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Abstract

Morphological segmentation breaks words
into morphemes (the basic semantic units). It
is a key component for natural language pro-
cessing systems. Unsupervised morphologi-
cal segmentation is attractive, because in ev-
ery language there are virtually unlimited sup-
plies of text, but very few labeled resources.
However, most existing model-based systems
for unsupervised morphological segmentation
use directed generative models, making it dif-
ficult to leverage arbitrary overlapping fea-
tures that are potentially helpful to learning.
In this paper, we present the first log-linear
model for unsupervised morphological seg-
mentation. Our model uses overlapping fea-
tures such as morphemes and their contexts,
and incorporates exponential priors inspired
by the minimum description length (MDL)
principle. We present efficient algorithms
for learning and inference by combining con-
trastive estimation with sampling. Our sys-
tem, based on monolingual features only, out-
performs a state-of-the-art system by a large
margin, even when the latter uses bilingual in-
formation such as phrasal alignment and pho-
netic correspondence. On the Arabic Penn
Treebank, our system reduces F1 error by 11%
compared to Morfessor.

1 Introduction

The goal of morphological segmentation is to seg-
ment words intomorphemes, the basic syntac-
tic/semantic units. This is a key subtask in many

∗ This research was conducted during the author’s intern-
ship at Microsoft Research.

NLP applications, including machine translation,
speech recognition and question answering. Past
approaches include rule-based morphological an-
alyzers (Buckwalter, 2004) and supervised learn-
ing (Habash and Rambow, 2005). While successful,
these require deep language expertise and a long and
laborious process in system building or labeling.

Unsupervised approaches are attractive due to the
the availability of large quantities of unlabeled text,
and unsupervised morphological segmentation has
been extensively studied for a number of languages
(Brent et al., 1995; Goldsmith, 2001; Dasgupta and
Ng, 2007; Creutz and Lagus, 2007). The lack
of supervised labels makes it even more important
to leverage rich features and global dependencies.
However, existing systems use directed generative
models (Creutz and Lagus, 2007; Snyder and Barzi-
lay, 2008b), making it difficult to extend them with
arbitrary overlapping dependencies that are poten-
tially helpful to segmentation.

In this paper, we present the first log-linear model
for unsupervised morphological segmentation. Our
model incorporates simple priors inspired by the
minimum description length (MDL) principle, as
well as overlapping features such as morphemes and
their contexts (e.g., in Arabic, the stringAl is likely
a morpheme, as is any string betweenAl and a word
boundary). We develop efficient learning and infer-
ence algorithms using a novel combination of two
ideas from previous work on unsupervised learn-
ing with log-linear models: contrastive estimation
(Smith and Eisner, 2005) and sampling (Poon and
Domingos, 2008).

We focus on inflectional morphology and test our
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approach on datasets in Arabic and Hebrew. Our
system, using monolingual features only, outper-
forms Snyder & Barzilay (2008b) by a large mar-
gin, even when their system uses bilingual informa-
tion such as phrasal alignment and phonetic corre-
spondence. On the Arabic Penn Treebank, our sys-
tem reduces F1 error by 11% compared to Mor-
fessor Categories-MAP (Creutz and Lagus, 2007).
Our system can be readily applied to supervised
and semi-supervised learning. Using a fraction of
the labeled data, it already outperforms Snyder &
Barzilay’s supervised results (2008a), which further
demonstrates the benefit of using a log-linear model.

2 Related Work

There is a large body of work on the unsupervised
learning of morphology. In addition to morpholog-
ical segmentation, there has been work on unsuper-
vised morpheme analysis, where one needs to deter-
mine features of word forms (Kurimo et al., 2007)
or identify words with the same lemma by model-
ing stem changes (Schone and Jurafsky, 2001; Gold-
smith, 2001). However, we focus our review specif-
ically on morphological segmentation.

In the absence of labels, unsupervised learning
must incorporate a strong learning bias that reflects
prior knowledge about the task. In morphological
segmentation, an often-used bias is the minimum
description length (MDL) principle, which favors
compact representations of the lexicon and corpus
(Brent et al., 1995; Goldsmith, 2001; Creutz and La-
gus, 2007). Other approaches use statistics on mor-
pheme context, such as conditional entropy between
adjacentn-grams, to identify morpheme candidates
(Harris, 1955; Keshava and Pitler, 2006). In this pa-
per, we incorporate both intuitions into a simple yet
powerful model, and show that each contributes sig-
nificantly to performance.

