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Abstract 

In this paper, we propose a method for learn-
ing reordering model for BTG-based statisti-
cal machine translation (SMT). The model 
focuses on linguistic features from bilingual 
phrases. Our method involves extracting reor-
dering examples as well as features such as 
part-of-speech and word class from aligned 
parallel sentences. The features are classified 
with special considerations of phrase lengths. 
We then use these features to train the maxi-
mum entropy (ME) reordering model. With 
the model, we performed Chinese-to-English 
translation tasks. Experimental results show 
that our bilingual linguistic model outper-
forms the state-of-the-art phrase-based and 
BTG-based SMT systems by improvements of 
2.41 and 1.31 BLEU points respectively. 

1 Introduction 

Bracketing Transduction Grammar (BTG) is a spe-
cial case of Synchronous Context Free Grammar 
(SCFG), with binary branching rules that are either 
straight or inverted. BTG is widely adopted in 
SMT systems, because of its good trade-off be-
tween efficiency and expressiveness (Wu, 1996). 
In BTG, the ratio of legal alignments and all possi-
ble alignment in a translation pair drops drastically 
especially for long sentences, yet it still covers 
most of the syntactic diversities between two lan-
guages. 

It is common to utilize phrase translation in 
BTG systems. For example in (Xiong et al., 2006), 
source sentences are segmented into phrases. Each 

sequences of consecutive phrases, mapping to cells 
in a CKY matrix, are then translated through a bi-
lingual phrase table and scored as implemented in 
(Koehn et al., 2005; Chiang, 2005). In other words, 
their system shares the same phrase table with 
standard phrase-based SMT systems.  

 
 3 年 前   3 年 後  

three   after  2A  

years
1A

  three   

ago  2A  years 1A  
  

(a) (b) 

Figure 1: Two reordering examples, with straight 
rule applied in (a), and inverted rule in (b). 

 
 

On the other hand, there are various proposed 
BTG reordering models to predict correct orienta-
tions between neighboring blocks (bilingual 
phrases). In Figure 1, for example, the role of reor-
dering model is to predict correct orientations of 
neighboring blocks A1 and A2. In flat model (Wu, 
1996; Zens et al., 2004; Kumar and Byrne, 2005), 
reordering probabilities are assigned uniformly 
during decoding, and can be tuned depending on 
different language pairs. It is clear, however, that 
this kind of model would suffer when the dominant 
rule is wrongly applied. 

Predicting orientations in BTG depending on 
context information can be achieved with lexical 
features. For example, Xiong et al. (2006) pro-
posed MEBTG, based on maximum entropy (ME) 
classification with words as features. In MEBTG, 
first words of blocks are considered as the fea-
tures, which are then used to train a ME model 
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for predicting orientations of neighboring blocks. 
Xiong et al. (2008b) proposed a linguistically an-
notated BTG (LABTG), in which linguistic fea-
tures such as POS and syntactic labels from 
source-side parse trees are used. Both MEBTG 
and LABTG achieved significant improvements 
over phrase-based Pharaoh (Koehn, 2004) and 
Moses (Koehn et al., 2007) respectively, on Chi-
nese-to-English translation tasks. 

 
 該    項   計劃 

Nes  Nf    Nv 
的   詳情 
DE   Na 

the  details  of 
   14      49     50 

 
2A  

the  plan 
   14    18 1A   

Figure 2: An inversion reordering example, with 
POS below source words, and class numbers below 
target words. 
 
 

However, current BTG-based reordering meth-
ods have been limited by the features used.  Infor-
mation might not be sufficient or representative, if 
only the first (or tail) words are used as features. 
For example, in Figure 2, consider target first-word 
features extracted from an inverted reordering ex-
ample (Xiong et al., 2006) in MEBTG, in which 
first words on two blocks are both "the". This kind 
of feature set is too common and not representative 
enough to predict the correct orientation. Intui-
tively, one solution is to extend the feature set by 
considering both boundary words, forming a more 
complete boundary description. However, this 
method is still based on lexicalized features, which 
causes data sparseness problem and fails to gener-
alize. In Figure 2, for example, the orientation 
should basically be the same, when the 
source/target words "計畫/plan" from block A1 is 
replaced by other similar nouns and translations 
(e.g. "plans", "events" or "meetings"). However, 
such features would be treated as unseen by the 
current ME model, since the training data can not 
possibly cover all such similar cases. 

