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Abstract lable. While actual implementations vary, text-to-

speech (TTS) systems must have, at minimum, three

Syllables play an important role in speech
synthesis and recognition. We present sev-
eral different approaches to the syllabifica-
tion of phonemes. We investigate approaches
based on linguistic theories of syllabification,
as well as a discriminative learning technique
that combines Support Vector Machine and
Hidden Markov Model technologies. Our
experiments on English, Dutch and German
demonstrate that our transparent implemen-
tation of the sonority sequencing principle
is more accurate than previous implemen-
tations, and that our language-independent
SVM-based approach advances the current
state-of-the-art, achieving word accuracy of
over 98% in English and 99% in German and
Dutch.

components (Damper, 2001): a letter-to-phoneme
(L2P) module, a prosody module, and a synthesis
module. Syllabification can play a role in all three
modules.

Because of the productive nature of language, a
dictionary look-up process for syllabification is in-
adequate. No dictionary can ever contain all possi-
ble words in a language. For this reason, it is neces-
sary to develop systems that can automatically syl-
labify out-of-dictionary words.

In this paper, we advance the state-of-the-art
in both categorical (non-statistical) and supervised
syllabification. We outline three categorical ap-
proaches based on common linguistic theories of
syllabification. We demonstrate that when imple-

mented carefully, such approaches can be very ef-
fective, approaching supervised performance. We
also present a data-driven, discriminative solution:
Syllabification is the process of dividing a worda Support Vector Machine Hidden Markov Model
into its constituent syllables. Although some worSVM-HMM), which tags each phoneme with its
has been done on syllabifying orthographic formsyllabic role. Given enough data, the SVM-HMM
(Muller et al., 2000; Bouma, 2002; Marchand andachieves impressive accuracy thanks to its ability
Damper, 2007; Bartlett et al., 2008), syllables aretp capture context-dependent generalizations, while
technically speaking, phonological entities that caalso memorizing inevitable exceptions. Our ex-
only be composed of strings of phonemes. Mogteriments on English, Dutch and German demon-
linguists view syllables as an important unit ofstrate that our SVM-HMM approach substantially
prosody because many phonological rules and coputperforms the existing state-of-the-art learning ap-
straints apply within syllables or at syllable bound-proaches. Although direct comparisons are difficult,
aries (Blevins, 1995). our system achieves over 99% word accuracy on
Apart from their purely linguistic significance, German and Dutch, and the highest reported accu-
syllables play an important role in speech synthesisicy on English.
and recognition (Kiraz and Mobius, 1998; Pearson The paper is organized as follows. We outline
et al., 2000). The pronunciation of a given phonemeommon linguistic theories of syllabification in Sec-
tends to vary depending on its location within a syl{ion 2, and we survey previous computational sys-
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tems in Section 3. Our linguistically-motivated ap-cleus, and then fall off to the coda (Selkirk, 1984).
proaches are described in Section 4. In Section &onsequently, in a word likeintage [vintig], we
we describe our system based on the SVM-HMMcan rule out a syllabification like jwtik] because
The experimental results are presented in Section ] is more sonorant than [t]. However, SSP does
not tell us whether to prefer {a-tig] or [vint-ig].
2 Theories of Syllabification Moreover, when syllabifying a word likeintner
[vintror], the theory allows both [w-tror] and [vint-
There is some debate as to the exact structure gff], even though [tn] is an illegal onset in English.
a syllable.  However, phonologists aré in gen- Both the Legality Principle and SSP tell us which
eral agreement that a syllable consists of a nucleyhsets and codas are permitted in legal syllables, and
(vowel sound), preceded by an optional onset anghich are not. However, neither theory gives us any
followed by an optional coda. In many languagesguidance when deciding between legal onsets. The
both the onset and the coda can be comple, paximal Onset Principle addresses this by stating
composed of more than one consonant. For exafje should extend a syllable’s onset at the expense
ple, the wordbreakfas{brek-fast] contains two syl- of the preceding syllable’s coda whenever it is legal
lables, of which the first has a complex onset [brlis go so (Kahn, 1976). For example, the principle

and the second a complex coda [st]. Languages difives preference tofskju] and [un-tids] over their
fer with respect to various typological parametersgjiernatives.