Unsupervised morphological segmentation sys-
tems also differ from the engineering perspective.
Some adopt a pipeline approach (Schone and Ju-
rafsky, 2001; Dasgupta and Ng, 2007; Demberg,
2007), which works by first extracting candidate
affixes and stems, and then segmenting the words
based on the candidates. Others model segmenta-
tion using a joint probabilistic distribution (Goldwa-
ter et al., 2006; Creutz and Lagus, 2007; Snyder and

Barzilay, 2008b); they learn the model parameters
from unlabeled data and produce the most proba-
ble segmentation as the final output. The latter ap-
proach is arguably more appealing from the mod-
eling standpoint and avoids error propagation along
the pipeline. However, most existing systems use
directed generative models; Creutz & Lagus (2007)
used an HMM, while Goldwater et al. (2006) and
Snyder & Barzilay (2008b) used Bayesian models
based on Pitman-Yor or Dirichlet processes. These
models are difficult to extend with arbitrary overlap-
ping features that can help improve accuracy.

In this work we incorporate novel overlapping
contextual features and show that they greatly im-
prove performance. Non-overlapping contextual
features previously have been used in directed gen-
erative models (in the form of Markov models) for
unsupervised morphological segmentation (Creutz
and Lagus, 2007) or word segmentation (Goldwater
et al., 2007). In terms of feature sets, our model is
most closely related to the constituent-context model
proposed by Klein and Manning (2001) for grammar
induction. If we exclude the priors, our model can
also be seen as a semi-Markov conditional random
field (CRF) model (Sarawagi and Cohen, 2004).
Semi-Markov CRFs previously have been used for
supervised word segmentation (Andrew, 2006), but
not for unsupervised morphological segmentation.

Unsupervised learning with log-linear models has
received little attention in the past. Two notable ex-
ceptions are Smith & Eisner (2005) for POS tagging,
and Poon & Domingos (2008) for coreference res-
olution. Learning with log-linear models requires
computing the normalization constant (a.k.a. the
partition function)Z. This is already challenging in
supervised learning. In unsupervised learning, the
difficulty is further compounded by the absence of
supervised labels. Smith & Eisner (2005) proposed
contrastive estimation, which uses a small neighbor-
hood to computeZ. The neighborhood is carefully
designed so that it not only makes computation eas-
ier but also offers sufficient contrastive information
to aid unsupervised learning. Poon & Domingos
(2008), on the other hand, used sampling to approx-
imateZ.1 In this work, we benefit from both tech-
niques: contrastive estimation creates a manageable,

1Rosenfeld (1997) also did this for language modeling.
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Figure 1: The morpheme and context (in parentheses)
features for the segmented wordw-vlAv-wn.

informativeZ, while sampling enables the use of
powerful global features.

3 Log-Linear Model for Unsupervised
Morphological Segmentation

Central to our approach is a log-linear model that
defines the joint probability distribution for a cor-
pus (i.e., the words) and a segmentation on the cor-
pus. The core of this model is a morpheme-context
model, with one feature for each morpheme,2 and
one feature for each morpheme context. We rep-
resent contexts using then-grams before and after
the morpheme, for some constantn. To illustrate
this, a segmented Arabic corpus is shown below
along with its features, assuming we are tracking bi-
gram contexts. The segmentation is indicated with
hyphens, while the hash symbol (#) represents the
word boundary.
Segmented Corpus hnAk w-vlAv-wn bn-w

Al-ywm Al-jmAEp
Morpheme Feature:Value hnAk:1 w:2 vlAv:1

wn:1 bn:1 Al:2 ywm:1 jmAEp:1
hnAk:1 wvlAvwn:1 bnw:1 Alywm:1 Alj-
mAEp:1

Bigram Context Feature:Value ## vl:1
#w wn:1 Av ##:1 ##w#:1 bn##:1
## yw:1 Al ##:2 ##jm:1 ## ##:5

Furthermore, the corresponding features for the seg-
mented wordw-vlAv-wnare shown in Figure 1.

Each feature is associated with a weight, which
correlates with the likelihood that the correspond-
ing morpheme or context marks a valid morpholog-
ical segment. Such overlapping features allow us to
capture rich segmentation regularities. For example,
given the Arabic wordAlywm, to derive its correct
segmentationAl-ywm, it helps to know thatAl and
ywmare likely morphemes whereasAly or lyw are

2The word as a whole is also treated as a morpheme in itself.

not; it also helps to know thatAl ## or ## yw are
likely morpheme contexts whereasly ## or ## wm
are not. Ablation tests verify the importance of these
overlapping features (see Section 7.2).

