Using a maximum entropy model to build segmentation lattices for MT

Chris Dyer
Laboratory for Computational Linguistics and Information Processing
Department of Linguistics
University of Maryland
College Park, MD 20742, USA
redpony AT umd.edu

Abstract

Recent work has shown that translating seg-
mentation lattices (lattices that encode alterna-
tive ways of breaking the input to an MT sys-
tem into words), rather than text in any partic-
ular segmentation, improves translation qual-
ity of languages whose orthography does not
mark morpheme boundaries. However, much
of this work has relied on multiple segmenters
that perform differently on the same input to
generate sufficiently diverse source segmen-
tation lattices. In this work, we describe a
maximum entropy model of compound word
splitting that relies on a few general features
that can be used to generate segmentation lat-
tices for most languages with productive com-
pounding. Using a model optimized for Ger-
man translation, we present results showing
significant improvements in translation qual-
ity in German-English, Hungarian-English,
and Turkish-English translation over state-of-
the-art baselines.

1 Introduction

Compound words pose significant challenges to the
lexicalized models that are currently common in sta-
tistical machine translation. This problem has been
widely acknowledged, and the conventional solu-
tion, which has been shown to work well for many
language pairs, is to segment compounds into their
constituent morphemes using either morphological
analyzers or empirical methods and then to trans-
late from or to this segmented variant (Koehn et al.,
2008; Dyer et al., 2008; Yang and Kirchhoff, 2006).
But into what units should a compound word be
segmented? Taken as a stand-alone task, the goal of
a compound splitter is to produce a segmentation for
some input that matches the linguistic intuitions of a

406

native speaker of the language. However, there are
often advantages to using elements larger than sin-
gle morphemes as the minimal lexical unit for MT,
since they may correspond more closely to the units
of translation. Unfortunately, determining the op-
timal segmentation is challenging, typically requir-
ing extensive experimentation (Koehn and Knight,
2003; Habash and Sadat, 2006; Chang et al., 2008).
Recent work has shown that by combining a vari-
ety of segmentations of the input into a segmentation
lattice and effectively marginalizing over many dif-
ferent segmentations, translations superior to those
resulting from any single single segmentation of the
input can be obtained (Xu et al., 2005; Dyer et al.,
2008; DeNeefe et al., 2008). Unfortunately, this ap-
proach is difficult to utilize because it requires mul-
tiple segmenters that behave differently on the same
input.

In this paper, we describe a maximum entropy
word segmentation model that is trained to assign
high probability to possibly several segmentations of
an input word. This model enables generation of di-
verse, accurate segmentation lattices from a single
model that are appropriate for use in decoders that
accept word lattices as input, such as Moses (Koehn
et al., 2007). Since our model relies a small num-
ber of dense features, its parameters can be tuned
using very small amounts of manually created ref-
erence lattices. Furthermore, since these parame-
ters were chosen to have valid interpretation across
a variety of languages, we find that the weights esti-
mated for one apply quite well to another. We show
that these lattices significantly improve translation
quality when translating into English from three lan-
guages exhibiting productive compounding: Ger-
man, Turkish, and Hungarian.

The paper is structured as follows. In the next sec-
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tion, we describe translation from segmentation lat-
tices and give a motivating example, Section 3 de-
scribes our segmentation model and its tuning and
how it is used to generate segmentation lattices, Sec-
tion 5 presents experimental results, Section 6 re-
views relevant related work, and in Section 7 we
conclude and discuss future work.

2 Segmentation lattice translation

In this section we give a brief overview of lattice
translation and then describe the characteristics of
segmentation lattices that are appropriate for trans-
lation.

2.1 Lattice translation

Word lattices have been used to represent ambiguous
input to machine translation systems for a variety of
tasks, including translating automatic speech recog-
nition transcriptions and translating from morpho-
logically complex languages (Bertoldi et al., 2007;
Dyer et al., 2008). The intuition behind using lat-
tices in both approaches is to avoid the error propa-
gation effects that are found when a one-best guess
is used. By carrying a certain amount of uncertainty
forward in the processing pipeline, information con-
tained in the translation models can be leveraged to
help resolve the upstream ambiguity. In our case, we
want to propagate uncertainty about the proper seg-
mentation of a compound forward to the decoder,
which can use its full translation model to select
proper segmentation for translation. Mathemati-
cally, this can be understood as follows: whereas the
goal in conventional machine translation is to find
the sentence é! that maximizes Pr(el|f{), the lat-
tice adds a latent variable, the path f from a des-
ignated start start to a designated goal state in the
lattice G:

