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Abstract

This paper presents a novel unsupervised
method for hierarchical topic segmentation.
Lexical cohesion — the workhorse of unsu-
pervised linear segmentation — is treated as
a multi-scale phenomenon, and formalized
in a Bayesian setting. Each word token is
modeled as a draw from a pyramid of la-
tent topic models, where the structure of the
pyramid is constrained to induce a hierarchi-
cal segmentation. Inference takes the form
of a coordinate-ascent algorithm, iterating be-
tween two steps: a novel dynamic program
for obtaining the globally-optimal hierarchi-
cal segmentation, and collapsed variational
Bayesian inference over the hidden variables.
The resulting system is fast and accurate, and
compares well against heuristic alternatives.

1 Introduction

Recovering structural organization from unformat-
ted texts or transcripts is a fundamental problem
in natural language processing, with applications to
classroom lectures, meeting transcripts, and chat-
room logs. In the unsupervised setting, a variety
of successful systems have leveraged lexical cohe-
sion (Halliday and Hasan, 1976) — the idea that
topically-coherent segments display consistent lex-
ical distributions (Hearst, 1994; Utiyama and Isa-
hara, 2001; Eisenstein and Barzilay, 2008). How-
ever, such systems almost invariably focus on linear
segmentation, while it is widely believed that dis-
course displays a hierarchical structure (Grosz and
Sidner, 1986). This paper introduces the concept of
multi-scale lexical cohesion, and leverages this idea
in a Bayesian generative model for hierarchical topic
segmentation.
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The idea of multi-scale cohesion is illustrated
by the following two examples, drawn from the
Wikipedia entry for the city of Buenos Aires.

There are over 150 city bus lines called Colec-
tivos ... Colectivos in Buenos Aires do not
have a fixed timetable, but run from 4 to sev-
eral per hour, depending on the bus line and
time of the day.

The Buenos Aires metro has six lines, 74 sta-
tions, and 52.3 km of track. An expansion
program is underway to extend existing lines
into the outer neighborhoods. Track length is
expected to reach 89 km...

The two sections are both part of a high-level seg-
ment on transportation. Words in bold are charac-
teristic of the subsections (buses and trains, respec-
tively), and do not occur elsewhere in the transporta-
tion section; words in italics occur throughout the
high-level section, but not elsewhere in the article.
This paper shows how multi-scale cohesion can be
captured in a Bayesian generative model and ex-
ploited for unsupervised hierarchical topic segmen-
tation.

Latent topic models (Blei et al., 2003) provide a
powerful statistical apparatus with which to study
discourse structure. A consistent theme is the treat-
ment of individual words as draws from multinomial
language models indexed by a hidden “topic” asso-
ciated with the word. In latent Dirichlet allocation
(LDA) and related models, the hidden topic for each
word is unconstrained and unrelated to the hidden
topic of neighboring words (given the parameters).
In this paper, the latent topics are constrained to pro-
duce a hierarchical segmentation structure, as shown
in Figure 1.
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Figure 1: Each word w; is drawn from a mixture of the
language models located above ¢ in the pyramid.

These structural requirements simplify inference,
allowing the language models to be analytically
marginalized. The remaining hidden variables are
the scale-level assignments for each word token.
Given marginal distributions over these variables, it
is possible to search the entire space of hierarchical
segmentations in polynomial time, using a novel dy-
namic program. Collapsed variational Bayesian in-
ference is then used to update the marginals. This
approach achieves high quality segmentation on
multiple levels of the topic hierarchy.

Source code is available at http://people.
csail.mit.edu/Jjacobe/naacl09.html.

