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Abstract

Nominals frequently surface without overtly
expressed arguments. In order to measure the
potential benefit of nominal SRL for down-
stream processes, such nominals must be ac-
counted for. In this paper, we show that a
state-of-the-art nominal SRL system with an
overall argumentF1 of 0.76 suffers a perfor-
mance loss of more than 9% when nominals
with implicit arguments are included in the
evaluation. We then develop a system that
takes implicit argumentation into account, im-
proving overall performance by nearly 5%.
Our results indicate that the degree of implicit
argumentation varies widely across nominals,
making automated detection of implicit argu-
mentation an important step for nominal SRL.

1 Introduction

In the past few years, a number of studies have
focused on verbal semantic role labeling (SRL).
Driven by annotation resources such as FrameNet
(Baker et al., 1998) and PropBank (Palmer et al.,
2005), many systems developed in these studies
have achieved argumentF1 scores near 80% in
large-scale evaluations such as the one reported by
Carreras and M̀arquez (2005).

More recently, the automatic identification of
nominal argument structure has received increased
attention due to the release of the NomBank cor-
pus (Meyers, 2007a). NomBank annotates predicat-
ing nouns in the same way that PropBank annotates
predicating verbs. Consider the following example
of the verbal predicatedistributefrom the PropBank
corpus:

(1) Freeport-McMoRan Energy Partners will be
liquidated and [Arg1 shares of the new

company] [Predicate distributed] [Arg2 to the
partnership’s unitholders].

The NomBank corpus contains a similar instance of
the deverbal nominalizationdistribution:

(2) Searle will give [Arg0 pharmacists] [Arg1

brochures] [Arg1 on the use of prescription
drugs] for [Predicate distribution] [Location in
their stores].

This instance demonstrates the annotation of split ar-
guments (Arg1) and modifying adjuncts (Location),
which are also annotated in PropBank. In cases
where a nominal has a verbal counterpart, the inter-
pretation of argument positions Arg0-Arg5 is con-
sistent between the two corpora.

In addition to deverbal (i.e., event-based) nomi-
nalizations, NomBank annotates a wide variety of
nouns that are not derived from verbs and do not de-
note events. An example is given below of the parti-
tive nounpercent:

(3) Hallwood owns about 11 [Predicate %] [Arg1 of
Integra].

In this case, the noun phrase headed by the predicate
% (i.e., “about 11% of Integra”) denotes a fractional
part of the argument in position Arg1.

Since NomBank’s release, a number of studies
have applied verbal SRL techniques to the task of
nominal SRL. For example, Liu and Ng (2007) re-
ported an argumentF1 of 0.7283. Although this
result is encouraging, it does not take into account
nominals that surface without overt arguments. Con-
sider the following example:

(4) The [Predicate distribution] represents [NP

available cash flow] [PP from the partnership]
[PP between Aug. 1 and Oct. 31].
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As in (2), distribution in (4) has a noun phrase and
multiple prepositional phrases in its environment,
but not one of these constituents is an argument to
distribution in (4); rather, any arguments are implic-
itly supplied by the surrounding discourse. As de-
scribed by Meyers (2007a), instances such as (2) are
called “markable” because they contain overt argu-
ments, and instances such as (4) are called “unmark-
able” because they do not. In the NomBank corpus,
only markable instances have been annotated.

Previous evaluations (e.g., those by Jiang and
Ng (2006) and Liu and Ng (2007)) have been based
on markable instances, which constitute 57% of all
instances of nominals from the NomBank lexicon.
In order to use nominal SRL systems for down-
stream processing, it is important to develop and
evaluate techniques that can handle markable as well
as unmarkable nominal instances. To address this
issue, we investigate the role of implicit argumenta-
tion for nominal SRL. This is, in part, inspired by the
recent CoNLL Shared Task (Surdeanu et al., 2008),
which was the first evaluation of syntactic and se-
mantic dependency parsing to include unmarkable
nominals. In this paper, we extend this task to con-
stituent parsing with techniques and evaluations that
focus specifically on implicit argumentation in nom-
inals.

We first present our NomBank SRL system,
which improves the best reported argumentF1 score
in the markable-only evaluation from 0.7283 to
0.7630 using a single-stage classification approach.
We show that this system, when applied to all nomi-
nal instances, achieves an argumentF1 score of only
0.6895, a loss of more than 9%. We then present
a model of implicit argumentation that reduces this
loss by 46%, resulting in anF1 score of 0.7235 on
the more complete evaluation task. In our analyses,
we find that SRL performance varies widely among
specific classes of nominals, suggesting interesting
directions for future work.

