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Abstract Cutoff | Size | BLEU | NIST | MET

Exact | 367.6m| 28.73 | 7.691 | 56.32

In this paper, we explore a streaming al- 2 | 229.8m| 28.23 | 7.613| 56.03
gorithm paradigm to handle large amounts 3 143.6m| 28.17 | 7.571| 56.53
of data for NLP problems. We present an 5 59.4m | 28.33 | 7.636 | 56.03
efficient low-memory method for construct- 10 18.3m | 27.91 | 7.546 | 55.64
ing high-order approximate-gram frequency 100 | 1.Im | 28.03 | 7.607 | 55.91
counts. The method is based on a determinis- 200 | 0.5m | 27.62 | 7.550 | 55.67

tic streaming algorithm which efficiently com-
putes approximate frequency counts over a
stream of data while employing a small mem-
ory footprint. We show that this method eas-
ily scales to billion-word monolingual corpora
using a conventional8( GB RAM) desktop
machine. Statistical machine translation ex-
perimental results corroborate that the result-

Table 1: Effect of count-based pruning on SMT per-
formance using EAN corpus. Results are according to
BLEU, NIST and METEOR (MET) metrics. Bold #s are
not statistically significant worse than exact model.

Brants et al. (2007) used500 machines for a

ing high+ approximatesmall language model day to compute the relative frequenciesmeframs
is as effective as models obtained from other ~ (Summed over all orders frorh to 5) from 1.8TB
count pruning methods. of web data. Their resulting model containgeD

million uniquen-grams.

Itis not realistic using conventional computing re-
sources to use all th&00 million n-grams for ap-
In many NLP problems, we are faced with the chalplications like speech recognition, spelling correc-
lenge of dealing with large amounts of data. Manyion, information extraction, and statistical machine
problems boil down to computing relative frequentranslation (SMT). Hence, one of the easiest way to
cies of certain items on this data. Items can beeduce the size of this model is to use count-based
words, patterns, associations,grams, and others. pruning which discards at-grams whose count is
Language modeling (Chen and Goodman, 1996less than a pre-defined threshold. Although count-
noun-clustering (Ravichandran et al., 2005), corbased pruning is quite simple, yet it is effective for
structing syntactic rules for SMT (Galley et al.,machine translation. As we do not have a copy of
2004), and finding analogies (Turney, 2008) ar¢he web, we will use a portion of gigaword i.e. EAN
examples of some of the problems where we negdee Section 4.1) to show the effect of count-based
to compute relative frequencies. We use languag®uning on performance of SMT (see Section 5.1).
modeling as a canonical example of a large-scaltable 1 shows that using a cutoff t#0 produces a
task that requires relative frequency estimation. model of sizel.1 million n-grams with a Bleu score

Computing relative frequencies seems like aiof 28.03. If we compare this with an exact model
easy problem. However, as corpus sizes growf size367.6 million n-grams, we see an increase of
it becomes a highly computational expensive task.8 points in Bleu §5% statistical significance level
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€ Size | BLEU | NIST | MET a small model. We use a deterministic streaming al-
Exact| 367.6m| 28.73 | 7.691 | 56.32 gorithm (Manku and Motwani, 2002) that computes
1e-10) 218.4m| 28.64 | 7.669 | 56.33 approximate frequency counts of frequently occur-

5e-10| 171.0m| 28.48 | 7.666 | 56.38 . Thi h . iderabl
1e-9 | 148.0m| 2856 | 7.646 | 56.51 rng n-grams. IS sCheme IS consiaerably more ac-

5e-9 | 91.9m | 28.27 | 7.623| 56.16 curate in getting the actual counts as compared to
1e-8 | 69.4m | 28.15 | 7.609 | 56.19 other schemes (Demaine et al., 2002; Karp et al.,
5e-7 | 28.5m | 28.08 | 7.595 | 55.91 2003) that find the set of frequent items without car-

_ ing about the accuracy of counts.