6]

argmz}XPr(eﬂg)

= argmz}XZPr(eﬂf)PT(ﬂg) ()
U feg

~ argmaxmax Pr(el|\Pr(f|G) (3)

e{ feg

If the transduction formalism used is a synchronous
probabilistic context free grammar or weighted finite
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Figure 1: Segmentation lattice examples. The dotted
structure indicates linguistically implausible segmenta-
tion that might be generated using dictionary-driven ap-
proaches.

state transducer, the search represented by equation
(3) can be carried out efficiently using dynamic pro-
gramming (Dyer et al., 2008).

2.2 Segmentation lattices

Figure 1 shows two lattices that encode the
most linguistically plausible ways of segment-
ing two prototypical German compounds with
compositional meanings. However, while these
words are structurally quite similar, translating
them into English would seem to require differ-
ent amounts of segmentation. For example, the
dictionary fragment shown in Table 1 illustrates
that fonbandaufnahme can be rendered into En-
glish by following 3 different paths in the lat-
tice, fon/audio band/tape aufnahmelrecording, ton-
band/tape aufnahmelrecording, and tonbandauf-
nahmeftape recording. In contrast, wiederaufnahme
can only be translated correctly using the unseg-
mented form, even though in German the meaning
of the full form is a composition of the meaning of
the individual morphemes.!

It should be noted that phrase-based models can
translate multiple words as a unit, and therefore cap-
ture non-compositional meaning. Thus, by default if
the training data is processed such that, for example,
aufnahme, in its sense of recording, is segmented
into two words, then more paths in the lattices be-

"The English word resumption is likewise composed of two
morphemes, the prefix re- and a kind of bound morpheme
that never appears in other contexts (sometimes called a ‘cran-
berry’ morpheme), but the meaning of the whole is idiosyncratic
enough that it cannot be called compositional.



German English

auf on, up, in, at, ...
aufnahme recording, entry
band reel, tape, band
der the, of the

nahme took (3P-SG-PST)
ton sound, audio, clay
tonband tape, audio tape
tonbandaufnahme | tape recording
wie how, like, as
wieder again
wiederaufnahme | resumption

Table 1: German-English dictionary fragment for words
present in Figure 1.

come plausible translations. However, using a strat-
egy of “over segmentation” and relying on phrase
models to learn the non-compositional translations
has been shown to degrade translation quality sig-
nificantly on several tasks (Xu et al., 2004; Habash
and Sadat, 2006). We thus desire lattices containing
as little oversegmentation as possible.

We have now have a concept of a “gold standard”
segmentation lattice for translation: it should con-
tain all linguistically motivated segmentations that
also correspond to plausible word-for-word transla-
tions into English. Figure 2 shows an example of the
reference lattice for the two words we just discussed.
For the experiments in this paper, we generated a
development and test set by randomly choosing 19
German newspaper articles, identifying all words
greater than 6 characters is length, and segmenting
each word so that the resulting units could be trans-
lated compositionally into English. This resulted in
489 training sentences corresponding to 564 paths
for the dev set (which was drawn from 15 articles),
and 279 words (302 paths) for the test set (drawn
from the remaining 4 articles).

3 A maximum entropy segmentation
model

We now turn to the problem of modeling word seg-
mentation in a way that facilitates lattice construc-
tion. As a starting point, we consider the work
of Koehn and Knight (2003) who observe that in
most languages that exhibit compounding, the mor-
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Figure 2: Manually created reference lattices for the two
words from Figure 1. Although only a subset of all
linguistically plausible segmentations, each path corre-
sponds to a plausible segmentation for word-for-word
German-English translation.

O

phemes used to construct compounds frequently
also appear as individual tokens. Based on this ob-
servation, they propose a model of word segmenta-
tion that splits compound words into pieces found
in the dictionary based on a variety heuristic scoring
criteria. While these models have been reasonably
successful (Koehn et al., 2008), they are problem-
atic for two reasons. First, there is no principled way
to incorporate additional features (such as phonotac-
tics) which might be useful to determining whether
a word break should occur. Second, the heuristic
scoring offers little insight into which segmentations
should be included in a lattice.

