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Abstract

We investigate the task of performance pre-
diction for language models belonging to the
exponential family. First, we attempt to em-
pirically discover a formula for predicting test
set cross-entropy forn-gram language mod-
els. We build models over varying domains,
data set sizes, andn-gram orders, and perform
linear regression to see whether we can model
test set performance as a simple function of
training set performance and various model
statistics. Remarkably, we find a simple rela-
tionship that predicts test set performance with
a correlation of 0.9997. We analyze why this
relationship holds and show that it holds for
other exponential language models as well, in-
cluding class-based models and minimum dis-
crimination information models. Finally, we
discuss how this relationship can be applied to
improve language model performance.

1 Introduction

In this paper, we investigate the following question
for language models belonging to the exponential
family: given some training data and test data drawn
from the same distribution, can we accurately pre-
dict the test set performance of a model estimated
from the training data? This problem is known as
performance predictionand is relevant formodel se-
lection, the task of selecting the best model from a
set of candidate models given data.1

Let us first define some notation. Events have the
form (x, y), where we attempt to predict the cur-
rent wordy given previous wordsx. We denote the
training data asD = (x1, y1), . . . , (xD, yD) and de-
fine p̃(x, y) = countD(x, y)/D to be the empirical
distribution of the training data. Similarly, we have

1A long version of this paper can be found at (Chen, 2008).

a test setD∗ and an associated empirical distribu-
tion p∗(x, y). We take the performance of a condi-
tional language modelp(y|x) to be the cross-entropy
H(p∗, p) between the empirical test distributionp∗

and the modelp(y|x):

H(p∗, p) = −
∑

x,y

p∗(x, y) log p(y|x) (1)

This is equivalent to the negative mean log-
likelihood per event, as well as to log perplexity.

We only consider models in the exponential fam-
ily. An exponential modelpΛ(y|x) is a model with
a set offeatures{f1(x, y), . . . , fF (x, y)} and equal
number of parametersΛ = {λ1, . . . , λF } where

pΛ(y|x) =
exp(

∑F
i=1 λifi(x, y))
ZΛ(x)

(2)

and whereZΛ(x) is a normalization factor.
One of the seminal methods for performance pre-

diction is the Akaike Information Criterion (AIC)
(Akaike, 1973). For a model, let̂Λ be the maxi-
mum likelihood estimate ofΛ on some training data.
Akaike derived the following estimate for the ex-
pected value of the test set cross-entropyH(p∗, pΛ̂):

H(p∗, pΛ̂) ≈ H(p̃, pΛ̂) +
F

D
(3)

H(p̃, pΛ̂) is the cross-entropy of the training set,F
is the number of parameters in the model, andD is
the number of events in the training data. However,
maximum likelihood estimates for language mod-
els typically yield infinite cross-entropy on test data,
and thus AIC behaves poorly for these domains.

In this work, instead of deriving a performance
prediction relationship theoretically, we attempt to
empirically discover a formula for predicting test
performance. Initially, we consider onlyn-gram lan-
guage models, and build models over varying do-
mains, data set sizes, andn-gram orders. We per-
form linear regression to discover whether we can
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model test set cross-entropy as a simple function of
training set cross-entropy and other model statistics.
For the 200+n-gram models we evaluate, we find
that the empirical relationship

H(p∗, pΛ̃) ≈ H(p̃, pΛ̃) +
γ

D

F∑

i=1

|λ̃i| (4)

holds with a correlation of 0.9997 whereγ is a con-
stant and wherẽΛ = {λ̃i} areregularizedparameter
estimates;i.e., rather than estimating performance
for maximum likelihood models as in AIC, we do
this for regularized models. In other words, test set
cross-entropy can be approximated by the sum of the
training set cross-entropy and the scaled sum of the
magnitudes of the model parameters.