Table 2: Effect of entropy-based pruning on SMT perfor- \ye 56 these counts directly as features in an
mance using EAN corpus. Results are as in Table 1 . .

SMT system, and propose a direct way to integrate

these features into an SMT decoder. Experiments
is ~ 0.53 Bleu). However, we need00 times big- show that directly storing approximate counts of fre-
ger model to get such an increase. Unfortunately, guent5-grams compared to using count or entropy-
is not possible to integrate such a big model insideldased pruning counts gives equivalent SMT perfor-
decoder using normal computation resources. mance, while dramatically reducing the memaory us-

A better way of reducing the size afgramsisto age and getting rid of pre-computing a large model.

use entropy pruning (Stolcke, 1998). Table 2 shows
the results with entropy pruning with different set2 Background
tings ofe. We see that for three settingscéqual o 2 1 ,_gram Language Models

le-10, 5e-10 and1e-9, we get Bleu scores compara- . _ .
%anguage modeling is based on assigning probabil-

models is not at all small. The size of smallest mod i}ies to sentences. It can either compute the proba-
' . ei)ility of an entire sentence or predict the probability

is 25% of the exact model. Even with this size it is .
f the next word in a sequence. Lef* denote a se-

still not feasible to integrate such a big model insid€ o
a decoder. If we take a model of size comparable t%ute_ncei_ of WOfgj%O,I- N ’u(;m)' The probalbllltydof
count cutoff of100, i.e., withe = 5e-7, we see both estimating wordu,,, depends on previous.1 words

count-based pruning as well as entropy pruning pey_\—'herﬁn deng)t?l_thefyzedqi:[gram. This ?ssu;ng—
forms the same. tion that probability of predicting a current word de-

There also have been prior work on maintainP€Nds on the previous words is called a Markov as-

ing approximate counts for higher-order Ianguaggumptlon, typically estimated by relative frequency:

models (LMs) ((Talbot and Osborne, 2007a; Tal- . C(wm-! W)
bot and Osborne, 2007b; Talbot and Brants, 2008)) P (wm | wy,~, 1) = Cmm—nj (1)
operates under the model that the goal is to store a (W nt1)
compressed representation of a disk-resident table Bt} 1 estimates the-gram probability by taking the
counts and use this compressed representation to aatio of observed frequency of a particular sequence
swer count queries approximately. and the observed frequency of the prefix. This is
There are two difficulties with scaling all the precisely the relative frequency estimate we seek.
above approaches as the order of the LM increases. _
Firstly, the computation time to build the database of-2 Large-scale Language modeling
counts increases rapidly. Secondly, the initial diskJsing higher order LMs to improve the accuracy
storage required to maintain these counts, prior tof SMT is not new. (Brants et al., 2007; Emami
building the compressed representation is enormouet al., 2007) builts-gram LMs over web using dis-
The method we propose solves both of these prolributed cluster of machines and queried them via
lems. We do this by making use of teieeaming al- network requests. Since the use of cluster of ma-
gorithm paradigm (Muthukrishnan, 2005). Working chines is not always practical, (Talbot and Osborne,
under the assumption that multiple-GB models ar2007b; Talbot and Osborne, 2007a) showed a ran-
infeasible, our goal is to instead of estimating a largdomized data structure called Bloom filter, that can
model and then compressing it, we directly estimatbe used to construct space efficient language models
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for SMT. (Talbot and Brants, 2008) presented ran3 Space-Efficient Approximate Frequency
domized language model based on perfect hashing Estimation
combined with entropy pruning to achieve further

memory reductions. A problem mentioned in (TaI_Prlorwork on approximate frequency estimation for

bot and Brants, 2008) is that the algorithm that comanguage quels provide a no—false—_neganve guar-
Btee, ensuring that counts fergrams in the model

utes the compressed representation might needd . .
P P P d re returned exactly, while working to make sure the

retain the entire database in memory; in their pape | i ¢ . I (Talbot and O
they design strategies to work around this proble @ISe-positive rate remains sma (Talbot and Os-

