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Abstract

This paper presents a new perspective to the
language modeling problem by moving the
word representations and modeling into the
continuous space. In a previous work we in-
troduced Gaussian-Mixture Language Model
(GMLM) and presented some initial experi-
ments. Here, we propose Tied-Mixture Lan-
guage Model (TMLM), which does not have
the model parameter estimation problems that
GMLM has. TMLM provides a great deal of
parameter tying across words, hence achieves
robust parameter estimation. As such, TMLM
can estimate the probability of any word that
has as few as two occurrences in the train-
ing data. The speech recognition experiments
with the TMLM show improvement over the
word trigram model.

1 Introduction

Despite numerous studies demonstrating the serious
short-comings of the n–gram language models, it
has been surprisingly difficult to outperform n–gram
language models consistently across different do-
mains, tasks and languages. It is well-known that n–
gram language models are not effective in modeling
long range lexical, syntactic and semantic dependen-
cies. Nevertheless, n–gram models have been very
appealing due to their simplicity; they require only
a plain corpus of data to train the model. The im-
provements obtained by some more elaborate lan-
guage models (Chelba & Jelinek, 2000; Erdogan et
al., 2005) come from the explicit use of syntactic and
semantic knowledge put into the annotated corpus.

In addition to the mentioned problems above, tra-
ditional n–gram language models do not lend them-
selves easily to rapid and effective adaptation and

discriminative training. A typical n–gram model
contains millions of parameters and has no structure
capturing dependencies and relationships between
the words beyond a limited local context. These pa-
rameters are estimated from the empirical distribu-
tions, and suffer from data sparseness. n–gram lan-
guage model adaptation (to new domain, speaker,
genre and language) is difficult, simply because of
the large number of parameters, for which large
amount of adaptation data is required. Instead of up-
dating model parameters with an adaptation method,
the typical practice is to collect some data in the tar-
get domain and build a domain specific language
model. The domain specific language model is in-
terpolated with a generic language model trained
on a larger domain independent data to achieve ro-
bustness. On the other hand, rapid adaptation for
acoustic modeling, using such methods as Maxi-
mum Likelihood Linear Regression (MLLR) (Leg-
etter & Woodland, 1995), is possible using very
small amount of acoustic data, thanks to the inher-
ent structure of acoustic models that allow large de-
grees of parameter tying across different words (sev-
eral thousand context dependent states are shared
by all the words in the dictionary). Likewise,
even though discriminatively trained acoustic mod-
els have been widely used, discriminatively trained
languages models (Roark et al., 2007) have not
widely accepted as a standard practice yet.

In this study, we present a new perspective to the
language modeling. In this perspective, words are
not treated as discrete entities but rather vectors of
real numbers. As a result, long–term semantic re-
lationships between the words could be quantified
and can be integrated into a model. The proposed
formulation casts the language modeling problem as
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an acoustic modeling problem in speech recognition.
This approach opens up new possibilities from rapid
and effective adaptation of language models to using
discriminative acoustic modeling tools and meth-
ods, such as Minimum Phone Error (MPE) (Povey
& Woodland, 2002) training to train discriminative
language models.

We introduced the idea of language modeling in
continuous space from the acoustic modeling per-
spective and proposed Gaussian Mixture Language
Model (GMLM) (Afify et al., 2007). However,
GMLM has model parameter estimation problems.
In GMLM each word is represented by a specific set
of Gaussian mixtures. Robust parameter estimation
of the Gaussian mixtures requires hundreds or even
thousands of examples. As a result, we were able
to estimate the GMLM probabilities only for words
that have at least 50 or more examples. Essentially,
this was meant to estimate the GMLM probabilities
for only about top 10% of the words in the vocab-
ulary. Not surprisingly, we have not observed im-
provements in speech recognition accuracy (Afify et
al., 2007). Tied-Mixture Language Model (TMLM)
does not have these requirements in model estima-
tion. In fact, language model probabilities can be es-
timated for words having as few as two occurrences
in the training data.

The concept of language modeling in continuous
space was previously proposed (Bengio et al., 2003;
Schwenk & Gauvain, 2003) using Neural Networks.
However, our method offers several potential advan-
tages over (Schwenk & Gauvain, 2003) including
adaptation, and modeling of semantic dependencies
because of the way we represent the words in the
continuous space. Moreover, our method also al-
lows efficient model training using large amounts of
training data, thanks to the acoustic modeling tools
and methods which are optimized to handle large
amounts of data efficiently.

