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Abstract

Syllables play an important role in speech
synthesis and recognition. We present sev-
eral different approaches to the syllabifica-
tion of phonemes. We investigate approaches
based on linguistic theories of syllabification,
as well as a discriminative learning technique
that combines Support Vector Machine and
Hidden Markov Model technologies. Our
experiments on English, Dutch and German
demonstrate that our transparent implemen-
tation of the sonority sequencing principle
is more accurate than previous implemen-
tations, and that our language-independent
SVM-based approach advances the current
state-of-the-art, achieving word accuracy of
over 98% in English and 99% in German and
Dutch.

1 Introduction

Syllabification is the process of dividing a word
into its constituent syllables. Although some work
has been done on syllabifying orthographic forms
(Müller et al., 2000; Bouma, 2002; Marchand and
Damper, 2007; Bartlett et al., 2008), syllables are,
technically speaking, phonological entities that can
only be composed of strings of phonemes. Most
linguists view syllables as an important unit of
prosody because many phonological rules and con-
straints apply within syllables or at syllable bound-
aries (Blevins, 1995).

Apart from their purely linguistic significance,
syllables play an important role in speech synthesis
and recognition (Kiraz and Möbius, 1998; Pearson
et al., 2000). The pronunciation of a given phoneme
tends to vary depending on its location within a syl-

lable. While actual implementations vary, text-to-
speech (TTS) systems must have, at minimum, three
components (Damper, 2001): a letter-to-phoneme
(L2P) module, a prosody module, and a synthesis
module. Syllabification can play a role in all three
modules.

Because of the productive nature of language, a
dictionary look-up process for syllabification is in-
adequate. No dictionary can ever contain all possi-
ble words in a language. For this reason, it is neces-
sary to develop systems that can automatically syl-
labify out-of-dictionary words.

In this paper, we advance the state-of-the-art
in both categorical (non-statistical) and supervised
syllabification. We outline three categorical ap-
proaches based on common linguistic theories of
syllabification. We demonstrate that when imple-
mented carefully, such approaches can be very ef-
fective, approaching supervised performance. We
also present a data-driven, discriminative solution:
a Support Vector Machine Hidden Markov Model
(SVM-HMM), which tags each phoneme with its
syllabic role. Given enough data, the SVM-HMM
achieves impressive accuracy thanks to its ability
to capture context-dependent generalizations, while
also memorizing inevitable exceptions. Our ex-
periments on English, Dutch and German demon-
strate that our SVM-HMM approach substantially
outperforms the existing state-of-the-art learning ap-
proaches. Although direct comparisons are difficult,
our system achieves over 99% word accuracy on
German and Dutch, and the highest reported accu-
racy on English.

The paper is organized as follows. We outline
common linguistic theories of syllabification in Sec-
tion 2, and we survey previous computational sys-
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tems in Section 3. Our linguistically-motivated ap-
proaches are described in Section 4. In Section 5,
we describe our system based on the SVM-HMM.
The experimental results are presented in Section 6.

2 Theories of Syllabification

There is some debate as to the exact structure of
a syllable. However, phonologists are in gen-
eral agreement that a syllable consists of a nucleus
(vowel sound), preceded by an optional onset and
followed by an optional coda. In many languages,
both the onset and the coda can be complex,i.e.,
composed of more than one consonant. For exam-
ple, the wordbreakfast[brEk-f�st] contains two syl-
lables, of which the first has a complex onset [br],
and the second a complex coda [st]. Languages dif-
fer with respect to various typological parameters,
such as optionality of onsets, admissibility of co-
das, and the allowed complexity of the syllable con-
stituents. For example, onsets are required in Ger-
man, while Spanish prohibits complex codas.