Our morpheme-context model is inspired by
the constituent-context model (CCM) proposed by
Klein and Manning (2001) for grammar induction.
The morphological segmentation of a word can be
viewed as a flat tree, where the root node corre-
sponds to the word and the leaves correspond to
morphemes (see Figure 1). The CCM uses uni-
grams for context features. For this task, however,
we found that bigrams and trigrams lead to much
better accuracy. We use trigrams in our full model.

For learning, one can either view the corpus as
a collection of wordtypes(unique words) ortokens
(word occurrences). Some systems (e.g., Morfessor)
use token frequency for parameter estimation. Our
system, however, performs much better using word
types. This has also been observed for other mor-
phological learners (Goldwater et al., 2006). Thus
we use types in learning and inference, and effec-
tively enforce the constraint that words can have
only one segmentation per type. Evaluation is still
based on tokens to reflect the performance in real
applications.

In addition to the features of the morpheme-
context model, we incorporate two priors which cap-
ture additional intuitions about morphological seg-
mentations. First, we observe that the number of
distinct morphemes used to segment a corpus should
be small. This is achieved when the same mor-
phemes are re-used across many different words.
Our model incorporates this intuition by imposing
a lexicon prior : an exponential prior with nega-
tive weight on the length of the morpheme lexi-
con. We define the lexicon to be the set of unique
morphemes identified by a complete segmentation
of the corpus, and the lexicon length to be the to-
tal number of characters in the lexicon. In this
way, we can simultaneously emphasize that a lexi-
con should contain few unique morphemes, and that
those morphemes should be short. However, the lex-
icon prior alone incorrectly favors the trivial seg-
mentation that shatters each word into characters,
which results in the smallest lexicon possible (sin-
gle characters). Therefore, we also impose acorpus
prior : an exponential prior on the number of mor-
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phemes used to segment each word in the corpus,
which penalizes over-segmentation. We notice that
longer words tend to have more morphemes. There-
fore, each word’s contribution to this prior is nor-
malized by the word’s length in characters (e.g., the
segmented wordw-vlAv-wncontributes 3/7 to the to-
tal corpus size). Notice that it is straightforward to
incorporate such a prior in a log-linear model, but
much more challenging to do so in a directed gen-
erative model. These two priors are inspired by the
minimum description length (MDL) length princi-
ple; the lexicon prior favors fewer morpheme types,
whereas the corpus prior favors fewer morpheme to-
kens. They are vital to the success of our model,
providing it with the initial inductive bias.

We also notice that often a word is decomposed
into a stem and some prefixes and suffixes. This is
particularly true for languages with predominantly
inflectional morphology, such as Arabic, Hebrew,
and English. Thus our model uses separate lexicons
for prefixes, stems, and suffixes. This results in a
small but non-negligible accuracy gain in our exper-
iments. We require that a stem contain at least two
characters and no fewer characters than any affixes
in the same word.3 In a given word, when a mor-
pheme is identified as the stem, any preceding mor-
pheme is identified as a prefix, whereas any follow-
ing morpheme as a suffix. The sample segmented
corpus mentioned earlier induces the following lex-
icons:
Prefix w Al
Stem hnAk vlAv bn ywm jmAEp
Suffix wn w

Before presenting our formal model, we first in-
troduce some notation. LetW be a corpus (i.e., a set
of words), andS be a segmentation that breaks each
word inW into prefixes, a stem, and suffixes. Letσ
be a string (character sequence). Each occurrence of
σ will be in the form ofψ1σψ2, whereψ1, ψ2 are the
adjacent charactern-grams, andc = (ψ1, ψ2) is the
context ofσ in this occurrence. Thus a segmentation
can be viewed as a set of morpheme strings and their
contexts. For a stringx,L(x) denotes the number of
characters inx; for a wordw, MS(w) denotes the

3In a segmentation where several morphemes have the max-
imum length, any of them can be identified as the stem, each
resulting in a distinct segmentation.

number of morphemes inw given the segmentation
S; Pref(W,S), Stem(W,S), Suff(W,S) denote
the lexicons of prefixes, stems, and suffixes induced
by S for W . Then, our model defines a joint proba-
bility distribution over a restricted set ofW andS:

