LMs made
with each of these corpuses on development set

evaluate the quality of stream counts on these met-
rics, we carry out three experiments.

4.1 Experimental Setup

The freely available English side of Europarl (EP)
and Gigaword corpus (Graff, 2003) is used for
computingn-gram counts. We only use EP along
with two sections of the Gigaword corpus: Agence
France Press English Service(afe) and The New
York Times Newswire Service (nyt). The unigram
language models built using these corpuses yield
better perplexity scores on the development set (see
Section 5.1) compared to The Xinhua News Agency
English Service (xie) and Associated Press World-
stream English Service (apw) as shown in Table 3.
The LMs are build using the SRILM language mod-
elling toolkit (Stolcke, 2002) with modified Kneser-
Ney discounting and interpolation. The evaluation
of stream counts is done on EP+afe+nyt (EAN) cor-
pus, consisting of 1.1 billion words.

4.2 Description of the metrics

To evaluate the quality of counts produced by our
stream algorithm four different metrics are used.
The accuracy metric measures the quality of topN
stream counts by taking the fraction of topN stream
counts that are contained in the topN true counts.

Accuracy=
Stream Counts∩ True Counts

True Counts

Spearman’s rank correlation coefficient or Spear-
man’s rho(ρ) computes the difference between the
ranks of each observation (i.e.n-gram) on two vari-
ables (that are topN stream and true counts). This
measure captures how different the stream count or-
dering is from the true count ordering.

ρ = 1− 6
∑

d2
i

N(N2 − 1)
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di is the difference between the ranks of correspond-
ing elementsXi andYi; N is the number of elements
found in both sets;Xi andYi in our case denote the
stream and true counts.

Mean square error (MSE) quantifies the amount
by which a predicted value differs from the true
value. In our case, it estimates how different the
stream counts are from the true counts.

MSE =
1
N

N∑

i=1

(truei − predictedi)
2

true and predicted denotes values of true and stream
counts;N denotes the number of stream counts con-
tained in true counts.

4.3 Varying ǫ experiments

In our first experiment, we use accuracy,ρ and MSE
metrics for evaluation. Here, we compute5-gram
stream counts with different settings ofǫ on the EAN
corpus.ǫ controls the number of stream counts pro-
duced by the algorithm. The results in Table 4 sup-
port the theory that decreasing the value ofǫ im-
proves the quality of stream counts. Also, as ex-
pected, the algorithm produces more stream counts
with smaller values ofǫ. The evaluation of stream
counts obtained withǫ = 50e-8 and20e-8 reveal that
the stream counts learned with this large value are
more susceptible to errors.

If we look closely at the counts forǫ = 50e-8, we
see that we get at least30% of the stream counts
from 245k true counts. This number is not signifi-
cantly worse than the36% of stream counts obtained
from 4, 018k true counts for the smallest value of
ǫ = 5e-8. However, if we look at the other two met-
rics, the ranking correlationρ of stream counts com-
pared with true counts onǫ = 50e-8 and20e-8 is low
compared to otherǫ values. For the MSE, the error
with stream counts on theseǫm values is again high
compared to other values. As we decrease the value
of ǫ we continually get better results: decreasingǫ
pushes the stream counts towards the true counts.
However, using a smallerǫ increases the memory
usage. Looking at the evaluation, it is therefore ad-
visable to use5-gram stream counts produced with
at mostǫ ≤ 10e-7 for the EAN corpus.

Since it is not possible to compute true7-grams
counts on EAN with available computing resources,

ǫ
5-gram

Acc ρ MSE
produced

50e-8 245k 0.294 -3.6097 0.4954
20e-8 726k 0.326 -2.6517 0.1155
10e-8 1655k 0.352 -1.9960 0.0368
5e-8 4018k 0.359 -1.7835 0.0114

Table 4: Evaluating quality of5-gram stream counts for
different settings ofǫ on EAN corpus

ǫ
7-gram

Acc ρ MSE
produced

50e-8 44k 0.509 0.3230 0.0341
20e-8 128k 0.596 0.5459 0.0063
10e-8 246k 0.689 0.7413 0.0018
5e-8 567k 0.810 0.8599 0.0004

Table 5: Evaluating quality of7-gram stream counts for
different settings ofǫ on EP corpus

we carry out a similar experiment for7-grams on EP
to verify the results for higher ordern-grams2. The
results in Table 5 tell a story similar to our results for
7-grams. The size of EP corpus is much smaller than
EAN and so we see even better results on each of the
metrics with decreasing the value ofǫ. The overall
trend remains the same; here too, settingǫ ≤ 10e-
8 is the most effective strategy. The fact that these
results are consistent across two datasets of different
sizes and differentn-gram sizes suggests that they
will carry over to other tasks.