There are a number of theories of syllabification;
we present three of the most prevalent. TheLegal-
ity Principle constrains the segments that can be-
gin and end syllables to those that appear at the be-
ginning and end of words. In other words, a sylla-
ble is not allowed to begin with a consonant clus-
ter that is not found at the beginning of some word,
or end with a cluster that is not found at the end of
some word (Goslin and Frauenfelder, 2001). Thus,
a word like admit [�dmIt] must be syllabified [�d-
mIt] because [dm] never appears word-initially or
word-finally in English. A shortcoming of the le-
gality principle is that it does not always imply a
unique syllabification. For example, in a word like
askew[�skju], the principle does not rule out any of
[�-skju], [�s-kju], or [�sk-ju], as all three employ le-
gal onsets and codas.

The Sonority Sequencing Principle(SSP) pro-
vides a stricter definition of legality. The sonor-
ity of a sound is its inherent loudness, holding fac-
tors like pitch and duration constant (Crystal, 2003).
Low vowels like [a], the most sonorous sounds, are
high on the sonority scale, while plosive consonants
like [t] are at the bottom. When syllabifying a
word, SSP states that sonority should increase from
the first phoneme of the onset to the syllable’s nu-

cleus, and then fall off to the coda (Selkirk, 1984).
Consequently, in a word likevintage [vIntI�], we
can rule out a syllabification like [vI-ntI�] because
[n] is more sonorant than [t]. However, SSP does
not tell us whether to prefer [vIn-tI�] or [vInt-I�].
Moreover, when syllabifying a word likevintner
[vIntn�r], the theory allows both [vIn-tn�r] and [vInt-
n�r], even though [tn] is an illegal onset in English.

Both the Legality Principle and SSP tell us which
onsets and codas are permitted in legal syllables, and
which are not. However, neither theory gives us any
guidance when deciding between legal onsets. The
Maximal Onset Principle addresses this by stating
we should extend a syllable’s onset at the expense
of the preceding syllable’s coda whenever it is legal
to do so (Kahn, 1976). For example, the principle
gives preference to [�-skju] and [vIn-tI�] over their
alternatives.

3 Previous Computational Approaches

Unlike tasks such as part of speech tagging or syn-
tactic parsing, syllabification does not involve struc-
tural ambiguity. It is generally believed that syllable
structure is usually predictable in a language pro-
vided that the rules have access to all conditioning
factors: stress, morphological boundaries, part of
speech, etymology, etc. (Blevins, 1995). However,
in speech applications, the phonemic transcription of
a word is often the only linguistic information avail-
able to the system. This is the common assumption
underlying a number of computational approaches
that have been proposed for the syllabification of
phonemes.

Daelemans and van den Bosch (1992) present one
of the earliest systems on automatic syllabification:
a neural network-based implementation for Dutch.
Daelemans et al. (1997) also explore the application
of exemplar-based generalization (EBG), sometimes
called instance-based learning. EBG generally per-
forms a simple database look-up to syllabify a test
pattern, choosing the most common syllabification.
In cases where the test pattern is not found in the
database, the most similar pattern is used to syllab-
ify the test pattern.

Hidden Markov Models (HMMs) are another
popular approach to syllabification. Krenn (1997)
introduces the idea of treating syllabification as a
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tagging task. Working from a list of syllabified
phoneme strings, she automatically generates tags
for each phone. She uses a second-order HMM to
predict sequences of tags; syllable boundaries can be
trivially recovered from the tags. Demberg (2006)
applies a fourth-order HMM to the syllabification
task, as a component of a larger German text-to-
speech system. Schmid et al. (2007) improve on
Demberg’s results by applying a fifth-order HMM
that conditions on both the previous tags and their
corresponding phonemes.

Kiraz and Möbius (1998) present a weighted
finite-state-based approach to syllabification. Their
language-independent method builds an automaton
for each of onsets, nuclei, and codas, by count-
ing occurrences in training data. These automatons
are then composed into a transducer accepting se-
quences of one or more syllables. They do not report
quantitative results for their method.

Pearson et al. (2000) compare two rule-based sys-
tems (they do not elaborate on the rules employed)
with a CART decision tree-based approach and a
“global statistics” algorithm. The global statistics
method is based on counts of consonant clusters
in contexts such as word boundaries, short vow-
els, or long vowels. Each test word has syllable
boundaries placed according to the most likely lo-
cation given a cluster and its context. In experi-
ments performed with their in-house dataset, their
statistics-based method outperforms the decision-
tree approach and the two rule-based methods.