(Federico and Bertoldi, 2006) also used single m(,gorne, 2007a). The notion of approximation we use

chine and fewer bits to store the LM probability byIS Idlfferehnt: |q||ol;1r approa(.:h, I (Ijs tf\}s acltual COlIm.t
using efficient prefix trees. values that will be approximated. We also exploit

. . the fact that low-frequency n-grams, while consti-
(Uszkoreitand Brants, 2008) used partially Clz_’lssfuting the vast majority of the set of unique n-grams,

based LMs together with word-based LMs 1o im- usually smoothed away and are less likely to in-

prove SMT performance despite the large size cﬁuence the language model significantly. Discard-

'tzhoeo\évpgi—base? rlrloggé%useda ﬁsc: Welrnk and Koeh g low-frequencyn-grams is particularly important
»£hang etal., ) used higher language MO a stream setting, because it can be shown in gen-

els at t_|me of re-ranking rather _than integrating di ral that any algorithm that generates approximate
rectly into the decoder to avoid the overhead of

. . . . ) requency counts for ati-grams requires space lin-
keeping LMs in the main memory since disk Iookupsear in the input stream (Alon et al., 1999).

are simply too slow. Now using higher order LMs at . .
i ¢ king 10oks lik d obi 4 We employ an algorithm for approximate fre-
IMe of re-ranking 100ks 1ike a good option. OW'quency counting proposed by (Manku and Motwani,

ever, the targeb-best hypothesis list is not diversezooz) in the context of database management. Fix

enough. Hence if possible it is always better to inte- '
: : arameters € (0,1), ande € (0,1), . Our

grate LMs directly into the decoder. P (0,1) €€ (01)e <

goal is to approximately find ak-grams with fre-
_ guency at leastN. For an input stream of-grams
2.3 Streaming of length N, the algorithm outputs a set of items

Consider an algorithm that reads the input from §nd frequencies) and guarantees the following:

read-onlystream from left to right, with no ability

to go back to the input that it has already processed.
This algorithm has working storage that it can use to
store parts of the input or other intermediate compu- e No item with frequency less thafs — ¢)N is
tations. However, (and this is a critical constraint),  output few false positives).

this working storage space is significantly smaller

than the input stream length. For typical algorithms, ® All reported frequencies are less than the true
the storage size is of the orderlog* NV, where N frequencies by at mogtV (close-to-exact fre-

is the input size andé is some constant. quencies).

Stream algorithms were first _de\_/eloped in the ¢ The space used by the algorithm is
early 80s, but gained in popularity in the late 90s O(LlogeN).
as researchers first realized the challenges of dealing ¢
with massive data sets. A good survey of the model A simple example illustrates these properties. Let
and core challenges can be found in (Muthukrishds fixs = 0.01, ¢ = 0.001. Then the algorithm guar-
nan, 2005). There has been considerable work on thetees that ath-grams with frequency at lea$ts
problem of identifying high-frequency items (itemswill be returned, no element with frequency less than
with frequency above a threshold), and a detailed r&-9% will be returned, and all frequencies will be no
view of these methods is beyond the scope of this amore thar).1% away from the true frequencies. The
ticle. A new survey by (Cormode and Hadjielefthe-space used by the algorithm@¥log V), which can
riou, 2008) comprehensively reviews the literature.be compared to the much larger (closeNd space

e All items with frequencies exceedingV are
output fo false negatives).
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needed to store the initial frequency counts. In addi- | Corpus | Gzip-MB | M-wrds | Perplexity
tion, the algorithm runs in linear time by definition, EP 63 38 1122.69
requiring only one pass over the input. Note that ;‘fe 1421173 éZé ig?ggg
there might be% elements with frequency at least n;;/\:v 2104 914 1785.84
eN, and so the algorithm uses optimal space (up to xie 320 132 1885.33

a logarithmic factor).
Table 3: Corpus Statistics and perplexity of LMs made
3.1 The Algorithm with each of these corpuses on development set