4.4 Varying top K experiments

In the second experiment, we evaluate the quality
of the topK (sorted by frequency)5-gram stream
counts. Here again, we use accuracy,ρ and MSE for
evaluation. We fix the value ofǫ to 5e-8 and com-
pute5-gram stream counts on the EAN corpus. We
vary the value ofK between100k and4, 018k (i.e
all then-gram counts produced by the stream algo-
rithm). The experimental results in Table 6 support
the theory that stream count algorithm computes the
exact count of most of the high frequencyn-grams.
Looking closer, we see that if we evaluate the algo-
rithm on just the top100k 5-grams (roughly5% of
all 5-grams produced), we see almost perfect results.
Further, if we take the top1, 000k 5-grams (approx-
imately25% of all 5-grams) we again see excellent

2Similar evaluation scores are observed for9-gram stream
counts with different values ofǫ on EP corpus.
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Top K Accuracy ρ MSE
100k 0.994 0.9994 0.01266
500k 0.934 0.9795 0.0105
1000k 0.723 0.8847 0.0143
2000k 0.504 0.2868 0.0137
4018k 0.359 -1.7835 0.0114

Table 6: Evaluating topK sorted5-gram stream counts
for ǫ=5e-8 on EAN corpus

performance on all metrics. The accuracy of the re-
sults decrease slightly, but theρ andMSE metrics
are not decreased that much in comparison. Perfor-
mance starts to degrade as we get to2, 000k (over
50% of all 5-grams), a result that is not too surpris-
ing. However, even here we note that the MSE is
low, suggesting that the frequencies of stream counts
(found in topK true counts) are very close to the
true counts. Thus, we conclude that the quality of
the5-gram stream counts produced for this value of
ǫ is quite high (in relation to the true counts).

As before, we corroborate our results with higher
ordern-grams. We evaluate the quality of topK 7-
gram stream counts on EP.3 Since EP is a smaller
corpus, we evaluate the stream counts produced by
settingǫ to 10e-8. Here we vary the value ofK be-
tween10k and246k (the total number produced by
the stream algorithm). Results are shown in Table
7. As we saw earlier with5-grams, the top10k (i.e.
approximately5% of all 7-grams) are of very high
quality. Results, and this remains true even when
we increaseK to 100k. There is a drop in the accu-
racy and a slight drop inρ, while the MSE remains
the same. Taking all counts again shows a signifi-
cant decrease in both accuracy andρ scores, but this
does not affect MSE scores significantly. Hence, the
7-gram stream counts i.e.246k counts produced by
ǫ = 10e-8 are quite accurate when compared to the
top246k true counts.

4.5 Analysis of tradeoff between coverage and
space

In our third experiment, we investigate whether a
large LM can help MT performance. We evaluate
the coverage of stream counts built on the EAN cor-
pus on the test data for SMT experiments (see Sec-

3Similar evaluation scores are observed for different top K
sorted9-gram stream counts withǫ=10e-8 on EP corpus.

Top K Accuracy ρ MSE
10k 0.996 0.9997 0.0015
20k 0.989 0.9986 0.0016
50k 0.950 0.9876 0.0016
100k 0.876 0.9493 0.0017
246k 0.689 0.7413 0.0018

Table 7: Evaluating topK sorted7-gram stream counts
for ǫ=10e-8 on EP corpus

tion 5.1) with different values ofǫm. We compute
the recall of each model against3071 sentences of
test data where recall is the fraction of number of
n-grams of a dataset found in stream counts.

Recall=
Number ofn-grams found in stream counts

Number ofn-grams in dataset

We build unigram, bigram, trigram,5-gram and
7-gram with four different values ofǫ. Table 8 con-
tains thegzip size of the count file and the recall
of various different stream countn-grams. As ex-
pected, the recall with respect to true counts is max-
imum for unigrams, bigrams, trigrams and5-grams.
However the amount of space required to store all
true counts in comparison to stream counts is ex-
tremely high: we need4.8GB of compressed space
to store all the true counts for5-grams.