To maximize the correlation achieved by eq. (4),
we find that it is necessary to use the same regular-
ization method and regularization hyperparameters
across models and that the optimal value ofγ de-
pends on the values of the hyperparameters. Con-
sequently, we first evaluate several types of regu-
larization and find which of these (and which hy-
perparameter values) work best across all domains,
and use these values in all subsequent experiments.
While `2

2 regularization gives the best performance
reported in the literature forn-gram models, we find
here that̀ 1 + `2

2 regularization works even better.
The organization of this paper is as follows: In

Section 2, we evaluate various regularization tech-
niques forn-gram models and select the method and
hyperparameter values that give the best overall per-
formance. In Section 3, we discuss experiments to
find a formula for predictingn-gram model perfor-
mance, and provide an explanation for why eq. (4)
works so well. In Section 4, we evaluate how well
eq. (4) holds for several class-based language mod-
els and minimum discrimination information mod-
els. Finally, in Sections 5 and 6 we discuss related
work and conclusions.

2 Selecting Regularization Settings

In this section, we address the issue of how to per-
form regularization in our later experiments. Fol-
lowing the terminology of Dud́ık and Schapire
(2006), the most widely-used and effective methods
for regularizing exponential models are`1 regular-
ization (Tibshirani, 1994; Kazama and Tsujii, 2003;

data token range training voc.
source type ofn sents. size

A RH letter 2–7 100–75k 27
B WSJ POS 2–7 100–30k 45
C WSJ word 2–5 100–100k 300
D WSJ word 2–5 100–100k 3k
E WSJ word 2–5 100–100k 21k
F BN word 2–5 100–100k 84k
G SWB word 2–5 100–100k 19k

Table 1: Statistics of data sets. RH = Random House
dictionary; WSJ = Wall Street Journal; BN = Broadcast
News; SWB = Switchboard.

Goodman, 2004) and̀22 regularization (Lau, 1994;
Chen and Rosenfeld, 2000; Lebanon and Lafferty,
2001). While not as popular, another regularization
scheme that has been shown to be effective is2-norm
inequalityregularization (Kazama and Tsujii, 2003)
which is an instance of̀1+`2

2 regularization as noted
by Dud́ık and Schapire (2006). Under`1 + `2

2 regu-
larization, the regularized parameter estimatesΛ̃ are
chosen to optimize the objective function

O`1+`22
(Λ) = H(p̃, pΛ) +

α

D

F∑

i=1

|λi|+
1

2σ2D

F∑

i=1

λ2
i

(5)
Note that̀ 1 regularization can be considered a spe-
cial case of this (by takingσ = ∞) as caǹ 2

2 regu-
larization (by takingα = 0).

Here, we evaluatè1, `2
2, and`1 + `2

2 regulariza-
tion for exponentialn-gram models. An exponen-
tial n-gram model contains a binary featurefω for
eachn′-gram ω occurring in the training data for
n′ ≤ n, wherefω(x, y) = 1 iff xy ends inω. We
would like to find the regularization method and as-
sociated hyperparameters that work best across dif-
ferent domains, training set sizes, andn-gram or-
ders. As it is computationally expensive to evalu-
ate a large number of hyperparameter settings over
a large collection of models, we divide this search
into two phases. First, we evaluate a large set of hy-
perparameters on a limited set of models to come up
with a short list of candidate hyperparameters. We
then evaluate these candidates on our full model set
to find the best one.

We buildn-gram models over data from five dif-
ferent sources and consider three different vocabu-
lary sizes for one source, giving us seven “domains”
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in total. We refer to these domains by the lettersA–
G; summary statistics for each domain are given in
Table 1. The domainsC–G consist of regular word
data, while domainsA and B consist of letter and
part-of-speech (POS) sequences, respectively. Do-
mainsC–E differ only in vocabulary.