Pθ(W,S) =
1
Z
· uθ(W,S)

where

uθ(W,S) = exp(
∑

σ

λσfσ(S) +
∑

c

λcfc(S)

+ α ·
∑

σ∈Pref(W,S)

L(σ)

+ α ·
∑

σ∈Stem(W,S)

L(σ)

+ α ·
∑

σ∈Suff(W,S)

L(σ)

+ β ·
∑

w∈W

MS(w)/L(w) )

Here,fσ(S) andfc(S) are respectively the occur-
rence counts of morphemes and contexts underS,
and θ = (λσ, λc : σ, c) are their feature weights.
α, β are the weights for the priors.Z is the nor-
malization constant, which sums over a set of cor-
pora and segmentations. In the next section, we will
define this set for our model and show how to effi-
ciently perform learning and inference.

4 Unsupervised Learning

As mentioned in Smith & Eisner (2005), learning
with probabilistic models can be viewed as moving
probability mass to the observed data. The question
is from where to take this mass. For log-linear mod-
els, the answer amounts to defining the set thatZ
sums over. We use contrastive estimation and define
the set to be a neighborhood of the observed data.
The instances in the neighborhood can be viewed
as pseudo-negative examples, and learning seeks to
discriminate them from the observed instances.

Formally, letW ∗ be the observed corpus, and let
N(·) be a function that maps a string to a set of
strings; letN(W ∗) denote the set of all corpora that
can be derived fromW ∗ by replacing every word
w ∈W ∗ with one inN(w). Then,

Z =
∑

W∈N(W ∗)

∑

S

u(W,S).
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Unsupervised learning maximizes the log-likelihood
of observingW ∗

Lθ(W ∗) = log
∑

S

P (W ∗, S)

We use gradient descent for this optimization; the
partial derivatives for feature weights are

∂

∂λi
Lθ(W ∗) = ES|W ∗[fi]− ES,W [fi]

wherei is either a stringσ or a contextc. The first
expected count ranges over all possible segmenta-
tions while the words are fixed to those observed in
W ∗. For the second expected count, the words also
range over the neighborhood.

Smith & Eisner (2005) considered various neigh-
borhoods for unsupervised POS tagging, and
showed that the best neighborhoods areTRANS1
(transposing any pair of adjacent words) and
DELORTRANS1 (deleting any word or transposing
any pair of adjacent words). We can obtain their
counterparts for morphological segmentation by
simply replacing “words” with “characters”. As
mentioned earlier, the instances in the neighbor-
hood serve as pseudo-negative examples from which
probability mass can be taken away. In this regard,
DELORTRANS1 is suitable for POS tagging since
deleting a word often results in an ungrammatical
sentence. However, in morphology, a word less a
character is often a legitimate word too. For exam-
ple, deletingl from the Hebrew wordlyhwh (to the
lord) results inyhwh(the lord). ThusDELORTRANS1
forces legal words to compete against each other for
probability mass, which seems like a misguided ob-
jective. Therefore, in our model we useTRANS1. It
is suited for our task because transposing a pair of
adjacent characters usually results in a non-word.

To combat overfitting in learning, we impose a
Gaussian prior (L2 regularization) on all weights.

5 Supervised Learning

Our learning algorithm can be readily applied to su-
pervised or semi-supervised learning. Suppose that
gold segmentation is available for some words, de-
noted asS∗. If S∗ contains gold segmentations
for all words inW , we are doing supervised learn-
ing; otherwise, learning is semi-supervised. Train-

ing now maximizesLθ(W ∗, S∗); the partial deriva-
tives become

∂

∂λi
Lθ(W ∗, S∗) = ES|W ∗,S∗[fi]− ES,W [fi]

The only difference in comparison with unsuper-
vised learning is that we fix the known segmenta-
tion when computing the first expected counts. In
Section 7.3, we show that when labels are available,
our model also learns much more effectively than a
directed graphical model.