In this paper we present an improved reorder-
ing model based on BTG, with bilingual linguistic 
features from neighboring blocks. To avoid data 
sparseness problem, both source and target words 
are classified; we perform part-of-speech (POS) 
tagging on source language, and word classifica-

tion on target one, as shown in Figure 2. Addition-
ally, features are extracted and classified 
depending on lengths of blocks in order to obtain a 
more informed model. 

The rest of this paper is organized as follows. 
Section 2 reviews the related work. Section 3 de-
scribes the model used in our BTG-based SMT 
systems. Section 4 formally describes our bilingual 
linguistic reordering model. Section 5 and Section 
6 explain the implementation of our systems. We 
show the experimental results in Section 7 and 
make the conclusion in Section 8. 

2 Related Work 

In statistical machine translation, reordering model 
is concerned with predicting correct orders of tar-
get language sentence given a source language one 
and translation pairs. For example, in phrase-based 
SMT systems (Koehn et al., 2003; Koehn, 2004), 
distortion model is used, in which reordering prob-
abilities depend on relative positions of target side 
phrases between adjacent blocks. However, distor-
tion model can not model long-distance reordering, 
due to the lack of context information, thus is diffi-
cult to predict correct orders under different cir-
cumstances. Therefore, while phrase-based SMT 
moves from words to phrases as the basic unit of 
translation, implying effective local reordering 
within phrases, it suffers when determining phrase 
reordering, especially when phrases are longer than 
three words (Koehn et al., 2003). 

There have been much effort made to improve 
reordering model in SMT. For example, research-
ers have been studying CKY parsing over the last 
decade, which considers translations and orienta-
tions of two neighboring block according to 
grammar rules or context information. In hierar-
chical phrase-based systems (Chiang, 2005), for 
example, SCFG rules are automatically learned 
from aligned bilingual corpus, and are applied in 
CKY style decoding. 

As an another application of CKY parsing tech-
nique is BTG-based SMT. Xiong et al. (2006) and 
Xiong et al. (2008a) developed MEBTG systems, 
in which first or tail words from reordering exam-
ples are used as features to train ME-based reorder-
ing models. 

Similarly, Zhang et al. (2007) proposed a model 
similar to BTG, which uses first/tail words of 
phrases, and syntactic labels (e.g. NP and VP) 
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from source parse trees as features. In their work, 
however, inverted rules are allowed to apply only 
when source phrases are syntactic; for non-
syntactic ones, blocks are combined straight with a 
constant score.  

More recently, Xiong et al. (2008b) proposed 
LABTG, which incorporates linguistic knowledge 
by adding features such as syntactic labels and 
POS from source trees to improve their MEBTG. 
Different from Zhang's work, their model do not 
restrict non-syntactic phrases, and applies inverted 
rules on any pair of neighboring blocks. 

Although POS information is used in LABTG 
and Zhang's work, their models are syntax-oriented, 
since they focus on syntactic labels. Boundary POS 
is considered in LABTG only when source phrases 
are not syntactic phrases. 

In contrast to the previous works, we present a 
reordering model for BTG that uses bilingual in-
formation including class-level features of POS 
and word classes. Moreover, our model is dedi-
cated to boundary features and considers different 
combinations of phrase lengths, rather than only 
first/tail words. In addition, current state-of-the-art 
Chinese parsers, including the one used in LABTG 
(Xiong et al., 2005), lag beyond in inaccuracy, 
compared with English parsers (Klein and Man-
ning, 2003; Petrov and Klein 2007). In our work, 
we only use more reliable information such as 
Chinese word segmentation and POS tagging (Ma 
and Chen, 2003). 

3 The Model 

Following Wu (1996) and Xiong et al. (2006), we 
implement BTG-based SMT as our system, in 
which three rules are applied during decoding: 

 
 21 AAA     (1) 

21 AAA     (2) 

yxA /    (3) 

 
where A1 and A2 are blocks in source order. Straight 
rule (1) and inverted rule (2) are reordering rules. 
They are applied for predicting target-side order 
when combining two blocks, and form the reorder-
ing model with the distributions 
 

reoorderAA )(P ,,reo 21  

 
where order {straight, inverted}. 

