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Abstract

This paper introduces a novel unsupervised
constraint-driven learning algorithm for iden-
tifying named-entity (NE) transliterations in
bilingual corpora. The proposed method does
not require any annotated data or aligned cor-
pora. Instead, it is bootstrapped using a simple
resource – a romanization table. We show that
this resource, when used in conjunction with
constraints, can efficiently identify translitera-
tion pairs. We evaluate the proposed method
on transliterating English NEs to three differ-
ent languages - Chinese, Russian and Hebrew.
Our experiments show that constraint driven
learning can significantly outperform existing
unsupervised models and achieve competitive
results to existing supervised models.

1 Introduction

Named entity (NE) transliteration is the process of
transcribing a NE from a source language to some
target language while preserving its pronunciation in
the original language. Automatic NE transliteration
is an important component in many cross-language
applications, such as Cross-Lingual Information Re-
trieval (CLIR) and Machine Translation(MT) (Her-
mjakob et al., 2008; Klementiev and Roth, 2006a;
Meng et al., 2001; Knight and Graehl, 1998).

It might initially seem that transliteration is an
easy task, requiring only finding a phonetic mapping
between character sets. However simply matching
every source language character to its target lan-
guage counterpart is not likely to work well as in
practice this mapping depends on the context the

characters appear in and on transliteration conven-
tions which may change across domains. As a result,
current approaches employ machine learning meth-
ods which, given enough labeled training data learn
how to determine whether a pair of words consti-
tute a transliteration pair. These methods typically
require training data and language-specific expertise
which may not exist for many languages. In this pa-
per we try to overcome these difficulties and show
that when the problem is modeled correctly, a sim-
ple character level mapping is a sufficient resource.

In our experiments, English was used as the
source language, allowing us to use romanization ta-
bles, a resource commonly-available for many lan-
guages1. These tables contain an incomplete map-
ping between character sets, mapping every charac-
ter to its most common counterpart.

Our transliteration model takes a discriminative
approach. Given a word pair, the model determines
if one word is a transliteration of the other. The
features used by this model are character n-gram
matches across the two strings. For example, Fig-
ure 1 describes the decomposition of a word pair into
unigram features as a bipartite graph in which each
edge represents an active feature.

We enhance the initial model with constraints, by
framing the feature extraction process as a struc-
tured prediction problem - given a word pair, the set
of possible active features is defined as a set of latent
binary variables. The contextual dependency be-

1The romanization tables available at the Library of
Congress website (http://www.loc.gov/catdir/cpso/roman.html)
cover more than 150 languages written in various non-Roman
scripts
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Figure 1: Top: The space of all possible features that can be
generated given the word pair. Bottom: A pruned features rep-
resentation generated by the inference process.

tween features is encoded as a set of constraints over
these variables. Features are extracted by finding
an assignment that maximizes the similarity score
between the two strings and conforms to the con-
straints. The model is bootstrapped using a roman-
ization table and uses a discriminatively self-trained
classifier as a way to improve over several training
iterations. Furthermore, when specific knowledge
about the source and target languages exists, it can
be directly injected into the model as constraints.

We tested our approach on three very differ-
ent languages - Russian, a Slavic language, He-
brew a Semitic language, and Chinese, a Sino-
Tibetan language. In all languages, using this sim-
ple resource in conjunction with constraints pro-
vided us with a robust transliteration system which
significantly outperforms existing unsupervised ap-
proaches and achieves comparable performance to
supervised methods.

The rest of the paper is organized as follows.
Sec. 2 briefly examines more related work. Sec. 3
explains our model and Sec. 4 provide a linguistic
intuition for it. Sec. 5 describes our experiments and
evaluates our results followed by sec. 6 which con-
cludes our paper.