6 Inference

In Smith & Eisner (2005), the objects (sentences) are
independent from each other, and exact inference is
tractable. In our model, however, the lexicon prior
renders all objects (words) interdependent in terms
of segmentation decisions. Consider the simple cor-
pus with just two words:Alrb, lAlrb. If lAlrb is seg-
mented intol-Al-rb, Alrb can be segmented intoAl-
rb without paying the penalty imposed by the lexi-
con prior. If, however,lAlrb remains a single mor-
pheme, and we still segmentAlrb into Al-rb, then
we introduce two new morphemes into the lexicons,
and we will be penalized by the lexicon prior ac-
cordingly. As a result, we must segment the whole
corpus jointly, making exact inference intractable.
Therefore, we resort to approximate inference. To
computeES|W ∗[fi], we use Gibbs sampling. To de-
rive a sample, the procedure goes through each word
and samples the next segmentation conditioned on
the segmentation of all other words. Withm sam-
plesS1, · · · , Sm, the expected count can be approx-
imated as

ES|W ∗[fi] ≈
1
m

∑

j

fi(Sj)

There are2n−1 ways to segment a word ofn char-
acters. To sample a new segmentation for a partic-
ular word, we need to compute conditional proba-
bility for each of these segmentations. We currently
do this by explicit enumeration.4 Whenn is large,

4These segmentations could be enumerated implicitly us-
ing the dynamic programming framework employed by semi-
Markov CRFs (Sarawagi and Cohen, 2004). However, in such a
setting, our lexicon prior would likely need to be approximated.
We intend to investigate this in future work.
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this is very expensive. However, we observe that
the maximum number of morphemes that a word
contains is usually a small constant for many lan-
guages; in the Arabic Penn Treebank, the longest
word contains 14 characters, but the maximum num-
ber of morphemes in a word is only 5. Therefore,
we impose the constraint that a word can be seg-
mented into no more thank morphemes, wherek
is a language-specific constant. We can determine
k from prior knowledge or use a development set.
This constraint substantially reduces the number of
segmentation candidates to consider; withk = 5, it
reduces the number of segmentations to consider by
almost 90% for a word of 14 characters.
ES,W [fi] can be computed by Gibbs sampling in

the same way, except that in each step we also sam-
ple the next word from the neighborhood, in addition
to the next segmentation.

To compute the most probable segmentation, we
use deterministic annealing. It works just like a sam-
pling algorithm except that the weights are divided
by atemperature, which starts with a large value and
gradually drops to a value close to zero. To make
burn-in faster, when computing the expected counts,
we initialize the sampler with the most probable seg-
mentation output by annealing.

7 Experiments

We evaluated our system on two datasets. Our main
evaluation is on a multi-lingual dataset constructed
by Snyder & Barzilay (2008a; 2008b). It consists of
6192 short parallel phrases in Hebrew, Arabic, Ara-
maic (a dialect of Arabic), and English. The paral-
lel phrases were extracted from the Hebrew Bible
and its translations via word alignment and post-
processing. For Arabic, the gold segmentation was
obtained using a highly accurate Arabic morpholog-
ical analyzer (Habash and Rambow, 2005); for He-
brew, from a Bible edition distributed by Westmin-
ster Hebrew Institute (Groves and Lowery, 2006).
There is no gold segmentation for English and Ara-
maic. Like Snyder & Barzilay, we evaluate on the
Arabic and Hebrew portions only; unlike their ap-
proach, our system does not use any bilingual in-
formation. We refer to this dataset asS&B . We
also report our results on the Arabic Penn Treebank
(ATB ), which provides gold segmentations for an

Arabic corpus with about 120,000 Arabic words.
As in previous work, we report recall, precision,

and F1 over segmentation points. We used 500
phrases from the S&B dataset for feature develop-
ment, and also tuned our model hyperparameters
there. The weights for the lexicon and corpus pri-
ors were set toα = −1, β = −20. The feature
weights were initialized to zero and were penalized
by a Gaussian prior withσ2 = 100. The learning
rate was set to 0.02 for all experiments, except the
full Arabic Penn Treebank, for which it was set to
0.005.5 We used 30 iterations for learning. In each
iteration, 200 samples were collected to compute
each of the two expected counts. The sampler was
initialized by running annealing for 2000 samples,
with the temperature dropping from 10 to 0.1 at 0.1
decrements. The most probable segmentation was
obtained by running annealing for 10000 samples,
using the same temperature schedule. We restricted
the segmentation candidates to those with no greater
than five segments in all experiments.