such as optionality of onsets, admissibility of co-
das, and the allowed complexity of the syllable cong  previous Computational Approaches
stituents. For example, onsets are required in Ger-
man, while Spanish prohibits complex codas. Unlike tasks such as part of speech tagging or syn-
There are a number of theories of syllabificationfactic parsing, syllabification does not involve struc-
we present three of the most prevalent. Tlegal- tural ambiguity. It is generally believed that syllable
ity Principle constrains the segments that can bestructure is usually predictable in a language pro-
gin and end syllables to those that appear at the beided that the rules have access to all conditioning
ginning and end of words. In other words, a syllafactors: stress, morphological boundaries, part of
ble is not allowed to begin with a consonant clusspeech, etymology, etc. (Blevins, 1995). However,
ter that is not found at the beginning of some wordin speech applications, the phonemic transcription of
or end with a cluster that is not found at the end o& word is often the only linguistic information avail-
some word (Goslin and Frauenfelder, 2001). Thusible to the system. This is the common assumption
a word like admit [odmit] must be syllabifieddd- underlying a number of computational approaches
mit] because [dm] never appears word-initially orthat have been proposed for the syllabification of
word-finally in English. A shortcoming of the le- phonemes.
gality principle is that it does not always imply a Daelemans and van den Bosch (1992) present one
unique syllabification. For example, in a word likeof the earliest systems on automatic syllabification:
askewfaskju], the principle does not rule out any ofa neural network-based implementation for Dutch.
[a-skju], [os-kju], or [osk-ju], as all three employ le- Daelemans et al. (1997) also explore the application
gal onsets and codas. of exemplar-based generalization (EBG), sometimes
The Sonority Sequencing Principle(SSP) pro- called instance-based learning. EBG generally per-
vides a stricter definition of legality. The sonor-forms a simple database look-up to syllabify a test
ity of a sound is its inherent loudness, holding facpattern, choosing the most common syllabification.
tors like pitch and duration constant (Crystal, 2003)In cases where the test pattern is not found in the
Low vowels like [a], the most sonorous sounds, ardatabase, the most similar pattern is used to syllab-
high on the sonority scale, while plosive consonantiy the test pattern.
like [t] are at the bottom. When syllabifying a Hidden Markov Models (HMMs) are another
word, SSP states that sonority should increase fropopular approach to syllabification. Krenn (1997)
the first phoneme of the onset to the syllable’s nuintroduces the idea of treating syllabification as a
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tagging task. Working from a list of syllabified parser implementing the sonority principle and esti-
phoneme strings, she automatically generates tagste the parameters for their maximum likelihood
for each phone. She uses a second-order HMM tpproach using EM.
predict sequences of tags; syllable boundaries can beMarchand et al. (2007) apply their Syllabification
trivially recovered from the tags. Demberg (2006)oy Analogy (SbA) technique, originally developed
applies a fourth-order HMM to the syllabification for orthographic forms, to the pronunciation do-
task, as a component of a larger German text-tanain. For each input word, SbA finds the most sim-
speech system. Schmid et al. (2007) improve oifar substrings in a lexicon of syllabified phoneme
Demberg’s results by applying a fifth-order HMM strings and then applies the dictionary syllabifica-
that conditions on both the previous tags and thetions to the input word. Their survey paper also in-
corresponding phonemes. cludes comparisons with a method broadly based on
Kiraz and Mobius (1998) present a weightedhe legality principle. The authors find their legality-
finite-state-based approach to syllabification. Theisased implementation fares significantly worse than
language-independent method builds an automat@bA.
for each of onsets, nuclei, and codas, by count-
ing occurrences in training data. These automatons Categorical Approaches
are then composed into a transducer accepting se-
quences of one or more syllables. They do not repoftategorical approaches to syllabification are appeal-
guantitative results for their method. ing because they are efficient and linguistically intu-
Pearson et al. (2000) compare two rule-based Sygiye. In addition, they require little or no syllable-
tems (they do not elaborate on the rules employed@nnotated data. We present thregtegorical al-
with a CART decision tree-based approach and gorithms that implement the linguistic insights out-
“global statistics” algorithm. The global statistics/ined in Section 2. All three can be viewed as vari-
method is based on counts of consonant cluste@$ions on the basic pseudo-code shown in Figure 1.
in contexts such as word boundaries, short vowEVery vowel is labeled as a nucleus, and every con-
els, or long vowels. Each test word has syllabléonant is labeled as either an onset or a coda. The
boundaries placed according to the most likely loalgorithm labels all consonants as onsets unless it is
cation given a cluster and its context. In experilllegal to do so. Given the labels, it is straightfor-
ments performed with their in-house dataset, theivard to syllabify a word. The three methods differ
statistics-based method outperforms the decisioff? how they determine a “legal” onset.
tree approach and the two rule-based methods. As a rough baseline, the AKONSET implemen-
Miller (2001) presents a hybrid of a categori-tation considers all combinations of consonants to be
cal and data-driven approach. First, she manualkgal onsets. Only word-final consonants are labeled
constructs a context-free grammar of possible syll&s codas.
bles. This grammar is then made probabilistic using LEGALITY combines the Legality Principle with
counts obtained from training data. Muller (2006)onset maximization. In our implementation, we col-
attempts to make her method language-independetgct all word-initial consonant clusters from the cor-
Rather than hand-crafting her context-free grammapus and deem them to be legal onsets. With this
she automatically generates all possible onsets, norethod, no syllable can have an onset that does not
clei, and codas, based on the phonemes existing appear word-initially in the training data. We do not
the language. The results are somewhat lower thdest for the legality of codas. The performance of
in (Muller, 2001), but the approach can be more eas-EGALITY depends on the number of phonetic tran-
ily ported across languages. scriptions that are available, but the transcriptions
Goldwater and Johnson (2005) also explore usieed not be annotated with syllable breaks.
ing EM to learn the structure of English and Ger- SONORITY combines the Sonority Sequencing
man phonemes in an unsupervised setting, followinBrinciple with onset maximization. In this approach,
Muller in modeling syllable structure with PCFGs.an onset is considered legal if every member of the
They initialize their parameters using a deterministionset ranks lower on the sonority scale than ensuing
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until current phoneme is a vowel Sound Examples Level
label current phoneme as an onset Vi | 4
end loop owels uo, ...
until all phonemes have been labeled Glides W, ... 3
label current phoneme as a nucleus Liquids I, ... 2
if there are no more vowels in the word Nasals my 1
label all remaining consonants as codas ’
else g Obstruents !, ... 0
onset := all consonants before next vowel