2 Related Works

Transliteration methods typically fall into two cate-
gories: generative approaches (Li et al., 2004; Jung
et al., 2000; Knight and Graehl, 1998) that try to
produce the target transliteration given a source lan-
guage NE, and discriminative approaches (Gold-
wasser and Roth, 2008b; Bergsma and Kondrak,
2007; Sproat et al., 2006; Klementiev and Roth,
2006a), that try to identify the correct translitera-

tion for a word in the source language given several
candidates in the target language. Generative meth-
ods encounter the Out-Of-Vocabulary (OOV) prob-
lem and require substantial amounts of training data
and knowledge of the source and target languages.
Discriminative approaches, when used to for dis-
covering NE in a bilingual corpora avoid the OOV
problem by choosing the transliteration candidates
from the corpora. These methods typically make
very little assumptions about the source and target
languages and require considerably less data to con-
verge. Training the transliteration model is typi-
cally done under supervised settings (Bergsma and
Kondrak, 2007; Goldwasser and Roth, 2008b), or
weakly supervised settings with additional tempo-
ral information (Sproat et al., 2006; Klementiev and
Roth, 2006a). Our work differs from these works
in that it is completely unsupervised and makes no
assumptions about the training data.

Incorporating knowledge encoded as constraints
into learning problems has attracted a lot of atten-
tion in the NLP community recently. This has been
shown both in supervised settings (Roth and Yih,
2004; Riedel and Clarke, 2006) and unsupervised
settings (Haghighi and Klein, 2006; Chang et al.,
2007) in which constraints are used to bootstrap the
model. (Chang et al., 2007) describes an unsuper-
vised training of a Constrained Conditional Model
(CCM), a general framework for combining statisti-
cal models with declarative constraints. We extend
this work to include constraints over possible assign-
ments to latent variables which, in turn, define the
underlying representation for the learning problem.

In the transliteration community there are sev-
eral works (Ristad and Yianilos, 1998; Bergsma and
Kondrak, 2007; Goldwasser and Roth, 2008b) that
show how the feature representation of a word pair
can be restricted to facilitate learning a string sim-
ilarity model. We follow the approach discussed
in (Goldwasser and Roth, 2008b), which considers
the feature representation as a structured prediction
problem and finds the set of optimal assignments (or
feature activations), under a set of legitimacy con-
straints. This approach stresses the importance of
interaction between learning and inference, as the
model iteratively uses inference to improve the sam-
ple representation for the learning problem and uses
the learned model to improve the accuracy of the in-
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ference process. We adapt this approach to unsu-
pervised settings, where iterating over the data im-
proves the model in both of these dimensions.

3 Unsupervised Constraint Driven
Learning

In this section we present our Unsupervised Con-
straint Driven Learning (UCDL) model for discov-
ering transliteration pairs. Our task is in essence a
ranking task. Given a NE in the source language and
a list of candidate transliterations in the target lan-
guage, the model is supposed to rank the candidates
and output the one with the highest score. The model
is bootstrapped using two linguistic resources: a ro-
manization table and a set of general and linguistic
constraints. We use several iterations of self training
to learn the model. The details of the procedure are
explained in Algorithm 1.

In our model features are character pairs (cs, ct),
where cs ∈ Cs is a source word character and
ct ∈ Ct is a target word character. The feature
representation of a word pair vs, vt is denoted by
F (vs, vt). Each feature (cs, ct) is assigned a weight
W (cs, ct) ∈ R. In step 1 of the algorithm we initial-
ize the weights vector using the romanization table.

Given a pair (vs, vt), a feature extraction process
is used to determine the feature based representation
of the pair. Once features are extracted to represent
a pair, the sum of the weights of the extracted fea-
tures is the score assigned to the target translitera-
tion candidate. Unlike traditional feature extraction
approaches, our feature representation function does
not produce a fixed feature representation. In step
2.1, we formalize the feature extraction process as a
constrained optimization problem that captures the
interdependencies between the features used to rep-
resent the sample. That is, obtaining F (vs, vt) re-
quires solving an optimization problem. The techni-
cal details are described in Sec. 3.1. The constraints
we use are described in Sec. 3.2.