It is important to note that we have to realize the
full potential of the proposed model, before investi-
gating the potential benefits such as adaptation and
discriminative training. To this end, we propose
TMLM, which does not have the problems GMLM
has and, unlike GMLM we report improvements in
speech recognition over the corresponding n–gram
models.

The rest of the paper is organized as follows. Sec-

tion 2 presents the concept of language modeling
in continuous space. Section 3 describes the tied–
mixture modeling. Speech recognition architecture
is summarized in Section 4, followed by the experi-
mental results in Section 5. Section 6 discusses var-
ious issues with the proposed method and finally,
Section 7 summarizes our findings.

2 Language Modeling In Continuous
Space

The language model training in continuous space
has three main steps; namely, creation of a co–
occurrence matrix, mapping discrete words into a
continuous parameter space in the form of vectors
of real numbers and training a statistical parametric
model. Now, we will describe each step in detail.

2.1 Creation of a co–occurrence Matrix

There are many ways that discrete words can
be mapped into a continuous space. The ap-
proach we take is based on Latent Semantic Analy-
sis (LSA) (Deerwester et al., 1990), and begins
with the creation of a co–occurrence matrix. The
co–occurrence matrix can be constructed in sev-
eral ways, depending on the morphological com-
plexity of the language. For a morphologically
impoverished language, such as English the co–
occurrence matrix can be constructed using word bi-
gram co–occurrences. For morphologically rich lan-
guages, there are several options to construct a co–
occurrence matrix. For example, the co–occurrence
matrix can be constructed using either words (word–
word co–occurrences) or morphemes (morpheme–
morpheme co–occurrences), which are obtained af-
ter morphologically tokenizing the entire corpus.
In addition to word–word or morpheme–morpheme
co–occurrence matrices, a word–morpheme co–
occurrence matrix can also be constructed. A word
w can be decomposed into a set of prefixes, stem
and suffixes: w = [pfx1 + pfx2 + pfxn + stem +
sfx1+sfx2+sfxn]. The columns of such a matrix
contain words and the rows contain the correspond-
ing morphological decomposition (i.e. morphemes)
making up the word. The decomposition of this ma-
trix (as will be described in the next sub-section) can
allow joint modeling of words and morphemes in
one model.
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In this study, we use morpheme level bigram co–
occurrences to construct the matrix. All the mor-
pheme1 bigrams are accumulated for the entire cor-
pus to fill in the entries of a co–occurrence matrix,
C, where C(wi, wj) denotes the counts for which
word wi follows word wj in the corpus. This is a
large, but very sparse matrix, since typically a small
number of words follow a given word. Because of
its large size and sparsity, Singular Value Decom-
position (SVD) is a natural choice for producing a
reduced-rank approximation of this matrix.

The co–occurrence matrices typically contain a
small number of high frequency events and a large
number of less frequent events. Since SVD derives
a compact approximation of the co–occurrence ma-
trix that is optimal in the least–square sense, it best
models these high-frequency events, which may not
be the most informative. Therefore, the entries of
a word-pair co–occurrence matrix are smoothed ac-
cording to the following expression:

Ĉ(wi, wj) = log(C(wi, wj) + 1) (1)

Following the notation presented in (Bellegarda,
2000) we proceed to perform the SVD as follows:

Ĉ ≈ USV T (2)

where U is a left singular matrix with row vectors
ui (1 ≤ i ≤ M) and dimension M × R. S is a
diagonal matrix of singular values with dimension
R×R. V is a right singular matrix with row vectors
vj (1 ≤ j ≤ N) and dimension N × R. R is the
order of the decomposition and R ¿ min(M,N).
M and N are the vocabulary sizes on the rows
and columns of the co–occurrence matrix, respec-
tively. For word–word or morpheme–morpheme
co–occurrence matrices M = N , but for word–
morpheme co–occurrence matrix, M is the number
of unique words in the training corpus and N is the
number of unique morphemes in morphologically
tokenized training corpus.

2.2 Mapping Words into Continuous Space
The continuous space for the words listed on the
rows of the co–occurrence matrix is defined as the
space spanned by the column vectors of AM×R =

1For the generality of the notation, from now on we use
“word” instead of “morpheme”.