For unigram models, we see that the recall scores
are good for all values ofǫ. If we compare the
approximate stream counts produced by largestǫ
(which is worst) to all true counts, we see that the
stream counts compressed size is50 times smaller
than the true counts size, and is only three points
worse in recall. Similar trends hold for bigrams,
although the loss in recall is higher. As with uni-
grams, the loss in recall is more than made up for by
the memory savings (a factor of nearly150). For
trigrams, we see a14 point loss in recall for the
smallestǫ, but a memory savings of400 times. For
5-grams, the best recall value is.020 (1.2k out of
60k 5-gram stream counts are found in the test set).
However, compared with the true counts we only
loss a recall of0.05 (4.3k out of 60k) points but
memory savings of150 times. In extrinsic evalua-
tions, we will show that integrating5-gram stream
counts with an SMT system performs slightly worse
than the true counts, while dramatically reducing the
memory usage.
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N -gram unigram bigram trigram 5-gram 7-gram

ǫ
Gzip

Recall
Gzip

Recall
Gzip

Recall
Gzip

Recall
Gzip

Recall
MB MB MB MB MB

50e-8 .352 .785 2.3 .459 3.3 .167 1.9 .006 .864 5.6e-5
20e-8 .568 .788 4.5 .494 7.6 .207 5.3 .011 2.7 1.3e-4
10e-8 .824 .791 7.6 .518 15 .237 13 .015 9.7 4.1e-4
5e-8 1.3 .794 13 .536 30 .267 31 .020 43 5.9e-4
all 17 .816 228 .596 1200 .406 4800 .072 NA

Table 8: Gzipped space required to storen-gram counts on disk and their coverage on a test set with differentǫm

For 7-gram we can not compute the truen-gram
counts due to limitations of available computational
resources. The memory requirements with smallest
value ofǫ are similar to those of5-gram, but the re-
call values are quite small. For7-grams, the best re-
call value is5.9e-4 which means that stream counts
contains only32 out of 54k 7-grams contained in
test set. The small recall value for7-grams suggests
that these counts may not be that useful in SMT.
We further substantiate our findings in our extrinsic
evaluations. There we show that integrating7-gram
stream counts with an SMT system does not affect
its overall performance significantly.

5 Extrinsic Evaluation

5.1 Experimental Setup

All the experiments conducted here make use of
publicly available resources. Europarl (EP) corpus
French-English section is used as parallel data. The
publicly available Moses4 decoder is used for train-
ing and decoding (Koehn and Hoang, 2007). The
news corpus released for ACL SMT workshop in
2007 consisting of1057 sentences5 is used as the de-
velopment set. Minimum error rate training (MERT)
is used on this set to obtain feature weights to opti-
mize translation quality. The final SMT system per-
formance is evaluated on a uncased test set of3071
sentences using the BLEU (Papineni et al., 2002),
NIST (Doddington, 2002) and METEOR (Banerjee
and Lavie, 2005) scores. The test set is the union of
the 2007 news devtest and 2007 news test data from
ACL SMT workshop 2007.6

4http://www.statmt.org/moses/
5http://www.statmt.org/wmt07/
6We found that testing on Parliamentary test data was com-

pletely insensitive to largen-gram LMs, even when these LMs
are exact. This suggests that for SMT performance, more data

5.2 Integrating stream counts feature into
decoder

Our method only computes high-frequencyn-gram
counts; it does not estimate conditional probabili-
ties. We can either turn these counts into conditional
probabilities (by using SRILM) or use the counts di-
rectly. We observed no significant difference in per-
formance between these two approaches. However,
using the counts directly consumes significantly less
memory at run-time and is therefore preferable. Due
to space constraints, SRILM results are omitted.

The only remaining open question is:how should
we turn the counts into a feature that can be used in
an SMT system? We considered several alternatives;
the most successful was a simple weighted count
of n-gram matches of varying size, appropriately
backed-off. Specifically, consider ann-gram model.
For every sequence of wordswi, . . . , wi+N−1, we
obtain a feature score computed recursively accord-
ing to Eq (2).

f(wi) = log

„

C(wi)

Z

«

(2)

f(wi, . . . , wi+k) = log

„

C(wi, . . . , wi+k)

Z

«

+
1

2
f(wi+1, . . . , wi+k)