2 Related Work

The use of lexical cohesion (Halliday and Hasan,
1976) in unsupervised topic segmentation dates back
to Hearst’s seminal TEXTTILING system (1994).
Lexical cohesion was placed in a probabilistic
(though not Bayesian) framework by Utiyama and
Isahara (2001). The application of Bayesian topic
models to text segmentation was investigated first
by Blei and Moreno (2001) and later by Purver et
al. (2006), using HMM-like graphical models for
linear segmentation. Eisenstein and Barzilay (2008)
extend this work by marginalizing the language
models using the Dirichlet compound multinomial
distribution; this permits efficient inference to be
performed directly in the space of segmentations.
All of these papers consider only linear topic seg-
mentation; we introduce multi-scale lexical cohe-
sion, which posits that the distribution of some
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words changes slowly with high-level topics, while
others change rapidly with lower-level subtopics.
This gives a principled mechanism to model hier-
archical topic segmentation.

The literature on hierarchical topic segmentation
is relatively sparse. Hsueh et al. (2006) describe a
supervised approach that trains separate classifiers
for topic and sub-topic segmentation; more relevant
for the current work is the unsupervised method
of Yaari (1997). As in TEXTTILING, cohesion is
measured using cosine similarity, and agglomerative
clustering is used to induce a dendrogram over para-
graphs; the dendrogram is transformed into a hier-
archical segmentation using a heuristic algorithm.
Such heuristic approaches are typically brittle, as
they include a number of parameters that must be
hand-tuned. These problems can be avoided by
working in a Bayesian probabilistic framework.

We note two orthogonal but related approaches
to extracting nonlinear discourse structures from
text. Rhetorical structure theory posits a hierarchi-
cal structure of discourse relations between spans of
text (Mann and Thompson, 1988). This structure is
richer than hierarchical topic segmentation, and the
base level of analysis is typically more fine-grained
— at the level of individual clauses. Unsupervised
approaches based purely on cohesion are unlikely to
succeed at this level of granularity.

Elsner and Charniak (2008) propose the task of
conversation disentanglement from internet chat-
room logs. Unlike hierarchical topic segmentation,
conversational threads may be disjoint, with un-
related threads interposed between two utterances
from the same thread. Elsner and Charniak present a
supervised approach to this problem, but the devel-
opment of cohesion-based unsupervised methods is
an interesting possibility for future work.

3 Model

Topic modeling is premised on a generative frame-
work in which each word w; is drawn from a multi-
nomial 0,,, where y; is a hidden topic indexing the
language model that generates w;. From a modeling
standpoint, linear topic segmentation merely adds
the constraint that v, € {y;—1,y:—1 + 1}. Segmen-
tations that draw boundaries so as to induce com-
pact, low-entropy language models will achieve a



high likelihood. Thus topic models situate lexical
cohesion in a probabilistic setting.

For hierarchical segmentation, we take the hy-
pothesis that lexical cohesion is a multi-scale phe-
nomenon. This is represented with a pyramid of lan-
guage models, shown in Figure 1. Each word may be
drawn from any language model above it in the pyra-
mid. Thus, the high-level language models will be
required to explain words throughout large parts of
the document, while the low-level language models
will be required to explain only a local set of words.
A hidden variable z; indicates which level is respon-
sible for generating the word w;.

Ideally we would like to choose the segmentation
¥ = argmax,p(w|y)p(y). However, we must deal
with the hidden language models © and scale-level
assignments z. The language models can be inte-
grated out analytically (Section 3.1). Given marginal
likelihoods for the hidden variables z, the globally
optimal segmentation ¥ can be found using a dy-
namic program (Section 4.1). Given a segmentation,
we can estimate marginals for the hidden variables,
using collapsed variational inference (Section 4.2).
We iterate between these procedures in an EM-like
coordinate-ascent algorithm (Section 4.4) until con-
vergence.

3.1 Language models

We begin the formal presentation of the model with
some notation. Each word w; is modeled as a single
draw from a multinomial language model ¢;. The
language models in turn are drawn from symmetric
Dirichlet distributions with parameter «v. The num-
ber of language models is written K'; the number of
words is W; the length of the document is 7"; and
the depth of the hierarchy is L.