US. Similarly, the continuous space for the words
on the columns are defined as the space spanned
by the row vectors of BR×N = SV T . Here, for
a word–word co–occurrence matrix, each of the
scaled vectors (by S) in the columns of A and rows
of B are called latent word history vectors for the
forward and backward bigrams, respectively. Now,
a bigram wij = (wi, wj) (1 ≤ i, j ≤ M ) is repre-
sented as a vector of dimension M × 1, where the
ith entry of wij is 1 and the remaining ones are zero.
This vector is mapped to a lower dimensional vector
ŵij by:

ŵij = AT wij (3)

where ŵij has dimension of R × 1. Similarly, the
backward bigram wji (1 ≤ j, i ≤ N ) is mapped to a
lower dimensional vector ŵji by:

ŵji = Bwji (4)

where ŵji has dimension of R × 1. Note that for a
word–morpheme co–occurrence matrix the rows of
B would contain latent morpheme vectors.

Since a trigram history consists of two bigram his-
tories, a trigram history vector is obtained by con-
catenating two bigram vectors. Having generated
the features, now we explain the structure of the
parametric model and how to train it for language
modeling in continuous space.

2.3 Parametric Model Training in Continuous
Space

Recalling the necessary inputs to train an acoustic
model for speech recognition would be helpful to
explain the new language modeling method. The
acoustic model training in speech recognition needs
three inputs: 1) features (extracted from the speech
waveform), 2) transcriptions of the speech wave-
forms and 3) baseforms, which show the pronuncia-
tion of each word in the vocabulary. We propose to
model the language model using HMMs. The HMM
parameters are estimated in such way that the given
set of observations is represented by the model in
the “best” way. The “best” can be defined in vari-
ous ways. One obvious choice is to use Maximum
Likelihood (ML) criterion. In ML, we maximize the
probability of a given sequence of observations O,
belonging to a given class, given the HMM λ of the
class, with respect to the parameters of the model λ.
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This probability is the total likelihood of the obser-
vations and can be expressed mathematically as:

Ltot = p(O|λ) (5)

However, there is no known way to analytically
solve for the model λ = {A, B, π} , which max-
imize the quantity Ltot, where A is the transi-
tion probabilities, B is the observation probabili-
ties, and π is the initial state distribution. But we
can choose model parameters such that it is locally
maximized, using an iterative procedure, like Baum-
Welch method (Baum et al., 1970).

The objective function given in Eq. 5 is the same
objective function used to estimate the parameters
of an HMM based acoustic model. By drawing an
analogy between the acoustic model training and
language modeling in continuous space, the history
vectors are considered as the acoustic observations
(feature vectors) and the next word to be predicted is
considered as the label the acoustic features belong
to, and words with their morphological decomposi-
tions can be considered as the lexicon or dictionary.
Fig. 1 presents the topology of the model for model-
ing a word sequence of 3 words. Each word is mod-
eled with a single state left–to–right HMM topology.
Using a morphologically rich language (or a char-
acter based language like Chinese) to explain how
HMMs can be used for language modeling will be
helpful. In the figure, let the states be the words and
the observations that they emit are the morphemes
(or characters in the case of Chinese). The same
topology (3 states) can also be used to model a sin-
gle word, where the first state models the prefixes,
the middle state models the stem and the final state
models the suffixes. In this case, words are repre-
sented by network of morphemes. Each path in a
word network represents a segmentation (or “pro-
nunciation”) of the word.

The basic idea of the proposed modeling is to cre-
ate a separate model for each word of the language
and use the language model corpus to estimate the
parameters of the model. However, one could argue
that the basic model could be improved by taking
the contexts of the morphemes into account. Instead
of building a single HMM for each word, several
models could be trained according to the context of
the morphemes. These models are called context–
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Figure 1: HMM topology for language modeling in con-
tinuous space.

dependent morphemes. The most obvious choice is
to use both left and right neighbor of a morpheme as
context, and creating, what we call tri–morphemes.
In principal even if context-dependent morphemes
could improve the modeling accuracy, the number
of models increase substantially. For a vocabulary
size of V , the number of tri–morpheme could be as
high as V 3. However, most of the tri–morphemes
are either rare or will not be observed in the training
data altogether.

Decision tree is one approach that can solve this
problem. The main idea is to find similar tri–
morphemes and share the parameters between them.
The decision tree uses a top-down approach to split
the samples, which are in a single cluster at the root
of the tree, into smaller clusters by asking questions
about the current morpheme and its context. In our
case, the questions could be syntactic and/or seman-
tic in nature.

What we hope for is that in the new continuous
space there is some form of distance or similarity
between histories such that histories not observed in
the data for some words are smoothed by similar ob-
served histories.