coda := empty _ _
until onset is legal Figure 2: The sonority scale employed bgISORITY.
coda := coda plus first phoneme of onset
onset := onset less first phoneme

end loop A special provision allows for prepending the
o delr(;((j)pl)f phoneme [s] to onsets beginning with a voiceless
Insert syllable boundaries before onsets plosive. This reflects the special status of [s] in En-

glish, where onsets like [sk] and [sp] are legal even
though the sonority is not strictly increasing.

Figure 1: Pseudo-code for syllabifying a string of ]
phonemes. 5 Supervised Approach: SVM-HMM

If annotated data is available, a classifier can be
consonants. SNORITY requires no training data be- trained to predict the syllable breaks. A Support
cause it implements a sound linguistic theory. HowwMector Machine (SVM) is a discriminative super-
ever, an existing development set for a given lanvised learning technique that allows for a rich fea-
guage can help with defining and validating additure representation of the input space. In principle,
tional language-specific constraints. we could use a multi-class SVM to classify each

Several sonority scales of varying complexityphoneme according to its position in a syllable on
have been proposed. For example, Selkirk (1984he basis of a set of features. However, a traditional
specifies a hierarchy of eleven distinct levels. W&VM would treat each phoneme in a word as an in-
adopt a minimalistic scale shown in Figure 2. whictdependent instance, preventing us from considering
avoids most of the disputed sonority contrasts (Janteractions between labels. In order to overcome
et al., 2007). We set the sonority distance paramehis shortcoming, we employ an SVM-HMMAI-
ter to 2, which ensures that adjacent consonants ion et al., 2003), an instance of the Structured SVM
the onset differ by at least two levels of the scaleformalism (Tsochantaridis et al., 2004) that has been
For example, [pr] is an acceptable onset becausespecialized for sequence tagging.
is composed of an obstruent and a liquid, but [pn] is When training a structured SVM, each training
not, because nasals directly follow obstruents on outistancez; is paired with its labely;, drawn from
sonority scale. the set of possible label;. In our case, the train-