Müller (2001) presents a hybrid of a categori-
cal and data-driven approach. First, she manually
constructs a context-free grammar of possible sylla-
bles. This grammar is then made probabilistic using
counts obtained from training data. Müller (2006)
attempts to make her method language-independent.
Rather than hand-crafting her context-free grammar,
she automatically generates all possible onsets, nu-
clei, and codas, based on the phonemes existing in
the language. The results are somewhat lower than
in (Müller, 2001), but the approach can be more eas-
ily ported across languages.

Goldwater and Johnson (2005) also explore us-
ing EM to learn the structure of English and Ger-
man phonemes in an unsupervised setting, following
Müller in modeling syllable structure with PCFGs.
They initialize their parameters using a deterministic

parser implementing the sonority principle and esti-
mate the parameters for their maximum likelihood
approach using EM.

Marchand et al. (2007) apply their Syllabification
by Analogy (SbA) technique, originally developed
for orthographic forms, to the pronunciation do-
main. For each input word, SbA finds the most sim-
ilar substrings in a lexicon of syllabified phoneme
strings and then applies the dictionary syllabifica-
tions to the input word. Their survey paper also in-
cludes comparisons with a method broadly based on
the legality principle. The authors find their legality-
based implementation fares significantly worse than
SbA.

4 Categorical Approaches

Categorical approaches to syllabification are appeal-
ing because they are efficient and linguistically intu-
itive. In addition, they require little or no syllable-
annotated data. We present threecategorical al-
gorithms that implement the linguistic insights out-
lined in Section 2. All three can be viewed as vari-
ations on the basic pseudo-code shown in Figure 1.
Every vowel is labeled as a nucleus, and every con-
sonant is labeled as either an onset or a coda. The
algorithm labels all consonants as onsets unless it is
illegal to do so. Given the labels, it is straightfor-
ward to syllabify a word. The three methods differ
in how they determine a “legal” onset.

As a rough baseline, the MAX ONSET implemen-
tation considers all combinations of consonants to be
legal onsets. Only word-final consonants are labeled
as codas.

LEGALITY combines the Legality Principle with
onset maximization. In our implementation, we col-
lect all word-initial consonant clusters from the cor-
pus and deem them to be legal onsets. With this
method, no syllable can have an onset that does not
appear word-initially in the training data. We do not
test for the legality of codas. The performance of
LEGALITY depends on the number of phonetic tran-
scriptions that are available, but the transcriptions
need not be annotated with syllable breaks.

SONORITY combines the Sonority Sequencing
Principle with onset maximization. In this approach,
an onset is considered legal if every member of the
onset ranks lower on the sonority scale than ensuing
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until current phoneme is a vowel
label current phoneme as an onset

end loop
until all phonemes have been labeled

label current phoneme as a nucleus
if there are no more vowels in the word

label all remaining consonants as codas
else

onset := all consonants before next vowel
coda := empty
until onset is legal

coda := coda plus first phoneme of onset
onset := onset less first phoneme

end loop
end if

end loop
Insert syllable boundaries before onsets

Figure 1: Pseudo-code for syllabifying a string of
phonemes.

consonants. SONORITY requires no training data be-
cause it implements a sound linguistic theory. How-
ever, an existing development set for a given lan-
guage can help with defining and validating addi-
tional language-specific constraints.

Several sonority scales of varying complexity
have been proposed. For example, Selkirk (1984)
specifies a hierarchy of eleven distinct levels. We
adopt a minimalistic scale shown in Figure 2. which
avoids most of the disputed sonority contrasts (Jany
et al., 2007). We set the sonority distance parame-
ter to 2, which ensures that adjacent consonants in
the onset differ by at least two levels of the scale.
For example, [pr] is an acceptable onset because it
is composed of an obstruent and a liquid, but [pn] is
not, because nasals directly follow obstruents on our
sonority scale.