2.4 Summary of the Continuous Language
Model Training and Using it for Decoding

In the upper part of Fig. 2 the language model train-
ing steps are shown. The training process starts with
the language model training corpus. From the sen-
tences a bigram word co–occurrence matrix is con-
structed. This is a square matrix where the num-
ber of rows (columns) equal to the vocabulary size
of the training data. The bigram co–occurrence ma-
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trix is decomposed using SVD. The columns of the
left–singular matrix obtained from SVD is used to
map the bigram word histories into a lower dimen-
sional continuous parameter space. The projected
word history vectors are stacked together depending
on the size of the n–gram. For example, for trigram
modeling two history vectors are stacked together.
Even though, we have not done so, at this stage one
could cluster the word histories for robust parame-
ter estimation. Now, the feature vectors, their corre-
sponding transcriptions and the lexicon (baseforms)
are ready to perform the “acoustic model training”.
One could use maximum likelihood criterion or any
other objective function such as Minimum Phone Er-
ror (MPE) training to estimate the language model
parameters in the continuous space.

The decoding phase could employ an adaptation
step, if one wants to adapt the language model to
a different domain, speaker or genre. Then, given
a hypothesized sequence of words the decoder ex-
tracts the corresponding feature vectors. The fea-
ture vectors are used to estimate the likelihood of
the word sequence using the HMM parameters. This
likelihood is used to compute the probability of the
word sequence. Next, we introduce Tied–Mixture
Modeling, which is a special HMM structure to ro-
bustly estimate model parameters.

3 Tied–Mixture Modeling

Hidden Markov Models (HMMs) have been exten-
sively used virtually in all aspects of speech and
language processing. In speech recognition area
continuous-density HMMs have been the standard
for modeling speech signals, where several thousand
context–dependent states have their own Gaussian
density functions to model different speech sounds.
Typically, speech data have hundreds of millions of
frames, which are sufficient to robustly estimate the
model parameters. The amount of data for language
modeling is orders of magnitude less than that of
the acoustic data in continuous space. Tied–Mixture
Hidden Markov Models (TM–HMMs) (Bellegarda
& Nahamoo, 1989; Huang & Jack, 1988) have a bet-
ter decoupling between the number of Gaussians and
the number of states compared to continuous den-
sity HMMs. The TM–HMM is useful for language
modeling because it allows us to choose the num-
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Word History Clustering
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Stack the History Vectors

Figure 2: Language Model Training and Adaptation in
Continuous Space.

ber of Gaussian densities and the number of mixture
weights independently. Much more data is required
to reliably estimate Gaussian densities than to esti-
mate mixture weights.

The evaluation of the observation density func-
tions for TM–HMMs can be time consuming due to
the large mixture weight vector and due to the fact
that for each frame all Gaussians have to be evalu-
ated. However, there are a number of solutions pro-
posed in the past that significantly reduces the com-
putation (Duchateau et al., 1998).

The function p(w | h), defined in a continu-
ous space, represents the conditional probability of
the word w given the history h. In general, h
contains previous words and additional information
(e.g. part-of-speech (POS) tags for the previous
words) that may help to the prediction of the next
word. Unlike TM–HMMs, using a separate HMM
for each word as in the case of Gaussian Mixture
Models (GMMs), to represent the probability distri-
bution functions results in the estimation problems
for the model parameters since each n–gram does
not have hundreds of examples. TM–HMMs use
Gaussian mixture probability density functions per

463



state in which a single set of Gaussians is shared
among all states:

p(o|w) =
J∑

j

cw,jNj(o, µw,j , Σw,j) (6)

where w is the state, Nj is the jth Gaussian, and o
is the observation (i.e. history) vectors. and J is the
number of component mixtures in the TM-HMM.
In order to avoid zero variance in word mapping
into continuous space, all the latent word vectors are
added a small amount of white noise.

The TM–HMM topology is given in Fig. 3. Each
state models a word and they all share the same set of
Gaussian densities. However, each state has a spe-
cific set of mixture weights associated with them.
This topology can model a word–sequence that con-
sist of three words in them. The TM–HMM esti-
mates the probability of observing the history vec-
tors (h) for a given word w. However, what we need
is the posterior probability p(w | h) of observing w
as the next word given the history, h. This can be
obtained using the Bayes rule:

p(w|h) =
p(h|w)p(w)

p(h)
(7)

=
p(h|w)p(w)

∑V
v=1 p(h|v)p(v)

(8)

where p(w) is the unigram probability of the word
w. The unigram probabilities can also be substituted
for more accurate higher order n–gram probabilities.
If this n–gram has an order that is equal to or greater
than the one used in defining the continuous contexts
h, then the TMLM can be viewed as performing a
kind of smoothing of the original n–gram model:

Ps(w | h) =
P (w | h)p(h | w)

∑V
v=1 P (v | h)p(h | v)

(9)

where Ps(w | h) and P (w | h) are the smoothed
and original n–grams.