7.1 Unsupervised Segmentation on S&B

We followed the experimental set-up of Snyder &
Barzilay (2008b) to enable a direct comparison. The
dataset is split into a training set with 4/5 of the
phrases, and a test set with the remaining 1/5. First,
we carried out unsupervised learning on the training
data, and computed the most probable segmentation
for it. Then we fixed the learned weights and the seg-
mentation for training, and computed the most prob-
able segmentation for the test set, on which we eval-
uated.6 Snyder & Barzilay (2008b) compared sev-
eral versions of their systems, differing in how much
bilingual information was used. Using monolingual
information only, their system (S&B-MONO) trails
the state-of-the-art system Morfessor; however, their
best system (S&B-BEST), which uses bilingual in-
formation that includes phrasal alignment and pho-
netic correspondence between Arabic and Hebrew,
outperforms Morfessor and achieves the state-of-
the-art results on this dataset.

5The ATB set is more than an order of magnitude larger and
requires a smaller rate.

6With unsupervised learning, we can use the entire dataset
for training since no labels are provided. However, this set-
up is necessary for S&B’s system because they used bilingual
information in training, which is not available at test time.
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ARABIC Prec. Rec. F1
S&B-MONO 53.0 78.5 63.2
S&B-BEST 67.8 77.3 72.2
FULL 76.0 80.2 78.1

HEBREW Prec. Rec. F1
S&B-MONO 55.8 64.4 59.8
S&B-BEST 64.9 62.9 63.9
FULL 67.6 66.1 66.9

Table 1: Comparison of segmentation results on the S&B
dataset.

Table 1 compares our system with theirs. Our sys-
tem outperforms both S&B-MONO and S&B-BEST
by a large margin. For example, on Arabic, our sys-
tem reduces F1 error by 21% compared to S&B-
BEST, and by 40% compared to S&B-MONO. This
suggests that the use of monolingual morpheme con-
text, enabled by our log-linear model, is more help-
ful than their bilingual cues.

7.2 Ablation Tests

To evaluate the contributions of the major compo-
nents in our model, we conducted seven ablation
tests on the S&B dataset, each using a model that
differed from our full model in one aspect. The first
three tests evaluate the effect of priors, whereas the
next three test the effect of context features. The
last evaluates the impact of using separate lexicons
for affixes and stems.

NO-PRIOR The priors are not used.
NO-COR-PR The corpus prior is not used.
NO-LEX-PR The lexicon prior is not used.
NO-CONTEXT Context features are not used.
UNIGRAM Unigrams are used in context.
BIGRAM Bigrams are used in context.
SG-LEXICON A single lexicon is used, rather than

three distinct ones for the affixes and stems.

Table 2 presents the ablation results in compari-
son with the results of the full model. When some or
all priors are excluded, the F1 score drops substan-
tially (over 10 points in all cases, and over 40 points
in some). In particular, excluding the corpus prior,
as in NO-PRIOR and NO-COR-PR, results in over-
segmentation, as is evident from the high recalls and
low precisions. When the corpus prior is enacted
but not the lexicon priors (NO-LEX-PR), precision

ARABIC Prec. Rec. F1
FULL 76.0 80.2 78.1
NO-PRIOR 24.6 89.3 38.6
NO-COR-PR 23.7 87.4 37.2
NO-LEX-PR 79.1 51.3 62.3
NO-CONTEXT 71.2 62.1 66.3
UNIGRAM 71.3 76.5 73.8
BIGRAM 73.1 78.4 75.7
SG-LEXICON 72.8 82.0 77.1

HEBREW Prec. Rec. F1
FULL 67.6 66.1 66.9
NO-PRIOR 34.0 89.9 49.4
NO-COR-PR 35.6 90.6 51.1
NO-LEX-PR 65.9 49.2 56.4
NO-CONTEXT 63.0 47.6 54.3
UNIGRAM 63.0 63.7 63.3
BIGRAM 69.5 66.1 67.8
SG-LEXICON 67.4 65.7 66.6

Table 2: Ablation test results on the S&B dataset.

is much higher, but recall is low; the system now errs
on under-segmentation because recurring strings are
often not identified as morphemes.