In addition, we incorporate several English-inginstances; are words, represented as sequences
specific constraints listed by Kenstowicz (1994of phonemes, and their labejsare syllabifications,
pages 257-258). The constraints fitiers, prohibit represented as sequences of onset/nucleus/coda tags.
complex onsets containing: For each training example, a feature vecidr, y)
represents the relationship between the example and
a candidate tag sequence. The SVM finds a weight
(i) a non-strident coronal followed by a lateral vectorw, such thatw - ¥(z, y) separates correct tag-

(e.g., [tl], [dI], [61]) gings from incorrect taggings by as large a margin
as possible. Hamming distané&y; is used to cap-
(iii) a voiced fricative (e.qg., [vr], [zw], except [Vi]), ture how close a wrong sequengss to y;, which

() two labials (e.qg., [pw], [bw], [fw], [vw]),

(iv) a palatal consonant (e.gfl][ [{r], except [r]). http://svmlight.joachims.org/svistruct.html
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in turn impacts the required margin. Tag sequences | Method | English |

that share fewer tags in common with the correct se- MAXONSET | 61.38

guence are separated by a larger margin. LEGALITY 93.16
Mathematically, a (simplified) statement of the SONORITY 95.00

SVM learning objective is: SVM-HMM | 98.86
vyt " | tsylb | 93.72 |
(U (i y:) w > (i, y) - w+ Dy (y,yi)] Table 1: Word accuracy on the CELEX dataset.

This objective is only satisfied whentags all train-
ing examples correctly. In practice, slack variablesequence. Unlike a generative HMM, these emis-
are introduced, which allow us to trade off trainingsion features do not require any conditional indepen-
accuracy and the complexity of via a cost parame- dence assumptions. Transition features link tags to
ter. We tune this parameter on our development setags. Our only transition features are counts of adja-
The SVM-HMM training procedure repeatedly cent tag pairs occurring ip.
uses the Viterbi algorithm to find, for the current For the emission features, we use the current
w and each(z;,y;) training pair, the sequencg phoneme and a fixed-size context window of sur-
that most drastically violates the inequality shown inounding phonemes. Thus, the features for the
Equation 1. These incorrect tag sequences are addsitbneme [k] inhockey[haki] might include the {]
to a growing set, which constrains the quadratic opareceding it, and the [i] following it. In experiments
timization procedure used to find the next The on our development set, we found that the optimal
process iterates until no new violating sequences avwindow size is nine: four phonemes on either side
found, producing an approximation to the inequalityof the focus phoneme. Because the SVM-HMM is a
over ally € Y;. A complete explanation is given by linear classifier, we need to explicitly state any im-

Tsochantaridis et al. (2004). portant conjunctions of features. This allows us to
Given a weight vectot, a structured SVM tags capture more complex patterns in the language that
new instances according to: unigrams alone cannot describe. For example, the
bigram [ps] is illegal as an onset in English, but per-
argmax,cy [V(z,y) - w] (2) fectly reasonable as a coda. Experiments on the de-

, : I t set showed that perf ked us-
The SVM-HMM gets the HMM portion of its name vetopment Set snowed thal periormance peaked us

. L . ing all unigrams, bigrams, trigrams, and four-grams
frqm its use of the HMM Viterbi algorithm to solve found within our context window.
this argmax.