2 Related work

Nominal SRL is related to nominal relation interpre-
tation as evaluated in SemEval (Girju et al., 2007).
Both tasks identify semantic relations between a
head noun and other constituents; however, the tasks
focus on different relations. Nominal SRL focuses

primarily on relations that hold between nominaliza-
tions and their arguments, whereas the SemEval task
focuses on a range of semantic relations, many of
which are not applicable to nominal argument struc-
ture.

Early work in identifying the argument struc-
ture of deverbal nominalizations was primarily rule-
based, using rule sets to associate syntactic con-
stituents with semantic roles (Dahl et al., 1987;
Hull and Gomez, 1996; Meyers et al., 1998). La-
pata (2000) developed a statistical model to classify
modifiers of deverbal nouns as underlying subjects
or underlying objects, where subject and object de-
note the grammatical position of the modifier when
linked to a verb.

FrameNet and NomBank have facilitated machine
learning approaches to nominal argument struc-
ture. Gildea and Jurafsky (2002) presented an early
FrameNet-based SRL system that targeted both ver-
bal and nominal predicates. Jiang and Ng (2006)
and Liu and Ng (2007) have tested the hypothe-
sis that methodologies and representations used in
PropBank SRL (Pradhan et al., 2005) can be ported
to the task of NomBank SRL. These studies report
argumentF1 scores of 0.6914 and 0.7283, respec-
tively. Both studies also investigated the use of fea-
tures specific to the task of NomBank SRL, but ob-
served only marginal performance gains.

NomBank argument structure has also been used
in the recent CoNLL Shared Task on Joint Parsing
of Syntactic and Semantic Dependencies (Surdeanu
et al., 2008). In this task, systems were required to
identify syntactic dependencies, verbal and nominal
predicates, and semantic dependencies (i.e., argu-
ments) for the predicates. For nominals, the best se-
manticF1 score was 0.7664 (Surdeanu et al., 2008);
however this score is not directly comparable to the
NomBank SRL results of Liu and Ng (2007) or the
results in this paper due to a focus on different as-
pects of the problem (see the end of section 5.2 for
details).

3 NomBank SRL

Given a nominal predicate, an SRL system attempts
to assign surrounding spans of text to one of 23
classes representing core arguments, adjunct argu-
ments, and thenull or non-argument. Similarly to
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verbal SRL, this task is traditionally formulated as
a two-stage classification problem over nodes in the
syntactic parse tree of the sentence containing the
predicate.1 In the first stage, each parse tree node is
assigned a binary label indicating whether or not it
is an argument. In the second stage, argument nodes
are assigned one of the 22 non-null argument types.
Spans of text subsumed by labeled parse tree nodes
constitute arguments of the predication.

3.1 An improved NomBank SRL baseline

To investigate the effects of implicit argumenta-
tion, we first developed a system based on previ-
ous markable-only approaches. Our system follows
many of the traditions above, but differs in the fol-
lowing ways. First, we replace the standard two-
stage pipeline with a single-stage logistic regression
model2 that predicts arguments directly. Second,
we model incorporated arguments (i.e., predicates
that are also arguments) with a simple maximum
likelihood model that predicts the most likely argu-
ment label for a predicate based on counts from the
training data. Third, we use the following heuris-
tics to resolve argument conflicts: (1) If two argu-
ments overlap, the one with the higher probability is
kept. (2) If two non-overlapping arguments are of
the same type, the one with the higher probability
is kept unless the two nodes are siblings, in which
case both are kept. Heuristic (2) accounts for split
argument constructions.

Our NomBank SRL system uses features that are
selected with a greedy forward search strategy sim-
ilar to the one used by Jiang and Ng (2006). The
top half of Table 2 (next page) lists the selected ar-
gument features.3 We extracted training nodes from
sections 2-21 of NomBank, used section 24 for de-
velopment and section 23 for testing. All parse
trees were generated by Charniak’s re-ranking syn-
tactic parser (Charniak and Johnson, 2005). Follow-
ing the evaluation methodology used by Jiang and
Ng (2006) and Liu and Ng (2007), we obtained sig-

1The syntactic parse can be based on ground-truth annota-
tion or derived automatically, depending on the evaluation.

2We use LibLinear (Fan et al., 2008).
3For features requiring the identification of support verbs,

we use the annotations provided in NomBank. Preliminary ex-
periments show a small loss when using automatic support verb
identification.

Dev. F1 TestingF1

Jiang and Ng (2006) 0.6677 0.6914
Liu and Ng (2007) - 0.7283
This paper 0.7454 0.7630

Table 1: Markable-only NomBank SRL results for ar-
gument prediction using automatically generated parse
trees. The f-measure statistics were calculated by ag-
gregating predictions across all classes. “-” indicates
that the result was not reported.