In MEBTG, a ME reordering model is trained 
using features extracted from reordering examples 
of aligned parallel corpus. First words on neighbor-
ing blocks are used as features. In reordering ex-
ample (a), for example, the feature set is 
 
{"S1L=three", "S2L=ago", "T1L=3", "T2L=前"} 

 
where "S1" and "T1" denote source and target 
phrases from the block A1. 

Rule (3) is lexical translation rule, which trans-
lates source phrase x into target phrase y. We use 
the same feature functions as typical phrase-based 
SMT systems (Koehn et al., 2005): 
 

654

321

ee)|(

)|()|()|()|(Ptrans





y
lw

lw

xyp

yxpxypyxpyx




 

 

where 43 )|()|(  xypyxp lwlw  , 5e and 
6e y
 

are lexical translation probabilities in both direc-
tions, phrase penalty and word penalty. 

During decoding, the blocks are produced by 
applying either one of two reordering rules on two 
smaller blocks, or applying lexical rule (3) on 
some source phrase. Therefore, the score of a block 
A is defined as 
 

reolm orderAAAA

AAA
 ),,(P),(P

)P()P()P(

reo21lm

21

21


 

 
or 
 

)|(P)(P)P( translm yxAA lm    

 

where lmA )(Plm  and lmAA ),(P 21lm  are respec-
tively the usual and incremental score of language 
model. 

To tune all lambda weights above, we perform 
minimum error rate training (Och, 2003) on the 
development set described in Section 7. 

Let B be the set of all blocks with source side 
sentence C. Then the best translation of C is the 

target side of the block A , where 
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)P(argmaxA A
BA

  

4 Bilingual Linguistic Model 

In this section, we formally describe the problem 
we want to address and the proposed method. 

4.1 Problem Statement 

We focus on extracting features representative of 
the two neighboring blocks being considered for 
reordering by the decoder, as described in Section 
3. We define S(A) and T(A) as the information on 
source and target side of a block A. For two 
neighboring blocks A1 and A2, the set of features 
extracted from information of them is denoted as 
feature set function F(S(A1), S(A2), T(A1), S(A2)). In 
Figure 1 (b), for example, S(A1) and T(A1) are sim-
ply the both sides sentences "3 年 " and "three 
years", and F(S(A1), S(A2), T(A1), S(A2)) is 
 
{"S1L=three", "S2L=after", "T1L=3", "T2L=後"} 

 
where "S1L" denotes the first source word on the 
block A1, and "T2L" denotes the first target word 
on the block A2. 

Given the adjacent blocks A1 and A2, our goal 
includes (1) adding more linguistic and representa-
tive information to A1 and A2 and (2) finding a fea-
ture set function F' based on added linguistic 
information in order to train a more linguistically 
motivated and effective model. 

4.2 Word Classification 

As described in Section 1, designing a more com-
plete feature set causes data sparseness problem, if 
we use lexical features. One natural solution is us-
ing POS and word class features.  

In our model, we perform Chinese POS tagging 
on source language. In Xiong et al. (2008b) and 
Zhang et al. (2007), Chinese parsers with Penn 
Chinese Treebank (Xue et al., 2005) style are used 
to derive source parse trees, from which source-
side features such as POS are extracted. However, 
due to the relatively low accuracy of current Chi-
nese parsers compared with English ones, we in-
stead use CKIP Chinese word segmentation system 
(Ma and Chen, 2003) in order to derive Chinese 
tags with high accuracy. Moreover, compared with 
the Treebank Chinese tagset, the CKIP tagset pro-

vides more fine-grained tags, including many tags 
with semantic information (e.g., Nc for place 
nouns, Nd for time nouns), and verb transitivity 
and subcategorization (e.g., VA for intransitive 
verbs, VC for transitive verbs, VK for verbs that 
take a clause as object). 

On the other hand, using the POS features in 
combination with the lexical features in target lan-
guage will cause another sparseness problem in the 
phrase table, since one source phrase would map to 
multiple target ones with different POS sequences. 

As an alternative, we use mkcls toolkit (Och, 
1999), which uses maximum-likelihood principle 
to perform classification on target side. After clas-
sification, the toolkit produces a many-to-one 
mapping between English tokens and class num-
bers. Therefore, there is no ambiguity of word 
class in target phrases and word class features can 
be used independently to avoid data sparseness 
problem and the phrase table remains unchanged. 