For each domain, we first randomize the order of
sentences in that data. We partition off two devel-
opment sets and an evaluation set (5000 “sentences”
each in domainAand 2500 sentences elsewhere) and
use the remaining data as training data. In this way,
we assure that our training and test data are drawn
from the same distribution as is assumed in our later
experiments. Training set sizes in sentences are 100,
300, 1000, 3000, etc., up to the maximums given in
Table 1. Building models for each training set size
andn-gram order in Table 1 gives us a total of 218
models over the seven domains.

In the first phase of hyperparameter search, we
choose a subset of these models (57 total) and evalu-
ate many different values for(α, σ2) with `1+`2

2 reg-
ularization on each. We perform a grid search, trying
each valueα ∈ {0.0, 0.1, 0.2, . . . , 1.2} with each
valueσ2 ∈ {1, 1.2, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 10,∞}
whereσ = ∞ corresponds tò1 regularization and
α = 0 corresponds tò2

2 regularization. We use
a variant of iterative scaling for parameter estima-
tion. For each model and each(α, σ2), we denote
the cross-entropy of the development data asHm

α,σ

for themth model,m ∈ {1, . . . , 57}. Then, for each
m and(α, σ2), we can compute how much worse the
settings(α, σ2) perform with modelm as compared
to the best hyperparameter settings for that model:

Ĥm
α,σ = Hm

α,σ − min
α′,σ′

Hm
α′,σ′ (6)

We would like to select(α, σ2) for whichĤm
α,σ tends

to be small; in particular, we choose(α, σ2) that
minimizes the root mean squared (RMS) error

ĤRMS
α,σ =

√√√√ 1
57

57∑

m=1

(Ĥm
α,σ)2 (7)

For each of̀ 1, `2
2, and`1 + `2

2 regularization, we re-
tain the 6–8 best hyperparameter settings. To choose
the best single hyperparameter setting from within
this candidate set, we repeat the same analysis ex-
cept over the full set of 218 models.

statistic RMSE coeff.
1
D

∑F
i=1 |λ̃i| 0.043 0.938

1
D

∑
i:λ̃i>0 λ̃i 0.044 0.939

1
D

∑F
i=1 λ̃i 0.047 0.940

1
D

∑F
i=1 |λ̃i|

4
3 0.162 0.755

1
D

∑F
i=1 |λ̃i|

3
2 0.234 0.669

1
D

∑F
i=1 λ̃2

i 0.429 0.443
F 6=0
D 0.709 1.289

F 6=0 log D
D 0.783 0.129
F
D 0.910 1.109

F log D
D 0.952 0.112
1 1.487 1.698
F

D−F−1 2.232 -0.028
F 6=0

D−F 6=0−1 2.236 -0.023

Table 2: Root mean squared error (RMSE) in nats when
predicting difference in development set and training set
cross-entropy as linear function of a single statistic. The
last column is the optimal coefficient for that statistic.

On the development sets, the(α, σ2) value with
the lowest squared error is (0.5, 6), and these are
the hyperparameter settings we use in all later ex-
periments unless otherwise noted. The RMS error,
mean error, and maximum error for these hyperpa-
rameters on the evaluation sets are 0.011, 0.007, and
0.033 nats, respectively.2 An error of 0.011 nats cor-
responds to a 1.1% difference in perplexity which
is generally considered insignificant. Thus, we can
achieve good performance across domains, data set
sizes, andn-gram orders using a single set of hyper-
parameters as compared to optimizing hyperparam-
eters separately for each model.

3 N -Gram Model Performance Prediction

Now that we have established which regularization
method and hyperparameters to use, we attempt to
empirically discover a simple formula for predict-
ing the test set cross-entropy of regularizedn-gram
models. The basic strategy is as follows: We first
build a large number ofn-gram models over differ-
ent domains, training set sizes, andn-gram orders.
Then, we come up with a set of candidate statistics,
e.g., training set cross-entropy, number of features,
etc., and do linear regression to try to best model test

2All cross-entropy values are reported innats, or natural
bits, equivalent tolog2 e regular bits. This will let us directly
compareγ values with average discounts in Section 3.1.
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Figure 1: Graph of optimism on evaluation datavs.
1
D

∑F
i=1 |λ̃i| for variousn-gram models under̀1 + `22

regularization,α = 0.5 and σ2 = 6. The line repre-
sents the predicted optimism according to eq. (9) with
γ = 0.938.

set cross-entropy as a linear function of these statis-
tics. We assume that training and test data come
from the same distribution; otherwise, it would be
difficult to predict test performance.