The TM–HMM parameters are estimated through
an iterative procedure called the Baum-Welch, or
forward-backward, algorithm (Baum et al., 1970).
The algorithm locally maximizes the likelihood
function via an iterative procedure. This type of
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Figure 3: Tied-Mixture HMM topology for language
modeling in continuous space. The mixtures are tied
across states. Each state represents a word. The TM-
HMM is completely defined with the mixture weights,
mixture densities and transition probabilities.

training is identical to training continuous density
HMMs except the Gaussians are tied across all arcs.
For the model estimation equations the readers are
referred to (Bellegarda & Nahamoo, 1989; Huang &
Jack, 1988).

Next, we introduce the speech recognition system
used for the experiments.

4 Speech Recognition Architecture

The speech recognition experiments are carried out
on the Iraqi Arabic side of an English to Iraqi Ara-
bic speech-to-speech translation task. This task cov-
ers the military and medical domains. The acoustic
data has about 200 hours of conversational speech
collected in the context of a DARPA supported
speech-to-speech (S2S) translation project (Gao et
al., 2006).

The feature vectors for training acoustic models
are generated as follows. The speech data is sampled
at 16kHz and the feature vectors are computed every
10ms. First, 24-dimensional MFCC features are ex-
tracted and appended with the frame energy. The
feature vector is then mean and energy normalized.
Nine vectors, including the current vector and four
vectors from its right and left contexts, are stacked
leading to a 216-dimensional parameter space. The
feature space is finally reduced from 216 to 40 di-
mensions using a combination of linear discriminant
analysis (LDA), feature space MLLR (fMLLR) and
feature space MPE (fMPE) training (Povey et al.,
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2005). The baseline speech recognition system used
in our experiments is the state–of–the–art and pro-
duces a competitive performance.

The phone set consists of 33 graphemes represent-
ing speech and silence for acoustic modeling. These
graphemes correspond to letters in Arabic plus si-
lence and short pause models. Short vowels are im-
plicitly modeled in the neighboring graphemes. Fea-
ture vectors are first aligned, using initial models,
to model states. A decision tree is then built for
each state using the aligned feature vectors by ask-
ing questions about the phonetic context; quinphone
questions are used in this case. The resulting tree has
about 3K leaves. Each leaf is then modeled using
a Gaussian mixture model. These models are first
bootstrapped and then refined using three iterations
of forward–backward training. The current system
has about 75K Gaussians.

The language model training data has 2.8M words
with 98K unique words and it includes acoustic
model training data as a subset. The morpholog-
ically analyzed training data has 58K unique vo-
cabulary items. The pronunciation lexicon consists
of the grapheme mappings of these unique words.
The mapping to graphemes is one-to-one and there
are very few pronunciation variants that are sup-
plied manually mainly for numbers. A statistical tri-
gram language model using Modified Kneser-Ney
smoothing (Chen& Goodman, 1996) has been built
using the training data, which is referred to as Word-
3gr.

For decoding a static decoding graph is com-
piled by composing the language model, the pro-
nunciation lexicon, the decision tree, and the HMM
graphs. This static decoding scheme, which com-
piles the recognition network off–line before decod-
ing, is widely adopted in speech recognition (Ri-
ley et al., 2002). The resulting graph is further op-
timized using determinization and minimization to
achieve a relatively compact structure. Decoding is
performed on this graph using a Viterbi beam search.

5 Experimental Results

We used the following TMLM parameters to build
the model. The SVD projection size is set to 200
(i.e. R = 200) for each bigram history. This re-
sults into a trigram history vector of size 400. This
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Figure 4: Scatter plot of the n–gram and TMLM proba-
bilities.

vector is further projected down to a 50 dimensional
feature space using LDA transform. The total num-
ber of Gaussian densities used for the TM–HMM is
set to 1024. In order to find the overall relationship
between trigram and TMLM probabilities we show
the scatter plot of the trigram and TMMT probabili-
ties in Fig. 4. While calculating the TMLM score the
TMLM likelihood generated by the model is divided
by 40 to balance its dynamic range with that of the
n–gram model. Most of the probabilities lie along
the diagonal line. However, some trigram proba-
bilities are modulated making TMLM probabilities
quite different than the corresponding trigram prob-
abilities. Analysis of TMLM probabilities with re-
spect to the trigram probabilities would be an inter-
esting future research.