As mentioned in Section 1, features based on 
words are not representative enough in some cases, 
and tend to cause sparseness problem. By classify-
ing words we are able to linguistically generalize 
the features, and hence predict the rules more 
robustly. In Figure 2, for example, the target words 
are converted to corresponding classes, and form 
the more complete boundary feature set 

 
{"T1L=14", "T1R=18", "T2L=14", "T2R=50"}  (4) 

 
In the feature set (4), #14 is the class containing 
"the", #18 is the class containing "plans", and #50 
is the class containing "of." Note that we add last-
word features "T1R=18" and "T2R=50". As men-
tioned in Section 1, the word "plan" from block A1 

is replaceable with similar nouns. This extends to 
other nominal word classes to realize the general 
rule of inverting "the ... NOUN" and "the ... of". 

It is hard to achieve this kind of generality using 
only lexicalized feature. With word classification, 
we gather feature sets with similar concepts from 
the training data. Table 1 shows the word classes 
can be used effectively to cope with data sparse-
ness. For example, the feature set (4) occurs 309 
times in our training data, and only 2 of them are 
straight, with the remaining 307 inverted examples, 
implying that similar features based on word 
classes lead to similar orientation. Additional ex-
amples of similar feature sets with different word 
classes are shown in Table 1. 
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class X T1R = X    straight/inverted
9 graph, government 2/488 

18 plans, events 2/307 
20 bikes, motors 0/694 
48 day, month, year 4/510 

Table 1: List of feature sets in the form of 
{"T1L=14", "T1R=X", "T2L=14", "T2R=50"}. 
 

4.3 Feature with Length Consideration 

Boundary features using both the first and last 
words provide more detailed descriptions of 
neighboring blocks. However, we should take the 
special case blocks with length 1 into consideration. 
For example, consider two features sets from 
straight and inverted reordering examples (a) and 
(b) in Figure 3. There are two identical source fea-
tures in both feature set, since first words on block 
A1 and last words on block A2 are the same: 
 
{"S1L=P","S2R=Na"}F(S(A1),S(A2),T(A1), S(A2)) 
 
Therefore, without distinguishing the special case, 
the features would represent quite different cases 
with the same feature, possibly leading to failure to 
predict orientations of two blocks.  

We propose a method to alleviate the problem of 
features with considerations of lengths of two ad-
jacent phrases by classifying both the both source 
and target phrase pairs into one of four classes: M, 
L, R and B, corresponding to different combina-
tions of phrase lengths. 

Suppose we are given two neighboring blocks 
A1 and A2, with source phrases P1 and P2 respec-
tively. Then the feature set from source side is 
classified into one of the classes as follows. We 
give examples of feature set for each class accord-
ing to Figure 4. 
 

 
基於 

P 
這些 原因 
Neqa  Na 

  
在 約旦 
P    Nc 

舉行 會議

VC    Na

 hold 
meeting  2A  

for 1A   
 

these 
reasons  2A   

in 
jordan 1A   

(a) (b) 

Figure 3: Two reordering examples with ambigu-
ous features on source side. 
 

A1 A2  A1  A2 
我 
Nh 

認為 
VE 

 基於 
P 

 這些  原因 
    Neqa    Na 

I think  for  these  reasons

              (a)                                     (b) 
M class                             L class 

 
A1 A2  A1  A2 

技術  和 
Na  Caa 

設備 
Na 

 在  約旦 
P     Nc 

 舉行  會議

      VC      Na
technology and equipment in  Jordan  hold  meeting

                (c)                                        (d) 
              R class                                 B class 

Figure 4:   Examples of different length combina-
tions, mapping to four classes. 

 
 
1. M class. The lengths of P1 and P2 are both 1. In 

Figure 4 (a), for example, the feature set is 
 

{"M1=Nh", "M2=VE"} 
 
2. L class. The length of P1 is 1, and the length of 

P2 is greater than 1. In Figure 4 (b), for exam-
ple, the feature set is 

 
{"L1=P", "L2=Neqa", "L3=Na"} 

 
3. R class. The length of P1 is greater than 1, and 

the length of P2 is 1. In Figure 4 (c), for exam-
ple, the feature set is 

 
{"R1=Na", "R2=Caa", "R3=Na"} 

 
4. B class. The lengths of P1 and P2 are both 

greater than 1. In Figure 4 (d), for example, the 
feature set is 

 
{"B1=P", "B2=Nc", "B3=VC", "B4=Na"} 

 
We use the same scheme to classify the two tar-

get phrases. Since both source and target words are 
classified as described in Section 4.2, the feature 
sets are more representative and tend to lead to 
consistent prediction of orientation. Additionally, 
the length-based features are easy to fit into mem-
ory, in contrast to lexical features in MEBTG. 