In step 2.2 the different candidates for every
source NE are ranked according to the similarity
score associated with their chosen representation.
This ranking is used to ”label” examples for a dis-
criminative learning process that learns increasingly
better weights, and thus improve the representation
of the pair: each source NE paired with its top
ranked transliteration is labeled as a positive exam-

ples (step 2.3) and the rest of the samples are consid-
ered as negative samples. In order to focus the learn-
ing process, we removed from the training set all
negative examples ruled-out by the constraints (step
2.4). As the learning process progresses, the initial
weights are replaced by weights which are discrimi-
natively learned (step 2.5). This process is repeated
several times until the model converges, and repeats
the same ranking over several iterations.

Input: Romanization table T : Cs → Ct, Constraints
C, Source NEs: Vs, Target words: Vt

1. Initialize Model

Let W : Cs × Ct → R be a weight vector.
Initialize W using T by the following procedure

∀(cs, ct), (cs, ct) ∈ T ⇒ W(cs, ct) = 0,
∀(cs, ct),¬((cs, ct) ∈ T ) ⇒W(cs, ct) = −1,
∀cs,W(cs, ) = −1, ∀ct,W( , ct) = −1.

2. Constraints driven unsupervised training

while not converged do

1. ∀vs ∈ Vs, vt ∈ Vt, use C and W
to generate a representation F (vs, vt)

2. ∀vs ∈ Vs, find the top ranking transliteration
pair (vs, v

∗
t ) by solving

v∗t = arg maxvt score(F (vs, vt)).

3. D = {(+, F (vs, v
∗
t )) | ∀vs ∈ Vs}.

4. ∀vs ∈ Vs, vt ∈ Vt, if vt 6= v∗t and
score(F (vs, vt)) 6= −∞, then
D = D ∪ {(−, F (vs, vt))}.

5. W ← train(D)
end
Algorithm 1: UCDL Transliteration Framework.

In the rest of this section we explain this process
in detail. We define the feature extraction inference
process in Sec. 3.1, the constraints used in Sec. 3.2
and the inference algorithm in Sec. 3.3. The linguis-
tic intuition for our model is described in Sec. 4.

3.1 Finding Feature Representation as
Constrained Optimization

We use the formulation of Constrainted Conditional
Models (CCMs) (Roth and Yih, 2004; Roth and Yih,
2007; Chang et al., 2008). Previous work on CCM
models dependencies between different decisions in
structured prediction problems. Transliteration dis-
covery is a binary classification problem, however,
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the underlying representation of each sample can be
modeled as a CCM, defined as a set of latent vari-
ables corresponding to the set of all possible features
for a given sample. The dependencies between the
features are captured using constraints.

Given a word pair, the set of all possible features
consists of all character mappings from the source
word to the target word. Since in many cases the
size of the words differ we augment each of the
words with a blank character (denoted as ’ ’). We
model character omission by mapping the character
to the blank character. This process is formally de-
fined as an operator mapping a transliteration can-
didate pair to a set of binary variables, denoted as
All-Features (AF ).

AF = {(cs, ct)|cs ∈ vs ∪ { }, ct ∈ vt ∪ { }}

This representation is depicted at the top of Figure 1.
The initial sample representation (AF ) gener-

ates features by coupling substrings from the two
terms without considering the dependencies be-
tween the possible combinations. This representa-
tion is clearly noisy and in order to improve it we
select a subset F ⊂ AF of the possible features.
The selection process is formulated as a linear op-
timization problem over binary variables encoding
feature activations in AF . Variables assigned 1 are
selected to be in F , and those assigned 0 are not.
The objective function maximized is a linear func-
tion over the variables in AF , each with its weight as
a coefficient, as in the left part of Equation 1 below.
We seek to maximize this linear sum subject to a set
of constraints. These represent the dependencies be-
tween selections and prior knowledge about possible
legitimate character mappings and correspond to the
right side of Equation 1. In our settings only hard
constraints are used and therefore the penalty (ρ) for
violating any of the constraints is set to∞. The spe-
cific constraints used are discussed in Sec. 3.2. The
score of the mapping F (vs, vt) can be written as fol-
lows:

1
|vt|

(W · F (vs, vt)−
∑

ci∈C
ρci(F (vs, vt)) (1)

We normalize this score by dividing it by the size of
the target word, since the size of candidates varies,
normalization improved the ranking of candidates.