We present a high-level overview of the algorithm;

for more details, the reader is referred to (Mank§valuate the quality of stream counts on these met-
and Motwani, 2002). The algorithm proceeds byiCS, We carry out three experiments.

conceptually dividing the stream inpochs, each

containing1/e elements. Note that there aedV

epochs. Each such epoch has an ID, starting froff'€ freely available English side of Europarl (EP)
1. The algorithm maintains a list of tupfesf the and Gigaword corpus (Graff, 2003) is used for

form (e, f,A), wheree is ann-gram, f is its re- cqmputingn-gram counts.' We only use EP along
ported frequency, and is the maximum error in the with two sections of_the Glge_lword corpus: Agence
frequency estimation. While the algorithm reags France Press English Service(afe) and The New
grams associated with the current epoch, it does of@k Times Newswire Service (nyt). The unigram
of two things: if the new elementis contained in language models built using these corpuses yield
the list of tuples, it merely increments the frequency®tter perplexity scores on the development set (see
countf. If not, it creates a new tuple of the form>€ction 5.1) compared to The Xinhua News Agency
(e,1,T — 1), whereT is the ID of the current epoch. English Service (xie) and Associated Press World-
After each epoch, the algorithm “cleans house” b tream English _Servi_ce (apw) as shown in Table 3.
eliminating tuples whose maximum true frequency) '€ LMs are build using the SRILM language mod-
is small. Formally, if the epoch that just endeoe”'ng '[.00|kl'[ (.Stolcke,_2002) W|th modified Knese_r—
has IDT, then the algorithm deletes all tuples satNey discounting and interpolation. The evaluation
isfying condition f + A < T. SinceT < eN of stream counts is done on EP+afe+nyt (EAN) cor-
this ensures that no low-frequency tuples are rd?US: consisting of 1.1 billion words.
tained. When all elements in the stream have begp, Description of the metrics
processed, the algorithm returns all tuplesf, A)

4.1 Experimental Setup

wheref > (s—¢)N. In practice, however we do not To evaluate the quality of counts produced by our
o ptream algorithm four different metrics are used.

care about s and return all tuples. At a high leve ) ]
the reason the algorithm works is that if an elementN® accuracy metric measures the quality of 16p

has high frequency, it shows up more than once ealff€aM counts by taki_ng th_e fraction of tapstream
epoch, and so its frequency gets updated enoughqgunts that are contained in the tdptrue counts.

stave off elimination. AccUracy— Stream Counts) True Counts
y= True Counts

4 Intrinsic Evaluation _ o
Spearman’s rank correlation coefficient or Spear-

We conduct a set of experiments with approximan’s rhop) computes the difference between the
mate n-gram counts (stream counts) produced byanks of each observation (i.e-gram) on two vari-
the stream algorithm. We define various metrics oables (that are topV stream and true counts). This
which we evaluate the quality of stream counts commeasure captures how different the stream count or-
pared with exact:-gram counts (true counts). Todering is from the true count ordering.

'We use hash tables to store tuples; however smarter data _ 6 d?
structures like suffix trees could also be used. p==i= N(N2—1)
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d; is the difference between the ranks of correspond- | S-gram |, .. MSE
i - N duced p
ing elementsY; andY;; NV is the number of elements pro
found in both setsX; andY; in our case denote the S0e-8 245K 0.294 | -3.6097) 0.4954
stream and true counts 20e-8 726k 0.326 | -2.6517| 0.1155
M MSE i h 10e-8 1655k 0.352| -1.9960| 0.0368
ean square error ( ) quantifies the amount 5.8 2018k 1 03591 -1.78351 0.0114

by which a predicted value differs from the true
value.
stream counts are from the true counts.