Markable-only All-token % loss
P 0.7955 0.6577 -17.32
R 0.7330 0.7247 -1.13
F1 0.7630 0.6895 -9.63

Table 3: Comparison of the markable-only and all-
token evaluations of the baseline argument model.

nificantly better results, as shown in Table 1 above.4

3.2 The effect of implicit nominal arguments

The presence of implicit nominal arguments
presents challenges that are not taken into account
by the evaluation described above. To assess the im-
pact of implicit arguments, we evaluated our Nom-
Bank SRL system over each token in the testing
section. The system attempts argument identifica-
tion for all singular and plural nouns that have at
least one annotated instance in the training portion
of the NomBank corpus (morphological variations
included).

Table 3 gives a comparison of the results from the
markable-only and all-token evaluations. As can be
seen, assuming that all known nouns take overt argu-
ments results in a significant performance loss. This
loss is due primarily to a drop in precision caused by
false positive argument predictions made for nomi-
nals with implicit arguments.

4 Accounting for implicit arguments in
nominal SRL

A natural solution to the problem described above
is to first distinguish nominals that bear overt
arguments from those that do not. We treat this

4As noted by Carreras and M̀arquez (2005), the discrepancy
between the development and testing results is likely due to
poorer syntactic parsing performance on the development sec-
tion.
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# Description N S

1 12& parse tree path fromn to pred
2 Position ofn relative topred & parse tree path fromn to pred *
3 First word subsumed byn
4 12& position ofn relative topred
5 12& 14
6 Head word ofn’s parent *
7 Last word subsumedn
8 n’s syntactic category& length of parse tree path fromn to pred
9 First word ofn’s right sibling * *
10 Production rule that expands the parent ofpred
11 Head word of the right-most NP inn if n is a PP *
12 Stem ofpred
13 Parse tree path fromn to the lowest common ancestor ofn andpred
14 Head word ofn
15 12& n’s syntactic category
16 Production rule that expandsn’s parent * *
17 Parse tree path fromn to the nearest support verb *
18 Last part of speech (POS) subsumed byn *
19 Production rule that expandsn’s left sibling *
20 Head word ofn, if the parent ofn is a PP
21 The POS of the head word of the right-most NP undern if n is a PP
... Features 22-31 are available upon request 0 3

N
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1 n’s ancestor subcategorization frames (ASF) (see section 4) *
2 n’s word
3 Syntactic category ofn’s right sibling
4 Parse tree paths fromn to each support verb *
5 Last word ofn’s left sibling * *
6 Parse tree path fromn to previous nominal, with lexicalized source (see section 4) *
7 Last word ofn’s right sibling *
8 Production rule that expandsn’s left sibling * *
9 Syntactic category ofn *
10 PropBank markability score (see section 4) *
11 Parse tree path fromn to previous nominal, with lexicalized source and destination *
12 Whether or notn is followed by PP *
13 Parse tree path fromn to previous nominal, with lexicalized destination *
14 Head word ofn’s parent *
15 Whether or notn surfaces before a passive verb * *
16 First word ofn’s left sibling *
17 Parse tree path fromn to closest support verb, with lexicalized destination *
18 Whether or notn is a head *
19 Head word ofn’s right sibling
20 Production rule that expandsn’s parent * *
21 Parse tree paths fromn to all support verbs, with lexicalized destinations *
22 First word ofn’s right sibling * *
23 Head word ofn’s left sibling *
24 If n is followed by a PP, the head of that PP’s object *
25 Parse tree path fromn to previous nominal *
26 Token distance fromn to previous nominal *
27 Production rule that expandsn’s grandparent *

Table 2: Features, sorted by gain in selection algorithm.& denotes concatenation. The last two columns indicate
(N)ew features (not used in Liu and Ng (2007)) and features (S)hared by the argument and nominal models.
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as a binary classification task over token nodes.
Once a nominal has been identified as bearing
overt arguments, it is processed with the argument
identification model developed in the previous
section. To classify nominals, we use the features
shown in the bottom half of Table 2, which were
selected with the same algorithm used for the
argument classification model. As shown by Table
2, the sets of features selected for argument and
nominal classification are quite different, and many
of the features used for nominal classification have
not been previously used. Below, we briefly explain
a few of these features.