The result of the optimization process is a set F of
active features, defined in Equation 2. The result of
this process is described at the bottom of Figure 1.

F ∗(vs, vt) = arg maxF⊂AF (vs,vt)score(F ). (2)

The ranking process done by our model can now be
naturally defined - given a source word vs, and a
set of candidates target words v0

t , . . . , v
n
t , find the

candidate whose optimal representation maximizes
Equation 1. This process is defined in Equation 3.

v∗t = arg max
vi

t

score(F (vs, v
i
t)). (3)

3.2 Incorporating Mapping Constraints
We consider two types of constraints: language spe-
cific and general constraints that apply to all lan-
guages. Language specific constraints typically im-
pose a local restriction such as individually forcing
some of the possible character mapping decisions.
The linguistic intuition behind these constraints is
discussed in Section 4. General constraints encode
global restrictions, capturing the dependencies be-
tween different mapping decisions.

General constraints: To facilitate readability we
denote the feature mapping the i-th source word
character to the j-th target word character as a
Boolean variable aij that is 1 if that feature is active
and 0 otherwise.
• Coverage - Every character must be mapped

only to a single character or to the blank char-
acter. We can formulate this as:

∑
j aij = 1

and
∑

i aij = 1.
• No Crossing - Every character mapping, except

mapping to blank character, should preserve the
order of appearance in the source and target
words, or formally - ∀i, j s.t. aij = 1 ⇒ ∀l <
i, ∀k > j, alk = 0. Another constraint is ∀i, j
s.t. aij = 1 ⇒ ∀l > i, ∀k < j, alk = 0.

Language specific constraints
• Restricted Mapping: These constraints restrict

the possible local mappings between source
and target language characters. We maintain a
set of possible mappings {cs → Θcs}, where
Θcs ⊆ Ct and {ct → Θct}, where Θct ⊆ Cs.
Any feature (cs, ct) such that cs /∈ Θct or
ct /∈ Θcs is penalized in our model.
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• Length restriction: An additional constraint
restricts the size difference between the two
words. We formulate this as follows: ∀vs ∈
Vs,∀vt ∈ Vt, if γ|vt| > |vs| and γ|vs| > |vt|,
score(F (vs, vt)) = −∞. Although γ can
take different values for different languages, we
simply set γ to 2 in this paper.

In addition to biasing the model to choose the
right candidate, the constraints also provide a com-
putational advantage: a given a word pair is elimi-
nated from consideration when the length restriction
is not satisfied or there is no way to satisfy the re-
stricted mapping constraints.

3.3 Inference
The optimization problem defined in Equation 2 is
an integer linear program (ILP). However, given
the structure of the problem it is possible to de-
velop an efficient dynamic programming algorithm
for it, based on the algorithm for finding the mini-
mal edit distance of two strings. The complexity of
finding the optimal set of features is only quadratic
in the size of the input pair, a clear improvement
over the ILP exponential time algorithm. The al-
gorithm minimizes the weighted edit distance be-
tween the strings, and produces a character align-
ment that satisfies the general constraints (Sec. 3.2).
Our modifications are only concerned with incorpo-
rating the language-specific constraints into the al-
gorithm. This can be done simply by assigning a
negative infinity score to any alignment decision not
satisfying these constraints.

4 Bootstrapping with Linguistic
Information

Our model is bootstrapped using two resources - a
romanization table and mapping constraints. Both
resources capture the same information - character
mapping between languages. The distinction be-
tween the two represents the difference in the con-
fidence we have in these resources - the romaniza-
tion table is a noisy mapping covering the character
set and is therefore better suited as a feature. Con-
straints, represented by pervasive, correct character
mapping, indicate the sound mapping tendency be-
tween source and target languages. For example,
certain n-gram phonemic mappings, such as r → l

from English to Chinese, are language specific and
can be captured by language specific sound change
patterns.