In addition, we incorporate several English-
specific constraints listed by Kenstowicz (1994,
pages 257–258). The constraints, orfilters, prohibit
complex onsets containing:

(i) two labials (e.g., [pw], [bw], [fw], [vw]),

(ii) a non-strident coronal followed by a lateral
(e.g., [tl], [dl], [Tl])

(iii) a voiced fricative (e.g., [vr], [zw], except [vj]),

(iv) a palatal consonant (e.g., [Sl], [Ùr], except [Sr]).

Sound Examples Level
Vowels u,�, . . . 4
Glides w, j, . . . 3
Liquids l, r, . . . 2
Nasals m,N, . . . 1
Obstruents g,T, . . . 0

Figure 2: The sonority scale employed by SONORITY.

A special provision allows for prepending the
phoneme [s] to onsets beginning with a voiceless
plosive. This reflects the special status of [s] in En-
glish, where onsets like [sk] and [sp] are legal even
though the sonority is not strictly increasing.

5 Supervised Approach: SVM-HMM

If annotated data is available, a classifier can be
trained to predict the syllable breaks. A Support
Vector Machine (SVM) is a discriminative super-
vised learning technique that allows for a rich fea-
ture representation of the input space. In principle,
we could use a multi-class SVM to classify each
phoneme according to its position in a syllable on
the basis of a set of features. However, a traditional
SVM would treat each phoneme in a word as an in-
dependent instance, preventing us from considering
interactions between labels. In order to overcome
this shortcoming, we employ an SVM-HMM1 (Al-
tun et al., 2003), an instance of the Structured SVM
formalism (Tsochantaridis et al., 2004) that has been
specialized for sequence tagging.

When training a structured SVM, each training
instancexi is paired with its labelyi, drawn from
the set of possible labels,Yi. In our case, the train-
ing instancesxi are words, represented as sequences
of phonemes, and their labelsyi are syllabifications,
represented as sequences of onset/nucleus/coda tags.
For each training example, a feature vectorΨ(x, y)
represents the relationship between the example and
a candidate tag sequence. The SVM finds a weight
vectorw, such thatw ·Ψ(x, y) separates correct tag-
gings from incorrect taggings by as large a margin
as possible. Hamming distanceDH is used to cap-
ture how close a wrong sequencey is to yi, which

1http://svmlight.joachims.org/svmstruct.html
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in turn impacts the required margin. Tag sequences
that share fewer tags in common with the correct se-
quence are separated by a larger margin.

Mathematically, a (simplified) statement of the
SVM learning objective is:

∀i∀y∈Yi,y 6=yi
:

[Ψ(xi, yi) · w > Ψ(xi, y) · w + DH(y, yi)]
(1)

This objective is only satisfied whenw tags all train-
ing examples correctly. In practice, slack variables
are introduced, which allow us to trade off training
accuracy and the complexity ofw via a cost parame-
ter. We tune this parameter on our development set.

The SVM-HMM training procedure repeatedly
uses the Viterbi algorithm to find, for the current
w and each(xi, yi) training pair, the sequencey
that most drastically violates the inequality shown in
Equation 1. These incorrect tag sequences are added
to a growing set, which constrains the quadratic op-
timization procedure used to find the nextw. The
process iterates until no new violating sequences are
found, producing an approximation to the inequality
over ally ∈ Yi. A complete explanation is given by
Tsochantaridis et al. (2004).

Given a weight vectorw, a structured SVM tags
new instancesx according to:

argmaxy∈Y [Ψ(x, y) · w] (2)

The SVM-HMM gets the HMM portion of its name
from its use of the HMM Viterbi algorithm to solve
thisargmax.

5.1 Features

We investigated several tagging schemes, described
in detail by Bartlett (2007). During development,
we found that tagging each phoneme with its syl-
labic role (Krenn, 1997) works better than the simple
binary distinction between syllable-final and other
phonemes (van den Bosch, 1997). We also dis-
covered that accuracy can be improved by number-
ing the tags. Therefore, in our tagging scheme, the
single-syllable wordstrengths[strENTs] would be la-
beled with the sequence{O1 O2 O3 N1 C1 C2 C3}.