For hierarchical segmentation, the vector y; indi-
cates the segment index of ¢ at each level of the topic
hierarchy; the specific level of the hierarchy respon-
sible for w; is given by the hidden variable z;. Thus,
y§2f) is the index of the language model that gener-

ates wy.
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With these pieces in place, we can write the ob-
servation likelihood,

T
pwly,20) = [] plwdd =)
t

K
=11 II e(wiéy),

Ity =5}

where we have merely rearranged the product to
group terms that are drawn from the same language
model. As the goal is to obtain the hierarchical seg-
mentation and not the language models, the search
space can be reduced by marginalizing ©. The
derivation is facilitated by a notational convenience:
X; represents the lexical counts induced by the set

)= j}.

of words {wy : yt

K
p(wly,z,a) = H/dejp(%a)lﬂ(xj@j)

Here, pgcn, indicates the Dirichlet compound
multinomial distribution (Madsen et al., 2005),
which is the closed form solution to the integral over
language models. Also known as the multivariate
Polya distribution, the probability density function
can be computed exactly as a ratio of gamma func-
tions. Here we use a symmetric Dirichlet prior «,
though asymmetric priors can easily be applied.

Thus far we have treated the hidden variables
z as observed. In fact we will compute approxi-
mate marginal probabilities @, (z;), written vy, =
Q:, (2 = £). Writing (z)¢_ for the expectation of
under distribution ()., we approximate,

(Pdem (%55 @) Q. %pdcm(<Xj>Qz; @)

Z Zdwt—z )
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where x(¢) indicates the count for word type i gen-
erated from segment j. In the outer sum, we con-
sider all ¢ for possibly drawn from segment j. The
inner sum goes over all levels of the pyramid. The
delta functions take the value one if the enclosed
Boolean expression is true and zero otherwise, so
we are adding the fractional counts 4, only when

wy = ¢ and yt(é) =7.

3.2 Prior on segmentations

Maximizing the joint probability p(w,y) =
p(w|y)p(y) leaves the term p(y) as a prior on seg-
mentations. This prior can be used to favor segmen-
tations with the desired granularity. Consider a prior
of the form p(y) = HeL:1 p(y©]y“=1); for nota-
tional convenience, we introduce a base level such
that yt(o) = t, where every word is a segmentation
point. At every level ¢ > 0, the prior is a Markov

process. p(y )y V) =TT p(y” Iy 1).

The constraint yt(e) € {yt(é)p yﬁ)l + 1} ensures a

linear segmentation at each level. To enforce hierar-
chical consistency, each yy) can be a segmentation
point only if ¢ is also a segmentation point at the
lower level ¢ — 1. Zero probability is assigned to

segmentations that violate these constraints.

To quantify the prior probability of legal segmen-
tations, assume a set of parameters dy, indicating
the expected segment duration at each level. If ¢
is a valid potential segmentation point at level ¢
(i.e., yyfl) =1+ ygil)), then the prior probabil-
ity of a segment transition is 7y = dy—1/dy, with
dy = 1. If there are N segments in level ¢ and
M > N segments in level ¢ — 1, then the prior
piy©Oly@D) = rN(1 — )M~V as long as the
hierarchical segmentation constraint is obeyed.

For the purposes of inference it will be prefer-
able to have a prior that decomposes over levels and
segments. In particular, we do not want to have to
commit to a particular segmentation at level ¢ be-
fore segmenting level ¢ + 1. The above prior can
be approximated by replacing M with its expecta-
tion (M)g, , = T/de—;. Then a single segment
ranging from w, to w, (inclusive) will contribute

v—Uu

logry + =" log(1 — r) to the log of the prior.
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4 Inference

This section describes the inference for the segmen-
tation y, the approximate marginals () 7z, and the hy-
perparameter c.

4.1 Dynamic programming for hierarchical
segmentation

While the model structure is reminiscent of a facto-
rial hidden Markov model (HMM)), there are impor-
tant differences that prevent the direct application of
HMM inference. Hidden Markov models assume
that the parameters of the observation likelihood dis-
tributions are available directly, while we marginal-
ize them out. This has the effect of introducing de-
pendencies throughout the state space: the segment
assignment for each ¥, contributes to lexical counts
which in turn affect the observation likelihoods for
many other ¢’. However, due to the left-to-right na-
ture of segmentation, efficient inference of the opti-
mal hierarchical segmentation (given the marginals
Qz) is still possible.