To summarize, we extract features based on 
word lengths, target-language word classes, and 
fine-grained, semantic oriented parts of speech. To 
illustrate, we use the neighboring blocks from Fig-
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ure 2 to show an example of complete bilingual 
linguistic feature set: 
 
{"S.B1=Nes", "S.B2=Nv", "S.B3=DE", 
"S.B4=Na", "T.B1=14", "T.B2=18", "T.B3=14", 
"T.B4=50"} 
 
where "S." and "T." denote source and target sides. 

In the next section, we describe the process of 
preparing the feature data and training an ME 
model. In Section 7, we perform evaluations of this 
ME-based reordering model against standard 
phrase-based SMT and previous work based on 
ME and BTG. 

5 Training 

In order to train the translation and reordering 
model, we first set up Moses SMT system (Koehn 
et al., 2007). We obtain aligned parallel sentences 
and the phrase table after the training of Moses, 
which includes running GIZA++ (Och and Ney, 
2003), grow-diagonal-final symmetrization and 
phrase extraction (Koehn et al., 2005). Our system 
shares the same translation model with Moses, 
since we directly use the phrase table to apply 
translation rules (3). 

On the other side, we use the aligned parallel 
sentences to train our reordering model, which in-
cludes classifying words, extracting bilingual 
phrase samples with orientation information, and 
training an ME model for predicting orientation. 

To perform word classification, the source sen-
tences are tagged and segmented before the Moses 
training. As for target side, we ran the Moses 
scripts to classify target language words using the 
mkcls toolkit before running GIZA++. Therefore, 
we directly use its classification result, which gen-
erate 50 classes with 2 optimization runs on the 
target sentences. 

To extract the reordering examples, we choose 
sentence pairs with top 50% alignment scores pro-
vided by GIZA++, in order to fit into memory. 
Then the extraction is performed on these aligned 
sentence pairs, together with POS tags and word 
classes, using basically the algorithm presented in 
Xiong et al. (2006). However, we enumerate all 
reordering examples, rather than only extract the 
smallest straight and largest inverted examples. 
Finally, we use the toolkit by Zhang (2004) to train 
the ME model with extracted reordering examples. 

6 Decoding 

We develop a bottom-up CKY style decoder in our 
system, similar to Chiang (2005). For a Chinese 
sentence C, the decoder finds its best translation on 
the block with entire C on source side. The decoder 
first applies translation rules (3) on cells in a CKY 
matrix. Each cell denotes a sequence of source 
phrases, and contains all of the blocks with possi-
ble translations. The longest length of source 
phrase to be applied translations rules is restricted 
to 7 words, in accordance with the default settings 
of Moses training scripts. 

To reduce the search space, we apply threshold 
pruning and histogram pruning, in which the block 
scoring worse than 10-2 times the best block in the 
same cell or scoring worse than top 40 highest 
scores would be pruned. These pruning techniques 
are common in SMT systems. We also apply re-
combination, which distinguish blocks in a cell 
only by 3 leftmost and rightmost target words, as 
suggested in (Xiong et al., 2006). 

7 Experiments and Results 

We perform Chinese-to-English translation task 
on NIST MT-06 test set, and use Moses and 
MEBTG as our competitors.  

The bilingual training data containing 2.2M sen-
tences pairs from Hong Kong Parallel Text 
(LDC2004T08) and Xinhua News Agency 
(LDC2007T09), with length shorter than 60, is 
used to train the translation and reordering model. 
The source sentences are tagged and segmented 
with CKIP Chinese word segmentation system (Ma 
and Chen, 2003). 

About 35M reordering examples are extracted 
from top 1.1M sentence pairs with higher align-
ment scores. We generate 171K features for lexi-
calized model used in MEBTG system, and 1.41K 
features for our proposed reordering model. 

For our language model, we use Xinhua news 
from English Gigaword Third Edition 
(LDC2007T07) to build a trigram model with 
SRILM toolkit (Stolcke, 2002). 