Through the use of the Viterbi algorithm, our fea-
ture vectorΨ(x, y) is naturally divided into emis-
sion and transition features. Emission features link
an aspect of the input wordx with a single tag in the

Method English

MAX ONSET 61.38
LEGALITY 93.16
SONORITY 95.00
SVM-HMM 98.86

tsylb 93.72

Table 1: Word accuracy on the CELEX dataset.

sequencey. Unlike a generative HMM, these emis-
sion features do not require any conditional indepen-
dence assumptions. Transition features link tags to
tags. Our only transition features are counts of adja-
cent tag pairs occurring iny.

For the emission features, we use the current
phoneme and a fixed-size context window of sur-
rounding phonemes. Thus, the features for the
phoneme [k] inhockey[hAki] might include the [A]
preceding it, and the [i] following it. In experiments
on our development set, we found that the optimal
window size is nine: four phonemes on either side
of the focus phoneme. Because the SVM-HMM is a
linear classifier, we need to explicitly state any im-
portant conjunctions of features. This allows us to
capture more complex patterns in the language that
unigrams alone cannot describe. For example, the
bigram [ps] is illegal as an onset in English, but per-
fectly reasonable as a coda. Experiments on the de-
velopment set showed that performance peaked us-
ing all unigrams, bigrams, trigrams, and four-grams
found within our context window.

6 Syllabification Experiments

We developed our approach using the English por-
tion of the CELEX lexical database (Baayen et al.,
1995). CELEX provides the phonemes of a word
and its correct syllabification. It does not designate
the phonemes as onsets, nuclei, or codas, which is
the labeling we want to predict. Fortunately, extract-
ing the labels from a syllabified word is straightfor-
ward. All vowel phones are assigned to be nuclei;
consonants preceding the nucleus in a syllable are
assigned to be onsets, while consonants following
the nucleus in a syllable are assigned to be codas.

The results in Table 1 were obtained on a test set
of 5K randomly selected words. For training the
SVM-HMM, we randomly selected 30K words not
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appearing in the test set, while 6K training examples
were held out for development testing. We report
the performance in terms of word accuracy (entire
words syllabified correctly). Among the categori-
cal approaches, SONORITY clearly outperforms not
only LEGALITY , but alsotsylb (Fisher, 1996), an
implementation of the complex algorithm of Kahn
(1976), which makes use of lists of legal English
onsets. Overall, our SVM-based approach is a clear
winner.

The results of our discriminative method com-
pares favorably with the results of competing ap-
proaches on English CELEX. Since there are no
standard train-test splits for syllabification, the
comparison is necessarily indirect, but note that
our training set is substantially smaller. For
her language-independent PCFG-based approach,
Müller (2006) reports 92.64% word accuracy on the
set of 64K examples from CELEX using 10-fold
cross-validation. The Learned EBG approach of
van den Bosch (1997) achieves 97.78% word accu-
racy when training on approximately 60K examples.
Therefore, our results represent a nearly 50% reduc-
tion of the error rate.

Figure 3: Word accuracy on English CELEX as a func-
tion of the number of thousands of training examples.

Though the SVM-HMM’s training data require-
ments are lower than previous supervised syllabi-
fication approaches, they are still substantial. Fig-
ure 3 shows a learning curve over varying amounts
of training data. Performance does not reach accept-
able levels until 5K training examples are provided.

6.1 Error Analysis

There is a fair amount of overlap in the errors made
by the SVM-HMM and the SONORITY. Table 4
shows a few characteristic examples. The CELEX

syllabifications of tooth-acheand pass-portsfol-
low the morphological boundaries of the compound
words. Morphological factors are a source of er-
rors for both approaches, but significantly more so
for SONORITY. The performance difference comes
mainly from the SVM’s ability to handle many of
these morphological exceptions. The SVM gener-
ates the correct syllabification ofnortheast[norT-
ist], even though an onset of [T] is perfectly legal.
On the other hand, the SVM sometimes overgener-
alizes, as in the last example in Table 4.