Let B®[u,v] represent the log-likelihood of
grouping together all contiguous words wy, . . . wy—1
at level ¢ of the segmentation hierarchy. Using x;
to indicate a vector of zeros with one at the position
wy, we can express B more formally:

B(Z) [u, 2}] = log paem (Z Xt’YtZ)

t=u

+ logry + vouzl log(1 — 7).
dg—1

The last two terms are from the prior p(y), as ex-
plained in Section 3.2. The value of B®)[u,v] is
computed for all u, all v > u, and all ¢.

Next, we compute the log-likelihood of the op-
timal segmentation, which we write as A()[0, 7.
This matrix can be filled in recursively:

AOu,v] = max BO[t,v] + AVt 0] + AO[u, 8]

u<t<v

The first term adds in the log probability of the
segment from ¢ to v at level £. The second term re-
turns the best score for segmenting this same interval
at a more detailed level of segmentation. The third
term recursively segments the interval from « to ¢ at
the same level £. The boundary case A“)[u, u] = 0.



4.1.1 Computational complexity

The sizes of A and B are each O(LT?). The ma-
trix A can be constructed by iterating through the
layers and then iterating: « from 1 to 7"; v from u—+1
to T'; and t from u to v + 1. Thus, the time cost for
filling A is O(LT?). For computing the observation
likelihoods in B, the time complexity is O(LT?W),
where W is the size of the vocabulary — by keeping
cumulative lexical counts, we can compute B[u, v]
without iterating from u to v.

Eisenstein and Barzilay (2008) describe a dy-
namic program for linear segmentation with a
space complexity of O(7') and time complexities of
O(T?) to compute the A matrix and O(TW) to fill
the B matrix.! Thus, moving to hierarchical seg-
mentation introduces a factor of 7'L to the complex-
ity of inference.

4.1.2 Discussion

Intuitively, efficient inference is possible because
the location of each segment boundary affects the
likelihood of only the adjoining segments at the
same level of the hierarchy, and their “children” at
the lower levels of the hierarchy. Thus, the observa-
tion likelihood at each level decomposes across the
segments of the level. This is due to the left-to-right
nature of segmentation — in general it is not possible
to marginalize the language models and still perform
efficient inference in HMMs. The prior (Section 3.2)
was designed to decompose across segments — if, for
example, p(y) explicitly referenced the total number
of segments, inference would be more difficult.

A simpler inference procedure would be a greedy
approach that makes a fixed decision about the top-
level segmentation, and then applies recursion to
achieve segmentation at the lower levels. The greedy
approach will not be optimal if the best top-level
segmentation leads to unsatisfactory results at the
lower levels, or if the lower levels could help to
disambiguate high-level segmentation. In contrast,
the algorithm presented here maximizes the overall
score across all levels of the segmentation hierarchy.

!The use of dynamic programming for linear topic segmen-
tation goes back at least to (Heinonen, 1998); however, we are
aware of no prior work on dynamic programming for hierarchi-
cal segmentation.
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4.2 Scale-level marginals

The hidden variable z; represents the level of the
segmentation hierarchy from which the word w; is
drawn. Given language models ©, each w; can
be thought of as a draw from a Bayesian mixture
model, with z; as the index of the component that
generates wy. However, as we are marginalizing
the language models, standard mixture model infer-
ence techniques do not apply. One possible solu-
tion would be to instantiate the maximum a posteri-
ori language models after segmenting, but we would
prefer not to have to commit to specific language
models. Collapsed Gibbs sampling (Griffiths and
Steyvers, 2004) is another possibility, but sampling-
based solutions may not be ideal from a performance
standpoint.

Recent papers by Teh et al. (2007) and Sung et
al. (2008) point to an appealing alternative: col-
lapsed variational inference (called latent-state vari-
ational Bayes by Sung et al.). Collapsed variational
inference integrates over the parameters (in this
case, the language models) and computes marginal
distributions for the latent variables, (),. However,
due to the difficulty of computing the expectation
of the normalizing term, these marginal probabili-
ties are available only in approximation.