We use the same 218n-gram models as in Sec-
tion 2. For each model, we compute training set
cross-entropyH(p̃, pΛ̃) as well as all of the statis-
tics listed on the left in Table 2. The statisticsF

D ,
F

D−F−1 , and F log D
D are motivated by AIC, AICc

(Hurvich and Tsai, 1989), and the Bayesian Infor-
mation Criterion (Schwarz, 1978), respectively. As
featuresfi with λ̃i = 0 have no effect, instead of
F we also consider usingF 6=0, the number of fea-
turesfi with λ̃i 6= 0. The statistics1

D

∑F
i=1 |λ̃i| and

1
D

∑F
i=1 λ̃2

i are motivated by eq. (5). The statistics
with fractional exponents are suggested by Figure 2.
The value 1 is present to handle constant offsets.

After some initial investigation, it became clear
that training set cross-entropy is a very good (par-
tial) predictor of test set cross-entropy with coeffi-
cient 1. As there is ample theoretical support for
this, instead of fitting test set performance directly,
we chose to model the difference between test and
training performance as a function of the remaining
statistics. This difference is sometimes referred to as
theoptimismof a model:

optimism(pΛ̃) ≡ H(p∗, pΛ̃)−H(p̃, pΛ̃) (8)

First, we attempt to model optimism as a lin-
ear function of a single statistic. For each statis-
tic listed previously, we perform linear regression
to minimize root mean squared error when predict-
ing development set optimism. In Table 2, we dis-
play the RMSE and best coefficient for each statis-
tic. We see that three statistics have by far the lowest
error: 1

D

∑F
i=1 |λ̃i|, 1

D

∑
i:λ̃i>0 λ̃i, and 1

D

∑F
i=1 λ̃i.

In practice, most̃λi in n-gram models are positive,
so these statistics tend to have similar values. We
choose the best ranked of these,1

D

∑F
i=1 |λ̃i|, and

show in Section 3.1 why this statistic is more appeal-
ing than the others. Next, we investigate modeling
optimism as a linear function of apair of statistics.
We find that the best RMSE for two variables (0.042)
is only slightly lower than that for one (0.043), so it
is doubtful that a second variable helps.

Thus, our analysis suggests that among our candi-
dates, the best predictor of optimism is simply

optimism≈ γ

D

F∑

i=1

|λ̃i| (9)

whereγ = 0.938, with this value being independent
of domain, training set size, andn-gram order. In
other words, the difference between test and train-
ing cross-entropy is a linear function of the sum of
parameter magnitudes scaled per event. Substituting
into eq. (8) and rearranging, we get eq. (4).

To assess the accuracy of eq. (4), we compute var-
ious statistics on our evaluation sets using the best
γ from our development data,i.e., γ = 0.938. In
Figure 1, we graph optimism for the evaluation data
against 1

D

∑F
i=1 |λ̃i| for each of our models; we see

that the linear correlation is very good. The correla-
tion between the actual and predicted cross-entropy
on the evaluation data is 0.9997; the mean absolute
prediction error is 0.030 nats; the RMSE is 0.043
nats; and the maximum absolute error is 0.166 nats.
Thus, on average we can predict test performance to
within 3% in perplexity, though in the worst case we
may be off by as much as 18%.3

3The sampling variation in our test set selection limits the
measured accuracy of our performance prediction. To give
some idea of the size of this effect, we randomly selected 100
test sets in domainD of 2500 sentences each (as in our other
experiments). We evaluated their cross-entropies using mod-
els trained on 100, 1k, 10k, and 100k sentences. The empiri-
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Figure 2: Smoothed graph of discount versusλ̃i for all
features in ten different models built on domainsA and
E. Each smoothed point represents the average of at least
512 raw data points.