SVM-HMM SONORITY

tu-Tek tu-Tek toothache
pae-sports pae-sports passports
norT-ist nor-Tist northeast
dIs-plizd dI-splizd displeased
dIs-koz dI-skoz discos

Figure 4: Examples of syllabification errors. (Correct
syllabifications are shown in bold.)

6.2 The NETtalk Dataset

Marchand et al. (2007) report a disappointing word
accuracy of 54.14% for their legality-based imple-
mentation, which does not accord with the results
of our categorical approaches on English CELEX.
Consequently, we also apply our methods to the
dataset they used for their experiments: the NETtalk
dictionary. NETtalk contains 20K English words; in
the experiments reported here, we use 13K training
examples and 7K test words.

As is apparent from Table 2, our performance
degrades significantly when switching to NETtalk.
The steep decline found in the categorical meth-
ods is particularly notable, and indicates significant
divergence between the syllabifications employed
in the two datasets. Phonologists do not always
agree on the correct syllable breaks for a word,
but the NETtalk syllabifications are often at odds
with linguistic intuitions. We randomly selected 50
words and compared their syllabifications against
those found in Merriam-Webster Online. We found
that CELEX syllabifications agree with Merriam-
Webster in 84% of cases, while NETtalk only agrees
52% of the time.

Figure 5 shows several words from the NETtalk
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Method English

MAX ONSET 33.64
SONORITY 52.80
LEGALITY 53.08
SVM-HMM 92.99

Table 2: Word accuracy on the NETtalk dataset.

and CELEX datasets. We see that CELEX fol-
lows the maximal onset principle consistently, while
NETtalk does in some instances but not others. We
also note that there are a number of NETtalk syllab-
ifications that are clearly wrong, such as the last two
examples in Figure 5. The variability of NETtalk
is much more difficult to capture with any kind of
principled approach. Thus, we argue that low per-
formance on NETtalk indicate inconsistent syllabi-
fications within that dataset, rather than any actual
deficiency of the methods.

NETtalk CELEXÙaes-taIz Ùae-staIz chastise
rEz-Id-�ns rE-zI-d�ns residence
dI-strOI dI-strOI destroy
fo-tAn fo-tAn photonAr-pE�-io Ar-pE-�i-o arpeggioDer-�-baU-t DE-r�-baUt thereabout

Figure 5: Examples of CELEX and NETtalk syllabifica-
tions.

NETtalk’s variable syllabification practices
notwithstanding, the SVM-HMM approach still
outperforms the previous benchmark on the dataset.
Marchand et al. (2007) report 88.53% word accu-
racy for their SbA technique using leave-one-out
testing on the entire NETtalk set (20K words). With
fewer training examples, we reduce the error rate by
almost 40%.

6.3 Other Languages

We performed experiments on German and Dutch,
the two other languages available in the CELEX lex-
ical database. The German and Dutch lexicons of
CELEX are larger than the English lexicon. For both
languages, we selected a 25K test set, and two dif-
ferent training sets, one containing 50K words and
the other containing 250K words. The results are

Method German Dutch

MAX ONSET 19.51 23.44
SONORITY 76.32 77.51
LEGALITY 79.55 64.31
SVM-HMM (50K words) 99.26 97.79
SVM-HMM (250K words) 99.87 99.16

Table 3: Word accuracy on the CELEX dataset.

presented in Table 3.

While our SVM-HMM approach is entirely lan-
guage independent, the same cannot be said about
other methods. The maximal onset principle appears
to hold much more strongly for English than for Ger-
man and Dutch (e.g.,patron: [pe-tr�n] vs. [pat-ron]).
LEGALITY and SONORITY also appear to be less
effective, possibly because of greater tendency for
syllabifications to match morphological boundaries
(e.g., Englishexclusive: [Ik-sklu-sIv] vs. Dutchex-
clusief[Eks-kly-zif]). SONORITY is further affected
by our decision to employ the constraints of Ken-
stowicz (1994), although they clearly pertain to En-
glish. We expect that adapting them to specific lan-
guages would bring the results closer to the level of
the English experiments.