In our case, it estimates how different th@able 4. Evaluating quality of-gram stream counts for
different settings ot on EAN corpus

N 7-gram
MSE = %Z(truei — predicted)? | produced | A% | ° MSE
i=1 50e-8 44k 0.509| 0.3230| 0.0341
20e-8 128k 0.596 | 0.5459| 0.0063
true and predicted denotes values of true and stream| 10e-8 246K 0.689| 0.7413] 0.0018
counts;N denotes the number of stream counts con- | 5e-8 567k 0.810| 0.8599]| 0.0004

tained in true counts. _ _
Table 5: Evaluating quality of-gram stream counts for

4.3 Varying e experiments different settings o€ on EP corpus

In our first experiment, we use accuragynd MSE

metrics for evaluation. Here, we compuiggram We carry out a similar experiment fGrgrams on EP
stream counts with different settingseasn the EAN  to verify the results for higher order-grams?. The
corpus.e controls the number of stream counts profesults in Table 5 tell a story similar to our results for
duced by the algorithm. The results in Table 4 sup?-grams. The size of EP corpus is much smaller than
port the theory that decreasing the valueedim- EAN and so we see even better results on each of the
proves the quality of stream counts. Also, as exmetrics with decreasing the value of The overall
pected, the algorithm produces more stream courtrend remains the same; here too, setting 10e-

with smaller values ot. The evaluation of stream 8 is the most effective strategy. The fact that these
counts obtained with = 50e-8 and20e-8 reveal that results are consistent across two datasets of different
the stream counts learned with this large value agizes and different-gram sizes suggests that they
more susceptible to errors. will carry over to other tasks.

If we look closely at the counts far= 50e-8, we
see that we get at lea80% of the stream counts
from 245k true counts. This number is not signifi-IN the second experiment, we evaluate the quality
cantly worse than thg6% of stream counts obtained Of the top K™ (sorted by frequencyj-gram stream
from 4,018k true counts for the smallest value ofcounts. Here again, we use accuracgnd MSE for
¢ = 5e-8. However, if we look at the other two met- €valuation. We fix the value afto 5e-8 and com-
rics, the ranking correlatiop of stream counts com- Pute-gram stream counts on the EAN corpus. We
pared with true counts on= 50e-8 and20e-8 is low ~ vary the value ofk” betweenl00k and4, 018k (i.e
compared to other values. For the MSE, the error all the n-gram counts produced by the stream algo-
with stream counts on thesen values is again high fithm). The experimental results in Table 6 support
compared to other values. As we decrease the valtfte theory that stream count algorithm computes the
of e we continually get better results: decreasing €xact count of most of the high frequeneygrams.
pushes the stream counts towards the true countgoking closer, we see that if we evaluate the algo-
However, using a smaller increases the memory fithm on just the topl00k 5-grams (roughly>% of
usage. Looking at the evaluation, it is therefore acdll 5-grams produced), we see almost perfect results.

visable to use-gram stream counts produced withFurther, if we take the top, 000k 5-grams (approx-
at moste < 10e-7 for the EAN corpus. imately 25% of all 5-grams) we again see excellent

Since it is not POSSibl_e to computg trdeggrams 2Similar evaluation scores are observed egram stream
counts on EAN with available computing resources;ounts with different values afon EP corpus.