We conducted the speech recognition language
modeling experiments on 3 testsets: TestA, TestB
and TestC. All three test sets are from July’07
official evaluations of the IBM’s speech-to-speech
translation system by DARPA. TestA consists of
sentences spoken out in the field to the IBM’s S2S
system during live evaluation. TestB contains sen-
tences spoken in an office environment to the live
S2S system. Using on-the-spot speakers for TestA
and TestB meant to have shorter and clean sentences.
Finally TestC contains pre-recorded sentences with
much more hesitations and more casual conversa-
tions compared to the other two testsets. TestA,
TestB and TestC have 309, 320 and 561 sentences,
respectively.
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LM TestA TestB TestC All
Word-3gr 18.7 18.6 38.9 32.9
TMLM 18.8 18.9 38.2 32.5

TMLM + Word-3gr 17.6 18.0 37.4 31.9

Table 1: Speech Recognition Language Model Rescoring
Results.

In order to evaluate the performance of the
TMLM, a lattice with a low oracle error rate was
generated by a Viterbi decoder using the word tri-
gram model (Word-3gr) model. From the lattice at
most 30 (N=30) sentences are extracted for each ut-
terance to form an N-best list. The N–best error rate
for the combined test set (All) is 22.7%. The N–
best size is limited (it is not in the hundreds), simply
because of faster experiment turn-around. These ut-
terances are rescored using TMLM. The results are
presented in Table 1. The first two rows in the ta-
ble show the baseline numbers for the word trigram
(Word–3gr) model. TestA has a WER of 18.7% sim-
ilar to that of TestB (18.6%). The WER for TestC
is relatively high (38.9%), because, as explained
above, TestC contains causal conversation with hes-
itations and repairs, and speakers do not necessar-
ily stick to the domain. Moreover, when users are
speaking to a device, as in the case of TestA and
TestB, they use clear and shorter sentences, which
are easier to recognize. The TMLM does not pro-
vide improvements for TestA and TestB but it im-
proves the WER by 0.7% for TestC. The combined
overall result is a 0.4% improvement over base-
line. This improvement is not statistically signifi-
cant. However, interpolating TMLM with Word-3gr
improves the WER to 31.9%, which is 1.0% better
than that of the Word-3gr. Standard p-test (Matched
Pairs Sentence-Segment Word Error test available
in standard SCLITEs statistical system comparison
program from NIST) shows that this improvement
is significant at p < 0.05 level. The interpolation
weights are set equally to 0.5 for each LM.

6 Discussions

Despite limited but encouraging experimental re-
sults, we believe that the proposed perspective is a
radical departure from the traditional n–gram based
language modeling methods. The new perspective

opens up a number of avenues which are impossible
to explore in one paper.

We realize that there are a number of outstand-
ing issues with the proposed perspective that re-
quire a closer look. We make a number of deci-
sions to build a language model within this perspec-
tive. The decisions are sometimes ad hoc. The de-
cisions are made in order to build a working sys-
tem and are by no means the best decisions. In
fact, it is quite likely that a different set of de-
cisions may result into a better system. Using a
word–morpheme co–occurrence matrix instead of a
morpheme–morpheme co–occurrence matrix is one
such decision. Another one is the clustering/tying
of the rarely observed events to achieve robust para-
meter estimation both for the SVD and TMLM pa-
rameter estimation. We also use a trivial decision
tree to build the models where there were no con-
text questions. Clustering morphemes with respect
to their syntactic and semantic context is another
area which should be explored. In fact, we are in
the process of building these models. Once we have
realized the full potential of the baseline maximum
likelihood TMLM, then we will investigate the dis-
criminative training methods such as MPE (Povey
& Woodland, 2002) to further improve the language
model performance and adaptation to new domains
using MLLR (Legetter & Woodland, 1995).

We also realize that different problems such as
segmentation (e.g. Chinese) of words or morpholog-
ical decomposition of words into morphemes can be
addressed within the proposed perspective.

7 Conclusions

We presented our progress in improving continuous-
space language modeling. We proposed the Tied-
Mixture Language Model (TMLM), which allows
for robust parameter estimation through the use
of tying and improves on the previously presented
GMLM. The new formulation lets us train a para-
metric language model using off–the–shelf acoustic
model training tools. Our initial experimental results
validated the proposed approach with encouraging
results.
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