Phonemes Constraints
Vowel i → y; u → w; a → a

Nasal m ↔ m; m,n ← m

Approximant
r → l; l, r ↔ l
l ← l; w → h, w, f
h, o, u, v ← w; y → y

Fricative
v → w, b, f
s → s, x, z; s, c ← s

Plosive
p → b, p; p ← p
b → b; t ← t
t, d ← d; q → k

Table 1: All language specific constraints used in our English
to Chinese transliteration (see Sec. 3.2 for more details). Con-
straints in boldface apply to all positions, the rest apply only to
characters appearing in initial position.

These patterns have been used by other systems
as features or pseudofeatures (Yoon et al., 2007).
However, in our system these language specific rule-
of-thumbs are systematically used as constraints to
exclude impossible alignments and therefore gener-
ate better features for learning. We listed in Table 1
all 20 language specific constraints we used for Chi-
nese. There is a total of 24 constraints for Hebrew
and 17 for Russian.

The constraints in Table 1 indicate a systematic
sound mapping between English and Chinese un-
igram character mappings. Arranged by manners
of articulation each row of the table indicates the
sound change tendency among vowels, nasals, ap-
proximants (retroflex and glides), fricatives and plo-
sives. For example, voiceless plosive sounds such as
p, t in English, tend to map to both voiced (such as b,
d) and voiceless sounds in Chinese. However, if the
sound is voiceless in Chinese, its backtrack English
sound must be voiceless. This voice-voiceless sound
change tendency is captured by our constraints such
as p → b, p and p ← p; t ← t.

5 Experiments and Analysis

In this section, we demonstrate the effectiveness
of constraint driven learning empirically. We start
by describing the datasets and experimental settings
and then proceed to describe the results. We eval-
uated our method on three very different target lan-
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Figure 2: Comparison between our models and weakly su-
pervised learning methods (Klementiev and Roth, 2006b).
Note that one of the models proposed in (Klementiev and Roth,
2006b) takes advantage of the temporal information. Our best
model, the unsupervised learning with all constraints, outper-
forms both models in (Klementiev and Roth, 2006b), even
though we do not use any temporal information.

guages: Russian, Chinese, and Hebrew, and com-
pared our results to previously published results.

5.1 Experimental Settings

In our experiments the system is evaluated on its
ability to correctly identify the gold transliteration
for each source word. We evaluated the system’s
performance using two measures adopted in many
transliteration works. The first one is Mean Recip-
rocal Rank (MRR), used in (Tao et al., 2006; Sproat
et al., 2006), which is the average of the multiplica-
tive inverse of the rank of the correct answer. For-
mally, Let n be the number of source NEs. Let Gol-
dRank(i) be the rank the algorithm assigns to the
correct transliteration. Then, MRR is defined by:

MRR =
1
n

n∑

i=1

1
goldRank(i)

.

Another measure is Accuracy (ACC) used in (Kle-
mentiev and Roth, 2006a; Goldwasser and Roth,
2008a), which is the percentage of the top rank can-
didates being the gold transliteration. In our im-
plementation we used the support vector machine
(SVM) learning algorithm with linear kernel as our
underlying learning algorithm (mentioned in part
2.5 of Algorithm 1) . We used the package LIB-
LINEAR (Hsieh et al., 2008) in our experiments.
Through all of our experiments, we used the 2-norm
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Figure 3: Comparison between our works and supervised
models in (Goldwasser and Roth, 2008b). We show the learn-
ing curves for Hebrew under two different settings: unsuper-
vised learning with general and all constraints. The results of
two supervised models (Goldwasser and Roth, 2008b) are also
included here. Note that our unsupervised model with all con-
straints is competitive to the supervised model with 250 labeled
examples. See the text for more comparisons and details.

hinge loss as our loss function and fixed the regular-
ization parameter C to be 0.5.

5.2 Datasets
We experimented using three different target lan-
guages Russian, Chinese, and Hebrew. We used En-
glish as the source language in all these experiments.