51 Features 6 Syllabification Experiments

We investigated several tagging schemes, describ®de developed our approach using the English por-
in detail by Bartlett (2007). During development,tion of the CELEX lexical database (Baayen et al.,
we found that tagging each phoneme with its syl1995). CELEX provides the phonemes of a word
labic role (Krenn, 1997) works better than the simpl@nd its correct syllabification. It does not designate
binary distinction between syllable-final and othethe phonemes as onsets, nuclei, or codas, which is
phonemes (van den Bosch, 1997). We also dishe labeling we want to predict. Fortunately, extract-
covered that accuracy can be improved by numbeirg the labels from a syllabified word is straightfor-
ing the tags. Therefore, in our tagging scheme, theard. All vowel phones are assigned to be nuclei;
single-syllable wordtrengthgstren6s] would be la- consonants preceding the nucleus in a syllable are
beled with the sequend®1 02 O3 N1 C1 C2CB assigned to be onsets, while consonants following
Through the use of the Viterbi algorithm, our fea-the nucleus in a syllable are assigned to be codas.
ture vector¥(z,y) is naturally divided into emis-  The results in Table 1 were obtained on a test set
sion and transition features. Emission features linkf 5K randomly selected words. For training the
an aspect of the input wordwith a single tag in the SVM-HMM, we randomly selected 30K words not
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appearing in the test set, while 6K training examplesyllabifications oftooth-ache and pass-portsfol-
were held out for development testing. We reportow the morphological boundaries of the compound
the performance in terms of word accuracy (entirevords. Morphological factors are a source of er-
words syllabified correctly). Among the categori-rors for both approaches, but significantly more so
cal approaches, @NORITY clearly outperforms not for SONORITY. The performance difference comes
only LEGALITY, but alsotsylb (Fisher, 1996), an mainly from the SVM'’s ability to handle many of
implementation of the complex algorithm of Kahnthese morphological exceptions. The SVM gener-
(1976), which makes use of lists of legal Englishates the correct syllabification afortheast[noro-
onsets. Overall, our SVM-based approach is a clest], even though an onset di][is perfectly legal.
winner. On the other hand, the SVM sometimes overgener-
The results of our discriminative method com-alizes, as in the last example in Table 4.
pares favorably with the results of competing ap-

proaches on English CELEX. Since there are no

dard train-test splits for syllabification, the SVM-HMM SONORITY
stan ar. ) P > _y ’ tu-dek tubek toothache
comparison is necessarily indirect, but note that | pae-sports pe-sports passports
our training set is substantially smaller.  For | noré-ist nor-fist northeast
her language-independent PCFG-based approach, glss'f(')'zz‘j g"sspk'(')zzd g:zg:)esased
Miiller (2006) reports 92.64% word accuracy onthe | '

set of 64K examples from CELEX using 10-fold
cross-validation. - The Leamned EBG approach Ofigyre 4: Examples of syllabification errors. (Correct
van den Bosch (1997) achieves 97.78% word accudyllabifications are shown in bold.)

racy when training on approximately 60K examples.

Therefore, our results represent a nearly 50% reduc-

tion of the error rate. 6.2 The NETtalk Dataset
— P Marchand et al. (2007) report a disappointing word
o g accuracy of 54.14% for their legality-based imple-
oo / mentation, which does not accord with the results
ZZ / of our categorical approaches on English CELEX.
: ] Consequently, we also apply our methods to the
= 0 d dataset they used for their experiments: the NETtalk
65 dictionary. NETtalk contains 20K English words; in
® L s 10 15 20 25 30 35 40 45 50 S5 6o the experiments reported here, we use 13K training
Traiining Data Size examples and 7K test words.

As is apparent from Table 2, our performance

Figure 3: Word accuracy on English CELEX as a funcdegrades significantly when switching to NETtalk.
tion of the number of thousands of training examples. 1he steep decline found in the categorical meth-
ods is particularly notable, and indicates significant
Though the SVM-HMM'’s training data require- divergence between the syllabifications employed
ments are lower than previous supervised syllabin the two datasets. Phonologists do not always
fication approaches, they are still substantial. Figagree on the correct syllable breaks for a word,
ure 3 shows a learning curve over varying amountBut the NETtalk syllabifications are often at odds
of training data. Performance does not reach acceptith linguistic intuitions. We randomly selected 50
able levels until 5K training examples are providedwords and compared their syllabifications against
those found in Merriam-Webster Online. We found
that CELEX syllabifications agree with Merriam-
There is a fair amount of overlap in the errors mad&Vebster in 84% of cases, while NETtalk only agrees
by the SVM-HMM and the SNORITY. Table 4 52% of the time.
shows a few characteristic examples. The CELEX Figure 5 shows several words from the NETtalk