4.4 Varying top K experiments
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Top K | Accuracy ) MSE Top K | Accuracy p MSE
100k 0.994 0.9994 | 0.01266 10k 0.996 0.9997| 0.0015
500k 0.934 0.9795 | 0.0105 20k 0.989 0.9986 | 0.0016
1000k 0.723 0.8847 | 0.0143 50k 0.950 0.9876| 0.0016
2000k 0.504 0.2868 | 0.0137 100k 0.876 0.9493| 0.0017
4018k 0.359 -1.7835| 0.0114 246k 0.689 0.7413| 0.0018

Table 6: Evaluating tog< sorted5-gram stream counts Table 7: Evaluating tog< sorted7-gram stream counts
for e=5e-8 on EAN corpus for e=10e-8 on EP corpus

performance on all metrics. The accuracy of the reion 5.1) with different values ofm. We compute
sults decrease slightly, but theand M SE metrics the recall of each model again¥i71 sentences of
are not decreased that much in comparison. Perfdest data where recall is the fraction of number of
mance starts to degrade as we geR to00k (over n-grams of a dataset found in stream counts.
50% of all 5-grams), a result that is not too surpris-
ing. However, even here we note that the MSE is Rrecall=
low, suggesting that the frequencies of stream counts
(found in top K true counts) are very close to the _ , _ ,
true counts. Thus, we conclude that the quality of we bw!d unigram, bigram, trigrang-gram and
the5-gram stream counts produced for this value O?-gram W'th_ four. different values fo Table 8 con-
¢ is quite high (in relation to the true counts). tains t_he92|_p size of the count file and the recall
As before, we corroborate our results with highePf various different lstream count-grams. AS. ex-
ordern-grams. We evaluate the quality of tdp 7- !oected, the recall Wlth respect t_o true counts is max-
gram stream counts on ERSince EP is a smaller imum for unigrams, bigrams, trigrams abejrams.

corpus, we evaluate the stream counts produced 5' wever the amount of space required to store all

settinge to 10e-8. Here we vary the value dk be- true coun_ts ?n comparison to stream counts is ex-
tween10k and246k (the total number produced by tremely high: we need.8G:3 of compressed space
the stream algorithm). Results are shown in Tabit9 Store qll the true counts fGrgrams.

7. As we saw earlier with-grams, the top0k (i.e. For unigram models, we see that the recall scores

approximately5% of all 7-grams) are of very high are gopd f[or i” values Ott' I vge codmtp))arle thet
quality. Results, and this remains true even whe pproximate siream counts produced by farges

we increasés to 100k. There is a drop in the accu- which is worst) to all true counts, we see that the

racy and a slight drop ip, while the MSE remains stream counts compre.fssed sizeg(i)stimes smaller_
the same. Taking all counts again shows a signif}-han the true counts size, and is only three points
cant decrease in both accuracy tores. but this worse in recall. Similar trends hold for bigrams,
does not affect MSE scores significantly. Hence, th%lthough the loss in recall is higher. As with uni-

7-gram stream counts i.@46k counts produced by grams, the loss in recall is more than made up for by

€ = 10e-8 are quite accurate when compared to th,%:h_e memory savmgz @ fatctlor Of. neaﬂﬁl(l))].c F?r:
top 246 true counts. rigrams, we see point loss in recall for the

smalleste, but a memory savings @00 times. For
4.5 Analysis of tradeoff between coverage and 9-9rams, the best recall value 1620 (1.2k out of
space 60k 5-gram stream counts are found in the test set).

However, compared with the true counts we only

In our third experiment, we investigate whether 3ss a recall of).05 (4.3k out of 60k) points but
large LM can help MT performance. We ev"’“u""tefnemory savings of50 times. In extrinsic evalua-

the coverage of stream counts built on the EAN COlions, we will show that integrating-gram stream

pus on the test data for SMT experiments (see S€ounts with an SMT system performs slightly worse
SSimilar evaluation scores are observed for different top Khan the true counts, while dramatically reducing the
sorted9-gram stream counts wiitF10e-8 on EP corpus. memory usage.