We would like our model to consider a wide vari-
ety of segmentations of any word (including perhaps
hypothesized morphemes that are not in the dictio-
nary), to make use of a rich set of features, and to
have a probabilistic interpretation of each hypothe-
sized split (to incorporate into the downstream de-
coder). We decided to use the class of maximum
entropy models, which are probabilistically sound,
can make use of possibly many overlapping features,
and can be trained efficiently (Berger et al., 1996).
We thus define a model of the conditional proba-
bility distribution Pr (s |w), where w is a surface
form and s?" is the segmented form consisting of N
segments as:

expy . )\ihi(s]lv, w)
o exp Y Aihi(s, w)

To simplify inference and to make the lattice repre-
sentation more natural, we only make use of local
feature functions that depend on properties of each
segment:

Pr(sy'|w) =

“)




N
Pr(s|w) o< exp Z Ai E hi(sj,w)  (5)
i J

3.1 From model to segmentation lattice

The segmentation model just introduced is equiva-
lent to a lattice where each vertex corresponds to
a particular coverage (in terms of letters consumed
from left to right) of the input word. Since we only
make use of local features, the number of vertices
in a lattice for word w is |w| — m, where m is the
minimum segment length permitted. In all experi-
ments reported in this paper, we use m = 3. Each
edge is labeled with a morpheme s (corresponding
to the morpheme associated with characters delim-
ited by the start and end nodes of the edge) as well
as a weight, > . \;h;(s,w). The cost of any path
from the start to the goal vertex will be equal to the
numerator in equation (4). The value of the denomi-
nator can be computed using the forward algorithm.

In most of our experiments, s will be identical
to the substring of w that the edge is designated to
cover. However, this is not a requirement. For exam-
ple, German compounds frequently have so-called
Fugenelemente, one or two characters that “glue
together” the primary morphemes in a compound.
Since we permit these characters to be deleted, then
an edge where they are deleted will have fewer char-
acters than the coverage indicated by the edge’s
starting and ending vertices.

3.2 Lattice pruning

Except for the minimum segment length restriction,
our model defines probabilities for all segmentations
of an input word, making the resulting segmenta-
tion lattices are quite large. Since large lattices
are costly to deal with during translation (and may
lead to worse translations because poor segmenta-
tions are passed to the decoder), we prune them us-
ing forward-backward pruning so as to contain just
the highest probability paths (Sixtus and Ortmanns,
1999). This works by computing the score of the
best path passing through every edge in the lattice
using the forward-backward algorithm. By finding
the best score overall, we can then prune edges us-
ing a threshold criterion; i.e., edges whose score is
some factor a away from the global best edge score.
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3.3 Maximum likelihood training

Our model defines a conditional probability distribu-
tion over virtually all segmentations of a word w. To
train our model, we wish to maximize the likelihood
of the segmentations contained in the reference lat-
tices by moving probability mass away from the seg-
mentations that are not in the reference lattice. Thus,
we wish to minimize the following objective (which
can be computed using the forward algorithm over
the unpruned hypothesis lattices):

L= —logz Z p(s|w;)

i SER;

(6)

The gradient with respect to the feature weights for
a log linear model is simply:

oL
N 2 Entsfu Vik] = Ep(afu, o) 2]

)

(N

To compute these values, the first expectation is
computed using forward-backward inference over
the full lattice. To compute the second expecta-
tion, the full lattice is intersected with the reference
lattice R;, and then forward-backward inference
is redone.> We use the standard quasi-Newtonian
method L-BFGS to optimize the model (Liu et al.,
1989). Training generally converged in only a few
hundred iterations.

3.3.1 Training to minimize 1-best error

In some cases, such as when performing word
alignment for translation model construction, lat-
tices cannot be used easily. In these cases, a 1-
best segmentation (which can be determined from
the lattice using the Viterbi algorithm) may be de-
sired. To train the parameters of the model for this
condition (which is arguably slightly different from
the lattice generation case we just considered), we
used the minimum error training (MERT) algorithm
on the segmentation lattices to find the parameters
that minimized the error on our dev set (Macherey

The second expectation corresponds to the empirical fea-
ture observations in a standard maximum entropy model. Be-
cause this is an expectation and not an invariant observation,
the log likelihood function is not guaranteed to be concave and
the objective surface may have local minima. However, exper-
imentation revealed the optimization performance was largely
invariant with respect to its starting point.



et al., 2008). The error function we used was WER
(the minimum number of insertions, substitutions,
and deletions along any path in the reference lattice,
normalized by the length of this path). The WER on
the held-out test set for a system tuned using MERT
is 9.9%, compared to 11.1% for maximum likeli-
hood training.