6.1 Error Analysis
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| Method | English | | Method | German| Dutch |

MAXONSET | 33.64 MAXONSET 19.51 | 23.44
SONORITY 52.80 SONORITY 76.32 | 77.51
LEGALITY 53.08 LEGALITY 79.55 | 64.31
SVM-HMM 92.99 SVM-HMM (50K words) 99.26 | 97.79

SVM-HMM (250K words) | 99.87 | 99.16

Table 2: Word accuracy on the NETtalk dataset.
Table 3: Word accuracy on the CELEX dataset.

and CELEX datasets. We see that CELEX fol-
Ilil)\l/zv_?ttr}i ?axmal onset_ prltnC|pIe cbor13|st:an;tﬁ/, Wh'\ll\e}aresented in Table 3.
alk does in some instances but not others. We . . .
also note that there are a number of NETtalk syllab- Wh|Ie_ our SVM-HMM approach is entlrely'lan-
uage independent, the same cannot be said about

ifications that are clearly wrong, such as the last twgth thods. Th imal t princiol
examples in Figure 5. The variability of NETtalk 0" '€ MEthods. The maximal onset principle appears

is much more difficult to capture with any kind of to hold much more strongly for English than for Ger-

principled approach. Thus, we argue that low per"'a" and Dutch (e.gpatrort [pe-tron] vs. [pat-ron).

LEGALITY and SONORITY also appear to be less

formance on NETtalk indicate inconsistent syllabi- Hoctive. possiblvy because of areater tendency for
fications within that dataset, rather than any actudl Ve, POSSIDly u g y

- syllabifications to match morphological boundaries
deficiency of the methods. (e.g., Englishexclusive [1k-sklu-av] vs. Dutchex-

clusief[eks-kly-zif]). SONORITY is further affected
NETtalk CELEX by our decision to employ the constraints of Ken-
faes-taz Yae-staz chastise stowicz (1994), although they clearly pertain to En-
g_zs'lti'f’ns éﬁf{gfns Liss'?rgsce glish. We expect that adapting them to specific lan-
fo-tan fo-tan photon guages would bring the results closer to the level of
ar-pecg-io ar-pe-gi-0 arpeggio the English experiments.
dero-bay-t Ge-ro-bast thereabout Although our SVM system is tuned using an

English development set, the results on both Ger-
Figure 5: Examples of CELEX and NETtalk syllabifica-man and E_)Ut_Ch are excellent. We could not find
tions. any quantitative data for comparisons on Dutch,
but the comparison with the previously reported re-
NETtalk's variable syllabification practices sults on German CELEX demonstrates the qual-
notwithstanding, the SVM-HMM approach still ity of our approach. The numbers that follow re-
outperforms the previous benchmark on the datasder to 10-fold cross-validation on the entire lex-
Marchand et al. (2007) report 88.53% word accuicon (over 320K entries) unless noted otherwise.
racy for their SbA technique using leave-one-ouKrenn (1997) obtaintag accuracy of 98.34%, com-
testing on the entire NETtalk set (20K words). Withpared to our system’s tag accuracy of 99.97% when
fewer training examples, we reduce the error rate biyained on 250K words. With a hand-crafted gram-
almost 40%. mar, Muller (2002) achieves 96.88% word accuracy
on CELEX-derived syllabifications, with a training
corpus of two million tokens. Without a hand-
We performed experiments on German and Dutcltrafted grammar, she reports 90.45% word accu-
the two other languages available in the CELEX lexracy (Muller, 2006). Applying a standard smoothing
ical database. The German and Dutch lexicons @igorithm and fourth-order HMM, Demberg (2006)
CELEX are larger than the English lexicon. For botrscores 98.47% word accuracy. A fifth-order joint
languages, we selected a 25K test set, and two di¥-gram model of Schmid et al. (2007) achieves
ferent training sets, one containing 50K words an89.85% word accuracy with about 278K training
the other containing 250K words. The results arpoints. However, unlike generative approaches, our