Our development set for running minimum error 
rate training is NIST MT-08 test set, with sentence 
lengths no more than 20. We report the experimen-
tal results on NIST MT-06 test set. Our evaluation 
metric is BLEU (Papineni et al., 2002) with case-
insensitive matching from unigram to four-gram. 
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System BLEU-4 
Moses(distortion) 22.55 
Moses(lexicalized) 23.42 
MEBTG 23.65 
WC+LC 24.96 

Table 2: Performances of various systems. 
 
 

The overall result of our experiment is shown in 
Table 2. The lexicalized MEBTG system proposed 
by Xiong et al. (2006) uses first words on adjacent 
blocks as lexical features, and outperforms phrase-
based Moses with default distortion model and en-
hanced lexicalized model, by 1.1 and 0.23 BLEU 
points respectively. This suggests lexicalized 
Moses and MEBTG with context information out-
performs distance-based distortion model. Besides, 
MEBTG with structure constraints has better 
global reordering estimation than unstructured 
Moses, while incorporating their local reordering 
ability by using phrase tables.  

The proposed reordering model trained with 
word classification (WC) and length consideration 
(LC) described in Section 4 outperforms MEBTG 
by 1.31 point. This suggests our proposed model 
not only reduces the model size by using 1% fewer 
features than MEBTG, but also improves the trans-
lation quality. 

We also evaluate the impacts of WC and LC 
separately and show the results in Table 3-5. Table 
3 shows the result of MEBTG with word classified 
features. While classified MEBTG only improves 
0.14 points over original lexicalized one, it drasti-
cally reduces the feature size. This implies WC 
alleviates data sparseness by generalizing the ob-
served features. 

Table 4 compares different length considerations, 
including boundary model demonstrated in Section 
4.2, and the proposed LC in Section 4.3. Although 
boundary model describes features better than us-
ing only first words, which we will show later, it 
suffers from data sparseness with twice feature size 
of MEBTG. The LC model has the largest feature 
size but performs best among three systems, sug-
gesting the effectiveness of our LC. 

In Table 5 we show the impacts of WC and LC 
together. Note that all the systems with WC sig-
nificantly reduce the size of features compared to 
lexicalized ones. 
 

System Feature size BLEU-4
MEBTG 171K 23.65 
WC+MEBTG 0.24K 23.79 

Table 3: Performances of lexicalized and word 
classified MEBTG. 
 
 

System Feature size BLEU-4
MEBTG 171K 23.65 
Boundary 349K 23.42 
LC 780K 23.86 

Table 4: Performances of BTG systems with dif-
ferent representativeness. 
 
 

System Feature size BLEU-4
MEBTG 171K 23.65 
WC+MEBTG 0.24K 23.79 
WC+Bounary 0.48K 24.29 
WC+LC 1.41K 24.96 

Table 5: Different representativeness with word 
classification. 
 
 
While boundary model is worse than first-word 
MEBTG in Table 4, it outperforms the latter when 
both are performed WC. We obtain the best result 
that outperforms the baseline MEBTG by more 
than 1 point when we apply WC and LC together.  

Our experimental results show that we are able 
to ameliorate the sparseness problem by classifying 
words, and produce more representative features 
by considering phrase length. Moreover, they are 
both important, in that we are unable to outperform 
our competitors by a large margin unless we com-
bine both WC and LC. In conclusion, while de-
signing more representative features of reordering 
model in SMT, we have to find solutions to gener-
alize them. 

8 Conclusion and Future Works 

We have proposed a bilingual linguistic reordering 
model to improve current BTG-based SMT sys-
tems, based on two drawbacks of previously pro-
posed reordering model, which are sparseness and 
representative problem. 

First, to solve the sparseness problem in previ-
ously proposed lexicalized model, we perform 
word classification on both sides. 
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Secondly, we present a more representative fea-
ture extraction method. This involves considering 
length combinations of adjacent phrases. 

The experimental results of Chinese-to-English 
task show that our model outperforms baseline 
phrase-based and BTG systems. 

We will investigate more linguistic ways to clas-
sify words in future work, especially on target lan-
guage. For example, using word hierarchical 
structures in WordNet (Fellbaum, 1998) system 
provides more linguistic and semantic information 
than statistically-motivated classification tools. 
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