Number ofn-grams found in stream counts
Number ofn-grams in dataset
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N-gram unigram bigram trigram 5-gram 7-gram

€ GMZép Recall %Zép Recall (E/lzép Recall GMZép Recall %Zép Recall
50e-8 | .352 | .785 2.3 459 3.3 167 1.9 .006 | .864 | 5.6e-5
20e-8 | .568 | .788 4.5 494 7.6 .207 5.3 .011 2.7 | 1.3e-4
10e-8 | .824 | .791 7.6 .518 15 237 13 .015 9.7 | 4.1e-4
5e-8 1.3 794 13 .536 30 .267 31 .020 43 | 5.9e-4

all 17 816 | 228 | .596 | 1200 | .406 | 4800 | .072 NA

Table 8: Gzipped space required to stargram counts on disk and their coverage on a test set witbrdiftem

For 7-gram we can not compute the truegram 5.2 Integrating stream counts feature into
counts due to limitations of available computational decoder

resources. The memory requirements with smallegf,. method only computes high-frequenegram
value ofe are simi!ar to those of-gram, but the re- ¢4 nts: it does not estimate conditional probabili-
call values are quite small. Fgrgrams, the best re- tjes. e can either turn these counts into conditional
call vqlue is5.9¢-4 which means that stream Cou_ntsprobabilities (by using SRILM) or use the counts di-
contains only32 out of 54k 7-grams contained in rectly. We observed no significant difference in per-
test set. The small recall value forgrams Suggests formance between these two approaches. However,

that these counts may not be that useful in SMT;sing the counts directly consumes significantly less

We further substantiate our findings in our extrinsiq,nemory at run-time and is therefore preferable. Due
evaluations. There we show that integratingram space constraints, SRILM results are omitted.
stream counts with an SMT system does not affect 1, only remaining open question tsow should

its overall performance significantly. we turn the counts into a feature that can be used in

an SMT system? We considered several alternatives;
the most successful was a simple weighted count

5.1 Experimental Setup of n-gram matches of varying size, appropriately

, backed-off. Specifically, consider angram model.
All the experiments conducted here make use or every sequence of WOrds;, . . ., wiy 1, We

publicly available resources. Europarl (EP) COrpUShain 4 feature score computed recursively accord-
French-English section is used as parallel data. Tqﬁg to Eq (2).
publicly available Mosesdecoder is used for train-

5 Extrinsic Evaluation

ing and decoding (Koehn and Hoang, 2007). The C(wy)

news corpus released for ACL SMT workshop in Flws) = log( Z ) @
2007 consisting 0f057 sentencesis used as the de- Clwi, ..., Witk)
velopment set. Minimum error rate training (MERT) flwi, .. ,witr) = log < z )

is used on this set to obtain feature weights to opti-
mize translation quality. The final SMT system per-
formance is evaluated on a uncased test s800f
sentences using the BLEU (Papineni et al., 2002), Here, 5 is the backoff factor and is the largest
NIST (Doddington, 2002) and METEOR (Banerjeecount in the count set (the presenceZas simply to

and Lavie, 2005) scores. The test set is the union §fsure that these values remain manageable). In or-
the 2007 news devtest and 2007 news test data frd#gr to efficiently compute these features, we store

1
+ if(w¢+17...,wi+k)

ACL SMT workshop 2007%. the counts in a suffix-tree. The computation pro-
- ceeds by first considering;;y_; alone and then
*http://www.statmt.org/moses/ “expanding” to consider the bigram, then trigram

5 . -
nutp:/fwwwstatmt.org/wmt07/ and so on. The advantage to this order of computa-
We found that testing on Parliamentary test data was co

pletely insensitive to large-gram LMs, even when these LMSn%lon is that the recursive calls can cease whenever a
are exact. This suggests that for SMT performance, more dabetteronly if it comes from the right domain.
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n-gram(e) | BLEU | NIST | MET '\éeg ture helps the most. The performance gain by using
5-gram stream counts is slightly worse than com-
3 EP(exact) | 25.57 | 7.300 | 54.48| 2.7 pared to trues-gram LM on EAN. However, using

5EP(exact) | 25.79 | 7.286| 54.44| 2.9 5-gram stream counts directly is more memory ef-
3EAN(exact)| 27.04 | 7.428 | 55.07| 4.6 9 y y