6.3 Other Languages
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| Method | English | German] 7 Conclusion

SONORITY 97.0 94.2 We have presented several different approaches to
SVM-HMM 99.9 994 the syllabification of phonemes. The results of our
Categorical Parser 94.9 92.7 linguistically-motivated algorithms, show that it is
Maximum Likelihood | 98.1 97.4 possible to achieve adequate syllabification word

Table 4: Word accuracy on the datasets ofGoIdwaterana(lj‘:Curacy n Enghsh with no little or no syllable-
Johnson (2005), annotated training data. We haye demonstrated that
the poor performance of categorical methods on En-
glish NETtalk actually points to problems with the
SVM-HMM can condition each emission on largeNETtalk annotations, rather than with the methods
portions of the input using only a first-order Markovthemselves.
model, which implies much faster syllabification We have also shown that SVM-HMMs can be
performance. used to great effect when syllabifying phonemes.
In addition to being both efficient and language-
6.4 Direct Comparison with an MLE approach independent, they establish a new state-of-the-art for

The results of the competitive approaches that ha\;%ngllsh_and Dutch syllabification. _ However, they
been quoted so far (with the exception islb) do require thousands of labeled training examples to
are not directly comparable, because neither the rg_chlevle this IEVEI ,?jf accurac;r/]. Inrt]hehfutur%vge pl?_n
spective implementations, nor the actual train-tedp €xplore a hybr approach, which woulc bene It
splits are publicly available. However, we manage(glrom both the generallty of Ilngwstlc prmmples and
to obtain the English and German data sets uséae smooth exception-handling of supervised tech-
by Goldwater and Johnson (2005) in their Stud>;uques, in order to make best use of whatever data is

which focused primarily on unsupervised syIIabi-ava'IabIe'

ficatiq.n. Their experimental framework is sim.ilar Acknowledgements

to (Muller, 2001). They collect words from running o
text and create a training set of 20K tokens and We are grateful to Sharon Goldwater for providing
test set of 10K tokens. The running text was takeH® experimental data sets for comparison. This re-
from the Penn WSJ and ECI corpora, and the syFéarch was supported by the Natural Sciences and
labified phonemic transcriptions were obtained fronfEngineering Research Council of Canada and the
CELEX. Table 4 compares our experimental resultdlberta Informatics Circle of Research Excellence.
with their reported results obtained with: (a) su-

pervised Maxmum Likelihood traunlng_procedure's,F\,eferenceS

and (b) a Categorical Syllable Parser implementing _ . o

the pnnC'ples of Sononty Sequenc|ng and onset ma)z(_asem"] Altun, loannis TSOChantaI’IdIS, and Thomas

imization without Kenstowicz's (1994) onset con- Hofmann. 2003. Hidden markov support vector ma-
straints chines.Proceedings of the 20Th International Confer-

] ] ] ence on Machine Learning (ICML)
The accuracy figures in Table 4 are noticeablyy Baayen, R. Piepenbrock, and L. Gulikers. 1995. The
higher than in Table 1. This stems from fundamen- CELEX lexical database (CD-ROM).

tal differences in the experimental set-up; GoldwateBusan Bartlett, Grzegorz Kondrak, and Colin Cherry.
and Johnson (2005) test on tokens as found in text, 2008. Automatic syllabification with structured SVMs
therefore many frequent short words are duplicated. for letter-to-phoneme conversion. Rroceedings of
Furthermore, some words occur during both training AC--08: HLT. pages 568-576, Columbus, Ohio.

and testing, to the benefit of the supervised syster% san Bartlett. 2007. Discriminative approach to auto-

\ o matic syllabification. Master’s thesis, Department of
(SVM-HMM and Maximum Likelihood). Neverthe- Computing Science, University of Alberta.

less, the results confirm the level of improvemenyyjiette Blevins. 1995. The syllable in phonological
obtained by both our categorical and supervised ap- theory. In John Goldsmith, editof,he handbook of
proaches. phonological theorypages 206—244. Blackwell.