3.4 Features

We remark that since we did not have the resources
to generate training data in all the languages we
wished to generate segmentation lattices for, we
have confined ourselves to features that we expect to
be reasonably informative for a broad class of lan-
guages. A secondary advantage of this is that we
used denser features than are often used in maxi-
mum entropy modeling, meaning that we could train
our model with relatively less training data than
might otherwise be required.

The features we used in our compound segmen-
tation model for the experiments reported below are
shown in Table 2. Building on the prior work that
relied heavily on the frequency of the hypothesized
constituent morphemes in a monolingual corpus, we
included features that depend on this value, f(s;).
| s;| refers to the number of letters in the ith hypothe-
sized segment. Binary predicates evaluate to 1 when
true and O otherwise. f(s;) is the frequency of the
token s; as an independent word in a monolingual
corpus. p(#|si1 - - - si4) is the probability of a word
start preceding the letters s;1 - --s;4. We found it
beneficial to include a feature that was the probabil-
ity of a certain string of characters beginning a word,
for which we used a reverse 5-gram character model
and predicted the word boundary given the first five
letters of the hypothesized word split.> Since we did
have expertise in German morphology, we did build
a special German model. For this, we permitted the
strings s, n, and es to be deleted between words.
Each deletion fired a count feature (listed as fugen
in the table). Analysis of errors indicated that the
segmenter would periodically propose an incorrect
segmentation where a single word could be divided
into a word and a nonword consisting of common in-

3In general, this helped avoid situations where a word may
be segemented into a frequent word and then a non-word string
of characters since the non-word typically violated the phono-
tactics of the language in some way.
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Feature | de-only | neutral
fs; e N'| -355 -
f(s;) >0.005 | -3.13 -3.31
f(si)>0 | 3.06 3.64
10gp(#|8i18i28i382’4) -1.58 -2.11
segment penalty 1.18 2.04
|si| > 12 -0.9 -0.79
oov | -0.88 -1.09
Yfugen | -0.76 -
lsi] <4 | -0.66 -1.18
|s;| <10, f(s;) >2719] -051 | -0.82
log f(s;) | -0.32 -0.36
2710 < f(s;) < 0.005 | -026 | -0.45

Table 2: Features and weights learned by maximum like-
lihood training, sorted by weight magnitude.

flectional suffixes. To address this, an additional fea-
ture was added that fired when a proposed segment
was one of a set A/ of 30 nonwords that we saw quite
frequently. The weights shown in Table 2 are those
learned by maximum likelihood training on models
both with and without the special German features,
which are indicated with .

4 Model evalatuion

To give some sense of the performance of the model
in terms of its ability to generate lattices indepen-
dently of a translation task, we present precision and
recall of segmentations for pruning parameters (cf.
Section 3.2) ranging from o = 0 to @ = 5. Pre-
cision measures the number of paths in the hypoth-
esized lattice that correspond to paths in the refer-
ence lattice; recall measures the number of paths in
the reference lattices that are found in the hypothesis
lattice. Figure 3 shows the effect of manipulating the
density parameter on the precision and recall of the
German lattices. Note that very high recall is possi-
ble; however, the German-only features have a sig-
nificant impact, especially on recall, because the ref-
erence lattices include paths where Fugenelemente
have been deleted.

5 Translation experiments

We now review experiments using segmentation lat-
tices produced by the segmentation model we just
introduced in German-English, Hungarian-English,
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Figure 3: The effect of the lattice density parameter on
precision and recall.

and Turkish-English translation tasks and then show
results elucidating the effect of the lattice density pa-
rameter. We begin with a description of our MT sys-
tem.