The Russian data set2, originally introduced in
(Klementiev and Roth, 2006b), is comprised of tem-
porally aligned news articles. The dataset contains
727 single word English NEs with a correspond-
ing set of 50,648 potential Russian candidate words
which include not only name entities, but also other
words appearing in the news articles.

The Chinese dataset is taken directly from an
English-Chinese transliteration dictionary, derived
from LDC Gigaword corpus3. The entire dictionary
consists of 74,396 pairs of English-Chinese NEs,
where Chinese NEs are written in Pinyin, a roman-
ized spelling system of Chinese. In (Tao et al., 2006)
a dataset which contains about 600 English NEs and
700 Chinese candidates is used. Since the dataset
is not publicly available, we created a dataset in a
similar way. We randomly selected approximately
600 NE pairs and then added about 100 candidates
which do not correspond to any of the English NE

2The corpus is available http://L2R.cs.uiuc.edu/∼cogcomp.
3http://www.ldc.upenn.edu
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Language UCDL Prev. works
Rus. (ACC) 73 63 (41) (KR’06)
Heb. (MRR) 0.899 0.894 (GR’08)

Table 2: Comparison to previously published results. UCDL
is our method, KR’06 is described in (Klementiev and Roth,
2006b) and GR’08 in (Goldwasser and Roth, 2008b). Note that
our results for Hebrew are comparable with a supervised sys-
tem.

previously selected.
The Hebrew dataset, originally introduced in

(Goldwasser and Roth, 2008a), consists of 300
English-Hebrew pairs extracted from Wikipedia.

5.3 Results
We begin by comparing our model to previously
published models tested over the same data, in two
different languages, Russian and Hebrew. For Rus-
sian, we compare to the model presented in (Kle-
mentiev and Roth, 2006b), a weakly supervised al-
gorithm that uses both phonetic information and
temporal information. The model is bootstrapped
using a set of 20 labeled examples. In their setting
the candidates are ranked by combining two scores,
one obtained using the transliteration model and a
second by comparing the relative occurrence fre-
quency of terms over time in both languages. Due
to computational tractability reasons we slightly
changed Algorithm 1 to use only a small subset of
the possible negative examples.

For Hebrew, we compare to the model presented
in (Goldwasser and Roth, 2008b), a supervised
model trained using 250 labeled examples. This
model uses a bigram model to represent the translit-
eration samples (i.e., features are generated by pair-
ing character unigrams and bigrams). The model
also uses constraints to restrict the feature extrac-
tion process, which are equivalent to the coverage
constraint we described in Sec. 3.2.

The results of these experiments are reported us-
ing the evaluation measures used in the original pa-
pers and are summarized in Table 2. The results
show a significant improvement over the Russian
data set and comparable performance to the super-
vised method used for Hebrew.

Figure 2 describes the learning curve of our
method over the Russian dataset. We compared our
algorithm to two models described in (Klementiev

and Roth, 2006b) - one uses only phonetic simi-
larity and the second also considers temporal co-
occurrence similarity when ranking the translitera-
tion candidates. Both models converge after 50 it-
erations. When comparing our model to their mod-
els, we found that even though our model ignores
the temporal information it achieves better results
and converges after fewer iterations. Their results
report a significant improvement when using tempo-
ral information - improving an ACC score of 41%
without temporal information to 63% when using
it. Since the temporal information is orthogonal to
the transliteration model, our model should similarly
benefit from incorporating the temporal information.

Figure 3 compares the learning curve of our
method to an existing supervised method over the
Hebrew data and shows we get comparable results.

Unfortunately, we could not find a published Chi-
nese dataset. However, our system achieved similar
results to other systems, over a different dataset with
similar number of training examples. For example,
(Sproat et al., 2006) presents a supervised system
that achieves a MRR score of 0.89, when evaluated
over a dataset consisting of 400 English NE and 627
Chinese words. Our results for a different dataset of
similar size are reported in Table 3.