If we compute the prediction error of eq. (4) over
the same models except using`1 or `2

2 regulariza-
tion (with the best corresponding hyperparameter
values found in Section 2), the prediction RMSE is
0.054 and 0.139 nats, respectively. Thus, we find
that choosing hyperparameters carefully in Section 2
was important in doing well in performance predic-
tion. While hyperparameters were chosen to opti-
mize test performance rather than prediction accu-
racy, we find that the chosen hyperparameters are
favorable for the latter task as well.

3.1 Why Does Prediction Work So Well?

The correlation in Figure 1 is remarkably high, and
thus it begs for an explanation. First, let us express
the difference in test and training cross-entropy for
a model in terms of its parametersΛ. Substituting
eq. (2) into eq. (1), we get

H(p∗, pΛ) = −
F∑

i=1

λiEp∗ [fi] +
∑

x

p∗(x) log ZΛ(x)

(10)
whereEp∗ [fi] =

∑
x,y p∗(x, y)fi(x, y). Then, we

can express the difference in test and training per-
formance as

H(p∗, pΛ)−H(p̃, pΛ) =
∑F

i=1 λi(Ep̃[fi]− Ep∗ [fi])+∑
x(p∗(x)− p̃(x)) log ZΛ(x) (11)

cal standard deviation across test sets was found to be 0.0123,
0.0144, 0.0167, and 0.0174 nats, respectively. This effect can
be mitigated by simply using larger test sets.

Ignoring the last term on the right, we see that opti-
mism for exponential models is a linear function of
theλi’s with coefficientsEp̃[fi]− Ep∗ [fi].

Then, we can ask whatEp̃[fi] − Ep∗ [fi] values
would let us satisfy eq. (4). Consider the relationship

(Ep̃[fi]− Ep∗ [fi])×D ≈ γ sgnλ̃i (12)

If we substitute this into eq. (11) and ignore the last
term on the right again, this gives us exactly eq. (4).
We refer to the value(Ep̃[fi]− Ep∗ [fi])×D as the
discountof a feature. It can be thought of as rep-
resenting how many times less the feature occurs in
the test data as opposed to the training data, if the
test data were normalized to be the same size as the
training data. Discounts forn-grams have been stud-
ied extensively,e.g., (Good, 1953; Church and Gale,
1991; Chen and Goodman, 1998), and tend not to
vary much across training set sizes.

We can check how well eq. (12) holds for actual
regularizedn-gram models. We construct a total of
ten n-gram models on domainsA andE. We build
four letter 5-gram models on domainA on training
sets ranging in size from 100 words to 30k words,
and six models (either trigram or 5-gram) on do-
mainE on training sets ranging from 100 sentences
to 30k sentences. We create large development test
sets (45k words for domainA and 70k sentences for
domainE) to better estimateEp∗ [fi].

Because graphs of discounts as a function ofλ̃i

are very noisy, we smooth the data before plotting.
We partition data points into buckets containing at
least 512 points. We average all of the points in
each bucket to get a “smoothed” data point, and plot
this single point for each bucket. In Figure 2, we
plot smoothed discounts as a function ofλ̃i over the
rangeλ̃i ∈ [−1, 4] for all ten models.