5.1 Data preparation and system description

For all experiments, we used a 5-gram English lan-
guage model trained on the AFP and Xinua por-
tions of the Gigaword v3 corpus (Graff et al., 2007)
with modified Kneser-Ney smoothing (Kneser and
Ney, 1995). The training, development, and test
data for German-English and Hungarian-English
systems used were distributed as part of the 2009
EACL Workshop on Machine Translation,* and the
Turkish-English data corresponds to the training and
test sets used in the work of Oflazer and Durgar El-
Kahlout (2007). Corpus statistics for all language
pairs are summarized in Table 3. We note that in all
language pairs, the 1BEST segmentation variant of
the training data results in a significant reduction in
types.

Word alignment was carried out by running
Giza++ implementation of IBM Model 4 initialized
with 5 iterations of Model 1, 5 of the HMM aligner,
and 3 iterations of Model 4 (Och and Ney, 2003)
in both directions and then symmetrizing using the
grow-diag-final-and heuristic (Koehn et al.,
2003). For each language pair, the corpus was
aligned twice, once in its non-segmented variant and
once using the single-best segmentation variant.

For translation, we used a bottom-up parsing de-
coder that uses cube pruning to intersect the lan-

*http://www.statmt.org/wmt09
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guage model with the target side of the synchronous
grammar. The grammar rules were extracted from
the word aligned parallel corpus and scored as de-
scribed in Chiang (2007). The features used by the
decoder were the English language model log prob-
ability, log f(&|f), the ‘lexical translation’ log prob-
abilities in both directions (Koehn et al., 2003), and
a word count feature. For the lattice systems, we
also included the unnormalized log p(f|G), as it is
defined in Section 3, as well as an input word count
feature. The feature weights were tuned on a held-
out development set so as to maximize an equally
weighted linear combination of BLEU and 1-TER
(Papineni et al., 2002; Snover et al., 2006) using the
minimum error training algorithm on a packed for-
est representation of the decoder’s hypothesis space
(Macherey et al., 2008). The weights were indepen-
dently optimized for each language pair and each ex-
perimental condition.

5.2 Segmentation lattice results

In this section, we report the results of an experiment
to see if the compound lattices constructed using our
maximum entropy model yield better translations
than either an unsegmented baseline or a baseline
consisting of a single-best segmentation.

For each language pair, we define three condi-
tions: BASELINE, 1BEST, and LATTICE. In the
BASELINE condition, a lowercased and tokenized
(but not segmented) version of the test data is
translated using the grammar derived from a non-
segmented training data. In the 1BEST condition,
the single best segmentation §{V that maximizes
Pr(s¥|w) is chosen for each word using the MERT-
trained model (the German model for German, and
the language-neutral model for Hungarian and Turk-
ish). This variant is translated using a grammar
induced from a parallel corpus that has also been
segmented according to the same decision rule. In
the LATTICE condition, we constructed segmenta-
tion lattices using the technique described in Sec-
tion 3.1. For all languages pairs, we used d = 2 as
the pruning density parameter (which corresponds to
the highest F-score on the held out test set). Addi-
tionally, if the unsegmented form of the word was
removed from the lattice during pruning, it was re-
stored to the lattice with zero weight.

Table 4 summarizes the results of the translation



‘ f-tokens ‘ f-types H e-tokens. | e-types

DE-BASELINE 38M 307k 40M 96k
DE-1BEST 40M 136k 7 ”
HU-BASELINE 25M 646k 29M 158k
HU-1BEST 27TM 334k 7 ”
TR-BASELINE 1.0M 56k 1.3M 23k
TR-1BEST 1.1IM 41k 7 ”
Table 3: Training corpus statistics.
‘ BLEU ‘ TER ‘ Targeted analysis of the translation output shows
DE-BASELINE | 21.0 | 60.6 that while both the 1BEST and LATTICE systems
DE-1BEST 20.7 | 60.1 generally produce adequate translations of com-
DE-LATTICE 21.6 | 59.8 pound words that are out of vocabulary in the BASE-
HU-BASELINE | 11.0 | 71.1 LINE system, the LATTICE system performs bet-
HU-1BEST 107 | 704 ter since it recovers from infelicitous splits that the
HU-LATTICE 123 | 69.1 one-best segmenter makes. For example, one class
of error we frequently observe is that the one-best
TR-BASELINE | 269 | 61.0 . .
segmenter splits an OOV proper name into two
TR-1BEST 278 | 61.2 . .
pieces when a portion of the name corresponds to a
TR-LATTICE 287 | 596 known word in the source language (e.g. tom tan-