More formally, we wish to compute the approx-
imate distribution Qy(z) = [[} Q.. (), factoriz-
ing across all latent variables. As is typical in vari-
ational approaches, we fit this distribution by opti-
mizing a lower bound on the data marginal likeli-
hood p(w, z|y) — we condition on the segmentation
y because we are treating it as fixed in this part of
the inference. The lower bound can be optimized by
iteratively setting,

Qz, (2¢) o< exp {{log P(x, 2[y))~q., } »

indicating the expectation under @), for all t#£t.
Due to the couplings across z, it is not possible
to compute this expectation directly, so we use the
first-order approximation described in (Sung et al.,
2008). In this approximation, the value Q,(z; = )
— which we abbreviate as vy, — takes the form of
the likelihood of the observation w;, given a mod-
ified mixture model. The parameters of the mixture
model are based on the priors and the counts of w



and ~y for all ¢/ # t:

2" (we)
Vit X B 2)
tl 0 EYV xz‘t (Z)
7y (1) = (i) + Z Yeb(wy =1).  (3)

/£t

The first term in equation 2 is the set of compo-
nent weights 3y, which are fixed at 1/ L for all £. The
fraction represents the posterior estimate of the lan-
guage models: standard Dirichlet-multinomial con-
jugacy gives a sum of counts plus a Dirichlet prior
(equation 3). Thus, the form of the update is ex-
tremely similar to collapsed Gibbs sampling, except
that we maintain the full distribution over z; rather
than sampling a specific value. The derivation of this
update is beyond the scope of this paper, but is sim-
ilar to the mixture of Bernoullis model presented in
Section 5 of (Sung et al., 2008).

Iterative updates of this form are applied until the
change in the lower bound is less than 10~3. This
procedure appears at step Sa of algorithm 1.

4.3 Hyperparameter estimation

The inference procedure defined here includes two
parameters: «, the symmetric Dirichlet prior on the
language models; and d, the expected segment du-
rations. The granularity of segmentation is consid-
ered to be a user-defined characteristic, so there is
no “right answer” for how to set this parameter. We
simply use the oracle segment durations, and pro-
vide the same oracle to the baseline methods where
possible. As discussed in Section 6, this parameter
had little effect on system performance.

The « parameter controls the expected sparsity of
the induced language models; it will be set automat-
ically. Given a segmentation y and hidden-variable
marginals -y, we can maximize p(a,wly,y) =
Pdem (WY, v, a)p(a) through gradient descent. The
Dirichlet compound multinomial has a tractable gra-

dient, which can be computed using scaled counts,
Xj = by 50— VXKt (Minka, 2003). The scaled
it =

counts are taken for each segment j across the entire
segmentation hierarchy. The likelihood p(X|«) then
has the same form as equation 1, with the x; terms
replaced by 7;;. The gradient of the log-likelihood
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Algorithm 1 Complete segmentation inference
1. Input text w; expected durations d.
v < INITIALIZE-GAMMA (W)
¥ — EQUAL-WIDTH-SEG(wW, d)
a—.1
Do
(a) v «— ESTIMATE-GAMMA(y, W, 7, @)
(b) a <+ ESTIMATE-ALPHA(Y,w,~)
(¢) y <« SEGMENT(W,~, a, d)
(d) If y = y then return y

Nk

(e) Elsey «— y

is thus a sum across segments,

K
dt/do :ZW(\P(W@) —U(a))

J w w

+ Z \I/(jji + Oé) — \I/(WOé + Z‘%ﬂ)

Here, ¥ indicates the digamma function, which
is the derivative of the log gamma function. The
prior p(«) takes the form of a Gamma distribution
with parameters G(1, 1), which has the effect of dis-
couraging large values of «. With these parame-
ters, the gradient of the Gamma distribution with re-
spect to « is negative one. To optimize «, we inter-
pose an epoch of L-BFGS (Liu and Nocedal, 1989)
optimization after maximizing v (Step 5b of algo-
rithm 1).