We see that eq. (12) holds at a very rough level
over theλ̃i range displayed. If we examine how
much different ranges of̃λi contribute to the over-
all value of

∑F
i=1 λ̃i(Ep̃[fi]−Ep∗ [fi]), we find that

the great majority of the mass (90–95%+) is concen-
trated in the rangẽλi ∈ [0, 4] for all ten models un-
der consideration. Thus, to a first approximation, the
reason that eq. (4) holds withγ = 0.938 is because
on average, feature expectations have a discount of
about this value for̃λi in this range.4

4This analysis provides some insight as to when eq. (4)
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Figure 3: Graph of optimism on evaluation datavs.
1
D

∑F
i=1 |λ̃i| for various models. The ‘+’ marks corre-

spond to modelsS, M , andL over different training set
sizes,n-gram orders, and numbers of classes. The ‘×’
marks correspond to MDI models over differentn-gram
orders and in-domain training set sizes. The line and
small points are taken from Figure 1.

Due to space considerations, we only summarize
our other findings; a longer discussion is provided
in (Chen, 2008). We find that the absolute error in
cross-entropy tends to be quite small across models
for several reasons. For non-sparse models, there
is significant variation in average discounts, but be-
cause 1

D

∑F
i=1 |λ̃i| is low, the overall error is low.

In contrast, sparse models are dominated by single-
countn-grams with features whose average discount
is quite close toγ = 0.938. Finally, the last term on
the right in eq. (11) also plays a small but significant
role in keeping the prediction error low.

4 Other Exponential Language Models

In (Chen, 2009), we show how eq. (4) can be used
to motivate a novel class-based language model and
a regularized version of minimum discrimination in-
formation (MDI) models (Della Pietra et al., 1992).
In this section, we analyze whether in addition to
word n-gram models, eq. (4) holds for these other
exponential language models as well.

won’t hold. For example, if a feature functionfi is doubled, its
expectations and discount will also double. Thus, eq. (4) won’t
hold in general for models with continuous feature values, as
average discounts may vary widely.

4.1 Class-Based Language Models

We assume a wordw is always mapped to the same
classc(w). For a sentencew1 · · ·wl, we have

p(w1 · · ·wl) =
∏l+1

j=1 p(cj |c1 · · · cj−1, w1 · · ·wj−1)×
∏l

j=1 p(wj |c1 · · · cj , w1 · · ·wj−1) (13)

where cj = c(wj) and wherecl+1 is an end-of-
sentence token. We use the notationpng(y|ω) to
denote an exponentialn-gram model as defined in
Section 2, where we have features for each suffix of
eachωy occurring in the training set. We use the
notationpng(y|ω1, ω2) to denote a model containing
all features in the modelspng(y|ω1) andpng(y|ω2).

We consider three class models, modelsS, M , and
L , defined as

pS(cj |c1···cj−1,w1···wj−1)=png(cj |cj−2cj−1)

pS(wj |c1···cj ,w1···wj−1)=png(wj |cj)

pM (cj |c1···cj−1,w1···wj−1)=png(cj |cj−2cj−1,wj−2wj−1)

pM (wj |c1···cj ,w1···wj−1)=png(wj |wj−2wj−1cj)

pL(cj |c1···cj−1,w1···wj−1)=png(cj |wj−2cj−2wj−1cj−1)

pL(wj |c1···cj ,w1···wj−1)=png(wj |wj−2cj−2wj−1cj−1cj)

ModelS is an exponential version of the class-based
n-gram model from (Brown et al., 1992); modelM
is a novel model introduced in (Chen, 2009); and
modelL is an exponential version of the modelind-
expredictfrom (Goodman, 2001).

To evaluate whether eq. (4) can accurately pre-
dict test performance for these class-based models,
we use the WSJ data and vocabulary from domain
E and consider training set sizes of 1k, 10k, 100k,
and 900k sentences. We create three different word
classings containing 50, 150, and 500 classes using
the algorithm of Brown et al. (1992) on the largest
training set. For each training set and number of
classes, we build both 3-gram and 4-gram versions
of each of our three class models.