Here, 1
2 is the backoff factor andZ is the largest

count in the count set (the presence ofZ is simply to
ensure that these values remain manageable). In or-
der to efficiently compute these features, we store
the counts in a suffix-tree. The computation pro-
ceeds by first consideringwi+N−1 alone and then
“expanding” to consider the bigram, then trigram
and so on. The advantage to this order of computa-
tion is that the recursive calls can cease whenever a
is betteronly if it comes from the right domain.
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n-gram(ǫ) BLEU NIST MET
Mem
GB

3 EP(exact) 25.57 7.300 54.48 2.7
5 EP(exact) 25.79 7.286 54.44 2.9

3 EAN(exact) 27.04 7.428 55.07 4.6
5 EAN(exact) 28.73 7.691 56.32 20.5

4(10e-8) 27.36 7.506 56.19 2.7
4(5e-8) 27.40 7.507 55.90 2.8
5(10e-8) 27.97 7.605 55.52 2.8
5(5e-8) 27.98 7.611 56.07 2.8
7(10e-8) 27.97 7.590 55.88 2.9
7(5e-8) 27.88 7.577 56.01 2.9
9(10e-8) 28.18 7.611 55.95 2.9
9(5e-8) 27.98 7.608 56.08 2.9

Table 9: Evaluating SMT with different LMs on EAN.
Results are according to BLEU, NIST and MET metrics.
Bold #s are not statistically significant worse than exact.

zero count is reached. (Extending Moses to include
this required only about100 lines of code.)

5.3 Results

Table 9 summarizes SMT results. We have4 base-
line LMs that are conventional LMs smoothed using
modified Kneser-Ney smoothing. The first two tri-
gram and5-gram LMs are built on EP corpus and
the other two are built on EAN corpus. Table 9
show that there is not much significant difference
in SMT results of5-gram and trigram LM on EP.
As expected, the trigram built on the large corpus
EAN gets an improvement of1.5 Bleu Score. How-
ever, unlike the EP corpus, building a5-gram LM
on EAN (huge corpus) gets an improvement of3.2
Bleu Score. (The95% statistical significance bound-
ary is about± 0.53 Bleu on the test data, 0.077 Nist
and 0.16 Meteor according to bootstrap resampling)
We see similar gains in Nist and Meteor metrics as
shown in Table 9.

We use stream counts computed with two values
of ǫ, 5e-8 and 10e-8 on EAN corpus. We use all
the stream counts produced by the algorithm.4, 5, 7
and9 ordern-gram stream counts are computed with
these settings ofǫ. These counts are used along with
a trigram LM built on EP to improve SMT perfor-
mance. The memory usage (Mem) shown in Table
9 is the full memory size required to run on the test
data (including phrase tables).

Adding 4-gram and5-gram stream counts as fea-

ture helps the most. The performance gain by using
5-gram stream counts is slightly worse than com-
pared to true5-gram LM on EAN. However, using
5-gram stream counts directly is more memory ef-
ficient. Also, the gains for stream counts are ex-
actly the same as we saw for same sized count-
based and entropy-based pruning counts in Table 1
and 2 respectively. Moreover, unlike the pruning
methods, our algorithm directly computes a small
model, as opposed to compressing a pre-computed
large model.

Adding 7-gram and9-gram does not help signifi-
cantly, a fact anticipated by the low recall of7-gram-
based counts that we saw in Section 4.5. The results
with two different settings ofǫ are largely the same.
This validates our intrinsic evaluation results in Sec-
tion 4.3 that stream counts learned usingǫ ≤ 10e-8
are of good quality, and that the quality of the stream
counts is high.

6 Conclusion

We have proposed an efficient, low-memory method
to construct high-order approximaten-gram LMs.
Our method easily scales to billion-word monolin-
gual corpora on conventional (8GB) desktop ma-
chines. We have demonstrated that approximaten-
gram features could be used as a direct replacement
for conventional higher order LMs in SMT with
significant reductions in memory usage. In future,
we will be looking into building streaming skipn-
grams, and other variants (like clustern-grams).

In NLP community, it has been shown that having
more data results in better performance (Ravichan-
dran et al., 2005; Brants et al., 2007; Turney, 2008).
At web scale, we have terabytes of data and that can
capture broader knowledge. Streaming algorithm
paradigm provides a memory and space-efficient
platform to deal with terabytes of data. We hope
that other NLP applications (where we need to com-
pute relative frequencies) like noun-clustering, con-
structing syntactic rules for SMT, finding analogies,
and others can also benefit from streaming methods.
We also believe that stream counts can be applied to
other problems involving higher order LMs such as
speech recognition, information extraction, spelling
correction and text generation.
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