4.4 Combined inference procedure

The final inference procedure alternates between up-
dating the marginals -, the Dirichlet prior «, and the
MAP segmentation y. Since the procedure makes
hard decisions on « and the segmentations y, it
can be thought of as a form of Viterbi expectation-
maximization (EM). When a repeated segmentation
is encountered, the procedure terminates. Initializa-
tion involves constructing a segmentation ¥ in which
each level is segmented uniformly, based on the ex-
pected segment duration dy. The hidden variable
marginals ~ are initialized randomly. While there
is no guarantee of finding the global maximum, lit-
tle sensitivity to the random initialization of v was
observed in preliminary experiments.

The dynamic program described in this section
achieves polynomial time complexity, but O(LT3)



can still be slow when 7" is the number of word to-
kens in a large document such as a textbook. For
this reason, we only permit segment boundaries to
be placed at gold-standard sentence boundaries. The
only change to the algorithm is that the tables A
and B need contain only cells for each sentence
rather than for each word token — hidden variable
marginals are still computed for each word token.
Implemented in Java, the algorithm runs in roughly
five minutes for a document with 1000 sentences on
a dual core 2.4 GHz machine.

S Experimental Setup

Corpora The dataset for evaluation is drawn from
a medical textbook (Walker et al., 1990).2 The text
contains 17083 sentences, segmented hierarchically
into twelve high-level parts, 150 chapters, and 520
sub-chapter sections. Evaluation is performed sep-
arately on each of the twelve parts, with the task of
correctly identifying the chapter and section bound-
aries. FEisenstein and Barzilay (2008) use the same
dataset to evaluate linear topic segmentation, though
they evaluated only at the level of sections, given
gold standard chapter boundaries.

Practical applications of topic segmentation typ-
ically relate to more informal documents such as
blogs or speech transcripts (Hsueh et al., 2006), as
formal texts such as books already contain segmen-
tation markings provided by the author. The premise
of this evaluation is that textbook corpora provide a
reasonable proxy for performance on less structured
data. However, further clarification of this point is
an important direction for future research.

Metrics  All experiments are evaluated in terms
of the commonly-used P, and WindowDiff met-
rics (Pevzner and Hearst, 2002). Both metrics pass a
window through the document, and assess whether
the sentences on the edges of the window are prop-
erly segmented with respect to each other. Win-
dowDiff is stricter in that it requires that the number
of intervening segments between the two sentences
be identical in the hypothesized and the reference
segmentations, while P, only asks whether the two
sentences are in the same segment or not. This eval-

The full text of this book is available for free download at
http://onlinebooks.library.upenn.edu.
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uation uses source code provided by Malioutov and
Barzilay (2006).

Experimental system The joint hierarchical
Bayesian model described in this paper is called
HIERBAYES. It performs a three-level hierarchical
segmentation, in which the lowest level is for sub-
chapter sections, the middle level is for chapters, and
the top level spans the entire part. This top-level has
the effect of limiting the influence of words that are
common throughout the document.

Baseline systems As noted in Section 2, there is
little related work on unsupervised hierarchical seg-
mentation. However, a straightforward baseline is
a greedy approach: first segment at the top level,
and then recursively feed each top-level segment to
the segmenter again. Any linear segmenter can be
plugged into this baseline as a “black box.”

To isolate the contribution of joint inference, the
greedy framework can be combined with a one-level
version of the Bayesian segmentation algorithm de-
scribed here. This is equivalent to BAYESSEG,
which achieved the best reported performance on the
linear segmentation of this same dataset (Eisenstein
and Barzilay, 2008). The hierarchical segmenter
built by placing BAYESSEG in a greedy algorithm
is called GREEDY-BAYES.