315



Gosse Bouma. 2002. Finite state methods for hyphe#iarin Miller, Bernd Mobius, and Detlef Prescher. 2000.

ation. Natural Language Engineerind:1-16. Inducing probabilistic syllable classes using multivari-
David Crystal. 2003A dictionary of linguistics and pho-  ate clustering. IrPrcoeedings of the 38th meeting of
netics Blackwell. the ACL

Walter Daelemans and Antal van den Bosch. 1992. Ge#farin Muller. 2001. Automatic detection of syllable
eralization performance of backpropagaion learning boundaries combining the advantages of treebank and
on a syllabification task. IfProceedings of the 3rd  bracketed corpora trainingProceedings on the 39Th
Twente Workshop on Language Technojgmges 27—  Meeting of the ACL
38. Karin Muller. 2002. Probabilistic context-free grammars

Walter Daelemans, Antal van den Bosch, and Ton Wei- for phonology.Proceedings of the 6th Workshop of the
jters. 1997. IGTree: Using trees for compression and ACL Special Interest Group in Computational Phonol-
classification in lazy learning algorithmakrtificial In- ogy (SIGPHON)pages 80-90.
telligence Revieypages 407-423. Karin Muller. 2006. Improving syllabification mod-

Robert Damper. 2001. Learning about speech from €ls with phonotactic knowledgeProceedings of the
data: Beyond NETtalk. lData-Driven Techniquesin  Eighth Meeting of the ACL Special Interest Group on
Speech Synthesisages 1-25. Kluwer Academic Pub- Computational Phonology At HLT-NAACL
lishers. Steve Pearson, Roland Kuhn, Steven Fincke, and Nick

Vera Demberg. 2006. Letter-to-phoneme conversion for Kibre. 2000. Automatic methods for lexical stress as-
a German text-to-speech system. Master's thesis, Uni- Signmentand syllabification. Iroceedings of the 6th
versity of Stuttgart. International Conference on Spoken Language Pro-

William Fisher. 1996. Tsylb syllabification package. C€€ssing (ICSLP)
ftp://jaguar.ncsl.nist.gov/pub/tsylb2-1.1.tar.Z. tas- Helmut Schmid, Bernd Mobius, and Julia Weidenkaff.
cessed 31 March 2008. 2007. Tagging syllable boundaries with joint N-gram

Sharon Goldwater and Mark Johnson. 2005. Represen- Models. InProceedings of Interspeech
tational bias in usupervised learning of syllable strucElisabeth Selkirk. 1984. On the major class features and
ture. InPrcoeedings of the 9th Conference on Compu- Syllable theory. InLanguage Sound StructurdIT
tational Natural Language Learning (CoNLLpages Press.

112-1109. loannis Tsochantaridis, Thomas Hofmann, Thorsten
Jeremy Goslin and Ulrich Frauenfelder. 2001. A com- Joachims, and Yasemin Altun. 2004. Support vec-

parison of theoretical and human syllabificatidan- tor machine learning for interdependent and structured

guage and Speech4:409—436. output spacesProceedings of the 21st International

Carmen Jany, Matthew Gordon, Carlos M Nash, and Conference on Machine Learning (ICML)
Nobutaka Takara. 2007. How universal is the sono/®ntal van den Bosch. 1997.Learning to pronounce
ity hierarchy? A cross-linguistic study. t6th Inter- ~ Written words: a study in inductive language learning
national Congress of Phonetic Sciencpages 1401—  Ph.D. thesis, Universiteit Maastricht.
1404.

Daniel Kahn. 1976.Syllable-based generalizations in
English PhonologyPh.D. thesis, Indiana University.

Michael Kenstowicz. 1994.Phonology in Generative
Grammar Blackwell.

George Kiraz and Bernd Mobius. 1998. Multilingual
syllabification using weighted finite-state transducers.

In Proceedings of the 3rd Workshop on Speech Synthe-
sis

Brigitte Krenn. 1997. Tagging syllables. Rroceedings
of Eurospeechpages 991-994.

Yannick Marchand and Robert Damper. 2007. Can syl-
labification improve pronunciation by analogy of En-
glish? Natural Language Engineerind3(1):1-24.

Yannick Marchand, Connie Adsett, and Robert Damper.

2007. Automatic syllabification in English: A com-
parison of different algorithmd.anguage and Speech
To appear.

316