5.4 Analysis
The resources used in our framework consist of
- a romanization table, general and language spe-
cific transliteration constraints. To reveal the impact
of each component we experimented with different
combination of the components, resulting in three
different testing configurations.
Romanization Table: We initialized the weight
vector using a romanization table and did not use any
constraints. To generate features we use a modified
version of our AF operator (see Sec. 3), which gen-
erates features by coupling characters in close posi-
tions in the source and target words. This configura-
tion is equivalent to the model used in (Klementiev
and Roth, 2006b).
+General Constraints: This configuration uses the
romanization table for initializing the weight vector
and general transliteration constraints (see Sec. 3.2)
for feature extraction.
+All Constraints: This configuration uses lan-
guage specific constraints in addition to the gen-
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Settings Chinese Russian Hebrew
Romanization table 0.019 (0.5) 0.034 (1.0) 0.046 (1.7)
Romanization table +learning 0.020 (0.3) 0.048 (1.3) 0.028 (0.7)
+Gen Constraints 0.746 (67.1) 0.809 (74.3) 0.533 (45.0)
+Gen Constraints +learning 0.867 (82.2) 0.906 (86.7) 0.834 (76.0)
+All Constraints 0.801 (73.4) 0.849 (79.3) 0.743 (66.0)
+All Constraints +learning 0.889 (84.7) 0.931 (90.0) 0.899 (85.0)

Table 3: Results of an ablation study of unsupervised method for three target languages. Results for ACC are inside parentheses,
and for MRR outside. When the learning algorithm is used, the results after 20 rounds of constraint driven learning are reported.
Note that using linguistic constraints has a significant impact in the English-Hebrew experiments. Our results show that a small
amount of constraints can go a long way, and better constraints lead to better learning performance.

eral transliteration constraints to generate the feature
representation. (see Sec. 4).
+Learning: Indicates that after initializing the
weight vector, we update the weight using Algo-
rithm 1. In all of the experiments, we report the
results after 20 training iterations.

The results are summarized in Table 3. Due to the
size of the Russian dataset, we used a subset consist-
ing of 300 English NEs and their matching Russian
transliterations for the analysis presented here. Af-
ter observing the results, we discovered the follow-
ing regularities for all three languages. Using the
romanization table directly without constraints re-
sults in very poor performance, even after learning.
This can be used as an indication of the difficulty of
the transliteration problem and the difficulties ear-
lier works have had when using only romanization
tables, however, when used in conjunction with con-
straints results improve dramatically. For example,
in the English-Chinese data set, we improve MRR
from 0.02 to 0.746 and for the English-Russian data
set we improve 0.03 to 0.8. Interestingly, the results
for the English-Hebrew data set are lower than for
other languages - we achieve 0.53 MRR in this set-
ting. We attribute the difference to the quality of
the mapping in the romanization table for that lan-
guage. Indeed, the weights learned after 20 train-
ing iterations improve the results to 0.83. This im-
provement is consistent across all languages, after
learning we are able to achieve a MRR score of 0.87
for the English-Chinese data set and 0.91 for the
English-Russian data set. These results show that
romanization table contains enough information to
bootstrap the model when used in conjunction with
constraints. We are able to achieve results compa-

rable to supervised methods that use a similar set of
constraints and labeled examples.

Bootstrapping the weight vector using language
specific constraints can further improve the results.
They provide several advantages: a better starting
point, an improved learning rate and a better final
model. This is clear in all three languages, for exam-
ple results for the Russian and Chinese bootstrapped
models improve by 5%, and by over 20% for He-
brew. After training the difference is smaller- only
3% for the first two and 6% for Hebrew. Figure 3 de-
scribes the learning curve for models with and with-
out language specific constraints for the English-
Hebrew data set, it can be observed that using these
constraints the model converges faster and achieves
better results.

6 Conclusion

In this paper we develop a constraints driven ap-
proach to named entity transliteration. In doing it
we show that romanization tables are a very useful
resource for transliteration discovery if proper con-
straints are included. Our framework does not need
labeled data and does not assume that bilingual cor-
pus are temporally aligned. Even without using any
labeled data, our model is competitive to existing
supervised models and outperforms existing weakly
supervised models.
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