To identify the contribution of the Bayesian
segmentation framework, we can plug in alter-
native linear segmenters. Two frequently-cited
systems are LCSEG (Galley et al., 2003) and
TEXTSEG (Utiyama and Isahara, 2001). LC-
SEG optimizes a metric of lexical cohesion based
on lexical chains. TEXTSEG employs a probabilis-
tic segmentation objective that is similar to ours,
but uses maximum a posteriori estimates of the lan-
guage models, rather than marginalizing them out.
Other key differences are that they set « = 1, and
use a minimum description length criterion to deter-
mine segmentation granularity. Both of these base-
lines were run using their default parametrization.

Finally, as a minimal baseline, UNIFORM pro-
duces a hierarchical segmentation with the ground
truth number of segments per level and uniform du-
ration per segment at each level.

Preprocessing The Porter (1980) stemming algo-
rithm is applied to group equivalent lexical items. A
set of stop-words is also removed, using the same



chapter section average
#segs P, WD | #segs P, WD P, WD
HIERBAYES 5.0 248 255 8.5 312 351 || .280 .303
GREEDY-BAYES 19.0 260 .372 | 195 275 .340 | .268 .356
GREEDY-LCSEG 7.8 256 286 | 522 351 455 | 304 371
GREEDY-TEXTSEG 11.5 251 277 | 884 473 .630 || .362 .454
UNIFORM 12.5 487 491 | 433 505 .551 || 496 .521

Table 1: Segmentation accuracy and granularity. Both the P}, and WindowDiff (WD) metrics are penalties, so lower
scores are better. The # segs columns indicate the average number of segments at each level; the gold standard
segmentation granularity is given in the UNIFORM row, which obtains this granularity by construction.

list originally employed by several competitive sys-
tems (Utiyama and Isahara, 2001).

6 Results

Table 1 presents performance results for the joint
hierarchical segmenter and the three greedy base-
lines. As shown in the table, the hierarchical system
achieves the top overall performance on the harsher
WindowDiff metric. In general, the greedy seg-
menters each perform well at one of the two levels
and poorly at the other level. The joint hierarchical
inference of HIERBAYES enables it to achieve bal-
anced performance at the two levels.

The GREEDY-BAYES system achieves a slightly
better average P, than HIERBAYES, but has a very
large gap between its P, and WindowDiff scores.
The P, metric requires only that the system cor-
rectly classify whether two points are in the same
or different segments, while the WindowDiff metric
insists that the exact number of interposing segments
be identified correctly. Thus, the generation of spu-
rious short segments may explain the gap between
the metrics.

LCSEG and TEXTSEG use heuristics to deter-
mine segmentation granularity; even though these
methods did not score well in terms of segmentation
accuracy, they were generally closer to the correct
granularity. In the Bayesian methods, granularity
is enforced by the Markov prior described in Sec-
tion 3.2. This prior was particularly ineffective for
GREEDY-BAYES, which gave nearly the same num-
ber of segments at both levels, despite the different
settings of the expected duration parameter d.

The Dirichlet prior o was selected automatically,
but informal experiments with manual settings sug-
gest that this parameter exerts a stronger influence
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on segmentation granularity. Low settings reflect an
expectation of sparse lexical counts and thus encour-
age short segments, while high settings reflect an ex-
pectation of evenly-distributed counts and thus lead
to long segments. Further investigation is needed
on how best to control segmentation granularity in a
Bayesian setting.

7 Discussion

While it is widely agreed that language often dis-
plays hierarchical topic structure (Grosz, 1977),
there have been relatively few attempts to extract
such structure automatically. This paper shows
that the lexical features that have been successfully
exploited in linear segmentation can also be used
to extract a hierarchical segmentation, due to the
phenomenon of multi-scale lexical cohesion. The
Bayesian methodology offers a principled proba-
bilistic formalization of multi-scale cohesion, yield-
ing an accurate and fast segmentation algorithm with
a minimal set of tunable parameters.

It is interesting to consider how multi-scale seg-
mentation might be extended to finer-grain seg-
ments, such as paragraphs. The lexical counts at the
paragraph level will be sparse, so lexical cohesion
alone is unlikely to be sufficient. Rather it may be
necessary to model discourse connectors and lexical
semantics explicitly. The development of more com-
prehensive Bayesian models for discourse structure
seems an exciting direction for future research.
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