Table 4: Translation results for German (DE)-English,
Hungarian (HU)-English, and Turkish (TR)-English.
Scores were computed using a single reference and are
case insensitive.

experiments comparing the three input variants. For
all language pairs, we see significant improvements
in both BLEU and TER when segmentation lattices
are used.’ Additionally, we also confirmed previous
findings that showed that when a large amount of
training data is available, moving to a one-best seg-
mentation does not yield substantial improvements
(Yang and Kirchhoff, 2006). Perhaps most surpris-
ingly, the improvements observed when using lat-
tices with the Hungarian and Turkish systems were
larger than the corresponding improvement in the
German system, but German was the only language
for which we had segmentation training data. The
smaller effect in German is probably due to there be-
ing more in-domain training data in the German sys-
tem than in the (otherwise comparably sized) Hun-
garian system.

3Using bootstrap resampling (Koehn, 2004), the improve-

ments in BLEU, TER, as well as the linear combination used in
tuning are statistically significant at at least p < .05.
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credo—tom tan credo which is then translated as
tom tan belief).5

5.3 The effect of the density parameter

Figure 4 shows the effect of manipulating the den-
sity parameter (cf. Section 3.2) on the performance
and decoding time of the Turkish-English transla-
tion system. It further confirms the hypothesis that
increased diversity of segmentations encoded in a
segmentation lattice can improve translation perfor-
mance; however, it also shows that once the den-
sity becomes too great, and too many implausible
segmentations are included in the lattice, translation
quality will be harmed.

6 Related work

Aside from improving the vocabulary coverage of
machine translation systems (Koehn et al., 2008;
Yang and Kirchhoff, 2006; Habash and Sadat,
2006), compound word segmentation (also referred
to as decompounding) has been shown to be help-
ful in a variety of NLP tasks including mono- and

%We note that our maximum entropy segmentation model
could easily address this problem by incorporating information
about whether a word is likely to be a named entity as a feature.
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Figure 4: The effect of the lattice density parameter on
translation quality and decoding time.

crosslingual IR (Airio, 2006) and speech recognition
(Hessen and Jong, 2003). A number of researchers
have demonstrated the value of using lattices to en-
code segmentation alternatives as input to a machine
translation system (Dyer et al., 2008; DeNeefe et al.,
2008; Xu et al., 2004), but this is the first work to
do so using a single segmentation model. Another
strand of inquiry that is closely related is the work on
adjusting the source language segmentation to match
the granularity of the target language as a way of im-
proving translation. The approaches suggested thus
far have been mostly of a heuristic nature tailored to
Chinese-English translation (Bai et al., 2008; Ma et
al., 2007).

7 Conclusions and future work

In this paper, we have presented a maximum entropy
model for compound word segmentation and used it
to generate segmentation lattices for input into a sta-
tistical machine translation system. These segmen-
tation lattices improve translation quality (over an
already strong baseline) in three typologically dis-
tinct languages (German, Hungarian, Turkish) when
translating into English. Previous approaches to
generating segmentation lattices have been quite la-
borious, relying either on the existence of multiple
segmenters (Dyer et al., 2008; Xu et al., 2005) or
hand-crafted rules (DeNeefe et al., 2008). Although
the segmentation model we propose is discrimina-
tive, we have shown that it can be trained using a
minimal amount of annotated training data. Further-
more, when even this minimal data cannot be ac-
quired for a particular language (as was the situa-
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tion we faced with Hungarian and Turkish), we have
demonstrated that the parameters obtained in one
language work surprisingly well for others. Thus,
with virtually no cost, this model can be used with a
variety of diverse languages.

While these results are already quite satisfying,
there are a number of compelling extensions to this
work that we intend to explore in the future. First,
unsupervised segmentation approaches offer a very
compelling alternative to the manually crafted seg-
mentation lattices that we created. Recent work
suggests that unsupervised segmentation of inflec-
tional affixal morphology works quite well (Poon et
al., 2009), and extending this work to compounding
morphology should be feasible, obviating the need
for expensive hand-crafted reference lattices. Sec-
ond, incorporating target language information into
a segmentation model holds considerable promise
for inducing more effective translation models that
perform especially well for segmentation lattice in-
puts.
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