5 EAN(exact)| 28.73 | 7.601| 56.32| 20.5 ficient. Also, the gains for stream cour_1ts are ex-
4(10e-8) | 27.36 | 7.506 | 56.19| 2.7 actly the same as we saw for same sized count-
4(5e-8) 2740 | 7507 | 55.90| 2.8 based and entropy-based pruning counts in Table 1
5(10e-8) 27.97 | 7.605| 55.52| 2.8 and 2 respectively. Moreover, unlike the pruning
5(5e-8) 27.98 | 7.611| 56.07| 2.8 methods, our algorithm directly computes a small
7(10e-8) 27.97 | 7.590| 55.88| 2.9 model, as opposed to compressing a pre-computed
7(5e-8) 2788 | 7.577| 56.01| 2.9 |arge model.

9(10e-8) 28.18 | 7.611| 55.95| 2.9

Adding 7-gram and)-gram does not help signifi-
9(5e-8) 27.98 | 7.608 | 56.08| 2.9

cantly, a fact anticipated by the low recallofram-

Table 9: Evaluating SMT with different LMs on EAN. based counts that we saw in Section 4.5. The results

Results are according to BLEU, NIST and MET metricswith two different settings of are largely the same.

Bold #s are not statistically significant worse than exactThis validates our intrinsic evaluation results in Sec-
tion 4.3 that stream counts learned using 10e-8

dare of good quality, and that the quality of the stream

counts is high.

zero count is reached. (Extending Moses to inclu
this required only abouit00 lines of code.)

5.3 Results 6 Conclusion

Table 9 summarizes SMT results. We havbase- We have proposed an efficient, low-memory method
line LMs that are conventional LMs smoothed usindo construct high-order approximategram LMs.
modified Kneser-Ney smoothing. The first two tri-Our method easily scales to billion-word monolin-
gram and5-gram LMs are built on EP corpus andgual corpora on conventionaB@B) desktop ma-
the other two are built on EAN corpus. Table 9chines. We have demonstrated that approximate
show that there is not much significant differencgram features could be used as a direct replacement
in SMT results of5-gram and trigram LM on EP. for conventional higher order LMs in SMT with
As expected, the trigram built on the large corpusignificant reductions in memory usage. In future,
EAN gets an improvement df5 Bleu Score. How- we will be looking into building streaming skip-
ever, unlike the EP corpus, buildingsagram LM  grams, and other variants (like clustegrams).
on EAN (huge corpus) gets an improvemen8af In NLP community, it has been shown that having
Bleu Score. (Th&5% statistical significance bound- more data results in better performance (Ravichan-
ary is aboutt 0.53 Bleu on the test data, 0.077 Nistdran et al., 2005; Brants et al., 2007; Turney, 2008).
and 0.16 Meteor according to bootstrap resamplingdt web scale, we have terabytes of data and that can
We see similar gains in Nist and Meteor metrics asapture broader knowledge. Streaming algorithm
shown in Table 9. paradigm provides a memory and space-efficient

We use stream counts computed with two valugslatform to deal with terabytes of data. We hope
of ¢, 5e-8 and10e-8 on EAN corpus. We use all that other NLP applications (where we need to com-
the stream counts produced by the algoritlnh, 7 pute relative frequencies) like noun-clustering, con-
and9 ordern-gram stream counts are computed witlstructing syntactic rules for SMT, finding analogies,
these settings of These counts are used along withand others can also benefit from streaming methods.
a trigram LM built on EP to improve SMT perfor- We also believe that stream counts can be applied to
mance. The memory usage (Mem) shown in Tablether problems involving higher order LMs such as
9 is the full memory size required to run on the tesspeech recognition, information extraction, spelling
data (including phrase tables). correction and text generation.

Adding 4-gram ands-gram stream counts as fea-
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