A large accuracy drop (over 10 points in F1
score) also occurs when the context features are
excluded (NO-CONTEXT), which underscores the
importance of these overlapping features. We also
notice that the NO-CONTEXT model is compara-
ble to the S&B-MONO model; they use the same
feature types, but different priors. The accuracies of
the two systems are comparable, which suggests that
we did not sacrifice accuracy by trading the more
complex and restrictive Dirichlet process prior for
exponential priors. A priori, it is unclear whether us-
ing contexts larger than unigrams would help. While
potentially beneficial, they also risk aggravating the
data sparsity and making our model more prone to
overfitting. For this problem, however, enlarging the
context (using highern-grams up to trigrams) helps
substantially. For Arabic, the highest accuracy is at-
tained by using trigrams, which reduces F1 error by
16% compared to unigrams; for Hebrew, by using
bigrams, which reduces F1 error by 17%. Finally, it
helps to use separate lexicons for affixes and stems,
although the difference is small.
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ARABIC %Lbl. Prec. Rec. F1
S&B-MONO-S 100 73.2 92.4 81.7
S&B-BEST-S 200 77.8 92.3 84.4
FULL-S 25 84.9 85.5 85.2

50 88.2 86.8 87.5
75 89.6 86.4 87.9

100 91.7 88.5 90.0

HEBREW %Lbl. Prec. Rec. F1
S&B-MONO-S 100 71.4 79.1 75.1
S&B-BEST-S 200 76.8 79.2 78.0
FULL-S 25 78.7 73.3 75.9

50 82.8 74.6 78.4
75 83.1 77.3 80.1

100 83.0 78.9 80.9

Table 3: Comparison of segmentation results with super-
vised and semi-supervised learning on the S&B dataset.

7.3 Supervised and Semi-Supervised Learning

To evaluate our system in the supervised and semi-
supervised learning settings, we report the perfor-
mance when various amounts of labeled data are
made available during learning, and compare them
to the results of Snyder & Barzilay (2008a). They
reported results for supervised learning using mono-
lingual features only (S&B-MONO-S), and for su-
pervised bilingual learning with labels for both lan-
guages (S&B-BEST-S). On both languages, our sys-
tem substantially outperforms both S&B-MONO-S
and S&B-BEST-S. E.g., on Arabic, our system re-
duces F1 errors by 46% compared to S&B-MONO-
S, and by 36% compared to S&B-BEST-S. More-
over, with only one-fourth of the labeled data, our
system already outperforms S&B-MONO-S. This
demonstrates that our log-linear model is better
suited to take advantage of supervised labels.

7.4 Arabic Penn Treebank

We also evaluated our system on the Arabic Penn
Treebank (ATB). As is common in unsupervised
learning, we trained and evaluated on the entire set.
We compare our system with Morfessor (Creutz and
Lagus, 2007).7 In addition, we compare with Mor-
fessor Categories-MAP, which builds on Morfessor
and conducts an additional greedy search specifi-
cally tailored to segmentation. We found that it per-

7We cannot compare with Snyder & Barzilay’s system as its
strongest results require bilingual data, which is not available.

ATB-7000 Prec. Rec. F1
MORFESSOR-1.0 70.6 34.3 46.1
MORFESSOR-MAP 86.9 46.4 60.5
FULL 83.4 77.3 80.2

ATB Prec. Rec. F1
MORFESSOR-1.0 80.7 20.4 32.6
MORFESSOR-MAP 77.4 72.6 74.9
FULL 88.5 69.2 77.7

Table 4: Comparison of segmentation results on the Ara-
bic Penn Treebank.

forms much better than Morfessor on Arabic but
worse on Hebrew. To test each system in a low-
data setting, we also ran experiments on the set con-
taining the first 7,000 words in ATB with at least
two characters (ATB-7000). Table 4 shows the re-
sults. Morfessor performs rather poorly on ATB-
7000. Morfessor Categories-MAP does much bet-
ter, but its performance is dwarfed by our system,
which further cuts F1 error by half. On the full ATB
dataset, Morfessor performs even worse, whereas
Morfessor Categories-MAP benefits from the larger
dataset and achieves an F1 of 74.9. Still, our system
substantially outperforms it, further reducing F1 er-
ror by 11%.8

8 Conclusion

This paper introduces the first log-linear model for
unsupervised morphological segmentation. It lever-
ages overlapping features such as morphemes and
their contexts, and enables easy extension to incor-
porate additional features and linguistic knowledge.
For Arabic and Hebrew, it outperforms the state-
of-the-art systems by a large margin. It can also
be readily applied to supervised or semi-supervised
learning when labeled data is available. Future di-
rections include applying our model to other in-
flectional and agglutinative languages, modeling in-
ternal variations of morphemes, leveraging parallel
data in multiple languages, and combining morpho-
logical segmentation with other NLP tasks, such as
machine translation.

8Note that the ATB and ATB-7000 experiments each mea-
sure accuracy on their entire training set. This differencein
testing conditions explains why some full ATB results are lower
than ATB-7000.
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