Although our SVM system is tuned using an
English development set, the results on both Ger-
man and Dutch are excellent. We could not find
any quantitative data for comparisons on Dutch,
but the comparison with the previously reported re-
sults on German CELEX demonstrates the qual-
ity of our approach. The numbers that follow re-
fer to 10-fold cross-validation on the entire lex-
icon (over 320K entries) unless noted otherwise.
Krenn (1997) obtainstagaccuracy of 98.34%, com-
pared to our system’s tag accuracy of 99.97% when
trained on 250K words. With a hand-crafted gram-
mar, Müller (2002) achieves 96.88% word accuracy
on CELEX-derived syllabifications, with a training
corpus of two million tokens. Without a hand-
crafted grammar, she reports 90.45% word accu-
racy (Müller, 2006). Applying a standard smoothing
algorithm and fourth-order HMM, Demberg (2006)
scores 98.47% word accuracy. A fifth-order joint
N -gram model of Schmid et al. (2007) achieves
99.85% word accuracy with about 278K training
points. However, unlike generative approaches, our
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Method English German

SONORITY 97.0 94.2
SVM-HMM 99.9 99.4

Categorical Parser 94.9 92.7
Maximum Likelihood 98.1 97.4

Table 4: Word accuracy on the datasets of Goldwater and
Johnson (2005).

SVM-HMM can condition each emission on large
portions of the input using only a first-order Markov
model, which implies much faster syllabification
performance.

6.4 Direct Comparison with an MLE approach

The results of the competitive approaches that have
been quoted so far (with the exception oftsylb)
are not directly comparable, because neither the re-
spective implementations, nor the actual train-test
splits are publicly available. However, we managed
to obtain the English and German data sets used
by Goldwater and Johnson (2005) in their study,
which focused primarily on unsupervised syllabi-
fication. Their experimental framework is similar
to (Müller, 2001). They collect words from running
text and create a training set of 20K tokens and a
test set of 10K tokens. The running text was taken
from the Penn WSJ and ECI corpora, and the syl-
labified phonemic transcriptions were obtained from
CELEX. Table 4 compares our experimental results
with their reported results obtained with: (a) su-
pervised Maximum Likelihood training procedures,
and (b) a Categorical Syllable Parser implementing
the principles of sonority sequencing and onset max-
imization without Kenstowicz’s (1994) onset con-
straints.

The accuracy figures in Table 4 are noticeably
higher than in Table 1. This stems from fundamen-
tal differences in the experimental set-up; Goldwater
and Johnson (2005) test on tokens as found in text,
therefore many frequent short words are duplicated.
Furthermore, some words occur during both training
and testing, to the benefit of the supervised systems
(SVM-HMM and Maximum Likelihood). Neverthe-
less, the results confirm the level of improvement
obtained by both our categorical and supervised ap-
proaches.

7 Conclusion

We have presented several different approaches to
the syllabification of phonemes. The results of our
linguistically-motivated algorithms, show that it is
possible to achieve adequate syllabification word
accuracy in English with no little or no syllable-
annotated training data. We have demonstrated that
the poor performance of categorical methods on En-
glish NETtalk actually points to problems with the
NETtalk annotations, rather than with the methods
themselves.

We have also shown that SVM-HMMs can be
used to great effect when syllabifying phonemes.
In addition to being both efficient and language-
independent, they establish a new state-of-the-art for
English and Dutch syllabification. However, they
do require thousands of labeled training examples to
achieve this level of accuracy. In the future, we plan
to explore a hybrid approach, which would benefit
from both the generality of linguistic principles and
the smooth exception-handling of supervised tech-
niques, in order to make best use of whatever data is
available.
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