In Figure 3, we plot optimism (i.e., test minus
training cross-entropy) versus1D

∑F
i=1 |λ̃i| for these

models (66 in total) on our WSJ evaluation set. The
‘+’ marks correspond to our classn-gram models,
while the small points replicate the points for word
n-gram models from Figure 1. Remarkably, eq. (4)
appears to accurately predict performance for our
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classn-gram models using the sameγ = 0.938
value found for wordn-gram models. The mean ab-
solute prediction error is 0.029 nats, comparable to
that found for wordn-gram models.

It is interesting that eq. (4) works for class-based
models despite their being composed of two sub-
models, one for word prediction and one for class
prediction. However, taking the log of eq. (13), we
note that the cross-entropy of text can be expressed
as the sum of the cross-entropy of its word tokens
and the cross-entropy of its class tokens. It would
not be surprising if eq. (4) holds separately for the
class prediction model predicting class data and the
word prediction model predicting word data, since
all of these component models are basicallyn-gram
models. Summing, this explains why eq. (4) holds
for the whole class model.

4.2 Models with Prior Distributions

Minimum discrimination information models (Della
Pietra et al., 1992) are exponential models with a
prior distributionq(y|x):

pΛ(y|x) = q(y|x)
exp(

∑F
i=1 λifi(x, y))
ZΛ(x)

(14)

The central issue in performance prediction for MDI
models is whetherq(y|x) needs to be accounted for.
That is, if we assumeq is an exponential model,
should its parametersλq

i be included in the sum in
eq. (4)? From eq. (11), we note that ifEp̃[fi] −
Ep∗ [fi] = 0 for a featurefi, then the feature does
not affect the difference between test and training
cross-entropy (ignoring its impact on the last term).
By assumption, the training and test set forp come
from the same distribution whileq is derived from
an independent data set. It follows that we expect
Ep̃[f

q
i ]−Ep∗ [f

q
i ] to be zero for features inq, and we

should ignoreq when applying eq. (4).
To evaluate whether eq. (4) holds for MDI mod-

els, we use the same WSJ training and evaluation
sets from domainE as in Section 4.1. We consider
three different training set sizes: 1k, 10k, and 100k
sentences. To trainq, we use the 100k sentence BN
training set from domainF. We build both trigram
and 4-gram versions of each model.

In Figure 3, we plot test minus training cross-
entropy versus1D

∑F
i=1 |λ̃i| for these models on our

WSJ evaluation set; the ‘×’ marks correspond to

the MDI models. As expected, eq. (4) appears to
work quite well for MDI models using the same
γ = 0.938 value as before; the mean absolute pre-
diction error is 0.077 nats.

5 Related Work

We group existing performance prediction methods
into two categories:non-data-splittingmethods and
data-splittingmethods. In non-data-splitting meth-
ods, test performance is directly estimated from
training set performance and/or other statistics of a
model. Data-splitting methods involve partitioning
training data into a truncated training set and a surro-
gate test set and using surrogate test set performance
to estimate true performance.

The most popular non-data-splitting methods for
predicting test set cross-entropy (or likelihood) are
AIC and variants such as AICc, quasi-AIC (QAIC),
and QAICc (Akaike, 1973; Hurvich and Tsai, 1989;
Lebreton et al., 1992). In Section 3, we consid-
ered performance prediction formulae with the same
form as AIC and AICc (except using regularized pa-
rameter estimates), and neither performed as well as
eq. (4);e.g., see Table 2.

There are many techniques for bounding test
set classification error including the Occam’s Ra-
zor bound (Blumer et al., 1987; McAllester, 1999),
PAC-Bayes bound (McAllester, 1999), and the sam-
ple compression bound (Littlestone and Warmuth,
1986; Floyd and Warmuth, 1995). These methods
derive theoretical guarantees that the true error rate
of a classifier will be below (or above) some value
with a certain probability. Langford (2005) evalu-
ates these techniques over many data sets; while the
bounds can sometimes be fairly tight, in many data
sets the bounds are quite loose.

When learning an element from a set of target
classifiers, the Vapnik-Chervonenkis (VC) dimen-
sion of the set can be used to bound the true error rate
relative to the training error rate with some probabil-
ity (Vapnik, 1998); this technique has been used to
compute error bounds for many types of classifiers.
For example, Bartlett (1998) shows that for a neural
network with small weights and small training set
squared error, the true error depends on the size of
its weights rather than the number of weights; this
finding is similar in spirit to eq. (4).
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In practice, the most accurate methods for perfor-
mance prediction in many contexts are data-splitting
methods (Guyon et al., 2006). These techniques in-
clude the hold-out method; leave-one-out andk-fold
cross-validation; and bootstrapping (Allen, 1974;
Stone, 1974; Geisser, 1975; Craven and Wahba,
1979; Efron, 1983). However, unlike non-data-
splitting methods, these methods do not lend them-
selves well to providing insight into model design as
discussed in Section 6.

6 Discussion

We show that for several types of exponential lan-
guage models, it is possible to accurately predict the
cross-entropy of test data using the simple relation-
ship given in eq. (4). When using̀1 + `2

2 regulariza-
tion with (α = 0.5, σ2 = 6), the valueγ = 0.938
works well across varying model types, domains,
vocabulary sizes, training set sizes, andn-gram or-
ders, yielding a mean absolute error of about 0.03
nats (3% in perplexity). We evaluate∼300 language
models in total, including word and classn-gram
models andn-gram models with prior distributions.

While there has been a great deal of work in
performance prediction, the vast majority of work
on non-data-splitting methods has focused on find-
ing theoretically-motivated approximations or prob-
abilistic bounds on test performance. In contrast, we
developed eq. (4) on a purely empirical basis, and
there has been little, if any, existing work that has
shown comparable performance prediction accuracy
over such a large number of models and data sets. In
addition, there has been little, if any, previous work
on performance prediction for language modeling.5

While eq. (4) performs well as compared to other
non-data-splitting methods for performance predic-
tion, the prediction error can be several percent in
perplexity, which means we cannot reliably rank
models that are close in quality. In addition, in
speech recognition and many other applications, an
external test set is typically provided, which means
we can measure test set performance directly. Thus,
in practice, eq. (4) is not terribly useful for the task

5Here, we refer to predicting test set performance from
training setperformance and other model statistics. However,
there has been a good deal of work on predicting speech recog-
nition word-error rate fromtest setperplexity and other statis-
tics,e.g., (Klakow and Peters, 2002).

of model selection; instead, what eq. (4) gives us is
insight intomodel design. That is, instead of select-
ing between candidate modelsonce they have been
built as in model selection, it is desirable to be able
to select between models at themodel designstage.
Being able to intelligently compare models (with-
out implementation) requires that we know which
aspects of a model impact test performance, and this
is exactly what eq. (4) tells us.

Intuitively, simpler models should perform better
on test data given equivalent training performance,
and model structure (as opposed to parameter val-
ues) is an important aspect of the complexity of a
model. Accordingly, there have been many meth-
ods for model selection that measure the size of a
model in terms of the number of features or param-
eters in the model,e.g., (Akaike, 1973; Rissanen,
1978; Schwarz, 1978). Surprisingly, for exponential
language models, the number of model parameters
seems to matter not at all; all that matters are the
magnitudes of the parameter values. Consequently,
one can improve such models by adding features (or
a prior model) that reduce parameter values while
maintaining training performance.

In (Chen, 2009), we show how these ideas can be
used to motivate heuristics for improving the perfor-
mance of existing language models, and use these
heuristics to develop a novel class-based model and
a regularized version of MDI models that outper-
form comparable methods in both perplexity and
speech recognition word-error rate on WSJ data. In
addition, we show how the tradeoff between train-
ing set performance and model size impacts aspects
of language modeling as diverse as backoffn-gram
features, class-based models, and domain adapta-
tion. In sum, eq. (4) provides a new and valuable
framework for characterizing, analyzing, and de-
signing statistical models.
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