Ancestor subcategorization frames (ASF)
As shown in Table 2, the most informative feature
is ASF. For a given tokent, ASF is actually a set
of sub-features, one for each parse tree node above
t. Each sub-feature is indexed (i.e., named) by its
distance fromt. The value of an ASF sub-feature
is the production rule that expands the correspond-
ing node in the tree. An ASF feature with two
sub-features is depicted below for the token “sale”:

VP: ASF2 = V P → V, NP

V (made) NP:ASF1 = NP → Det, N

Det (a) N (sale)

Parse tree path lexicalizationA lexicalized parse
tree path is one in which surface tokens from the
beginning or end of the path are included in the path.
This is a finer-grained version of the traditional
parse tree path that captures the joint behavior of
the path and the tokens it connects. For example,
in the tree above, the path from “sale” to “made”
with a lexicalized source and destination would be
sale : N ↑ NP ↑ V P ↓ V : made. Lexicalization
increases sparsity; however, it is often preferred
by the feature selection algorithm, as shown in the
bottom half of Table 2.

PropBank markability score This feature is
the probability that the context (± 5 words) of a de-
verbal nominal is generated by a unigram language
model trained over the PropBank argument words
for the corresponding verb. Entities are normalized

Precision Recall F1

Baseline 0.5555 0.9784 0.7086
MLE 0.6902 0.8903 0.7776
LibLinear 0.8989 0.8927 0.8958

Table 4: Evaluation results for identifying nominals
with explicit arguments.

to their entity type using BBN’s IdentiFinder, and
adverbs are normalized to their related adjective us-
ing theADJADVdictionary provided by NomBank.
The normalization of adverbs is motivated by the
fact that adverbial modifiers of verbs typically have
a corresponding adjectival modifier for deverbal
nominals.

5 Evaluation results

Our evaluation methodology reflects a practical sce-
nario in which the nominal SRL system must pro-
cess each token in a sentence. The system can-
not safely assume that each token bears overt argu-
ments; rather, this decision must be made automat-
ically. In section 5.1, we present results for the au-
tomatic identification of nominals with overt argu-
ments. Then, in section 5.2, we present results for
the combined task in which nominal classification is
followed by argument identification.

5.1 Nominal classification

Following standard practice, we train the nomi-
nal classifier over NomBank sections 2-21 using
LibLinear and automatically generated syntactic
parse trees. The prediction threshold is set to the
value that maximizes the nominalF1 score on
development section (24), and the resulting model
is tested over section 23. For comparison, we
implemented the following simple classifiers.

Baseline nominal classifier Classifies a token
as overtly bearing arguments if it is a singular or
plural noun that is markable in the training data.
As shown in Table 4, this classifier achieves nearly
perfect recall.5

MLE nominal classifier Operates similarly to
5Recall is less than 100% due to (1) part-of-speech errors

from the syntactic parser and (2) nominals that were not anno-
tated in the training data but exist in the testing data.
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(b) Nominal classification performance with respect to the
distribution in Figure 1a. They-axis denotes the combined
F1 for nominals in the interval.
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(c) All-token argument classification performance with re-
spect to the distribution in Figure 1a. They-axis denotes the
combinedF1 for nominals in the interval.

Figure 1: Evaluation results with respect to the distribution of nominals in TreeBank.

the baseline classifier, but also produces a score
for the classification. The value of the score is
equal to the probability that the nominal bears overt
arguments, as observed in the training data. A
prediction threshold is imposed on this score as
determined by the development data (t = 0.23).
As shown by Table 4, this exchanges recall for
precision and leads to a significant increase in the
overallF1 score.

The last row in Table 4 shows the results for
the LibLinear nominal classifier, which significantly
outperforms the others, achieving balanced preci-
sion and recall scores near 0.9. In addition, it is

able to recover from part-of-speech errors because
it does not filter out non-noun instances; rather, it
combines part-of-speech information with other lex-
ical and syntactic features to classify nominals.

Interesting observations can be made by grouping
nominals according to the probability with which
they are markable in the corpus. Figure 1a gives
the overall distribution of markable nominals in the
training data. As shown, 50% of nominal instances
are markable only 65% of the time or less, making
nominal classification an important first step. Using
this view of the data, Figure 1b presents the over-
all F1 scores for the baseline and LibLinear nominal
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classifiers.6 As expected, gains in nominal classi-
fication diminish as nominals become more overtly
associated with arguments. Furthermore, nominals
that are rarely markable (i.e., those in interval 0.05)
remain problematic due to a lack of positive training
instances and the unbalanced nature of the classifi-
cation task.

5.2 Combined nominal-argument classification

We now turn to the task of combined nominal-
argument classification. In this task, systems must
first identify nominals that bear overt arguments. We
evaluated three configurations based on the nominal
classifiers from the previous section. Each config-
uration uses the argument classification model from
section 3.

As shown in Table 3, overall argument classifi-
cationF1 suffers a loss of more than 9% under the
assumption that all known nouns bear overt argu-
ments. This corresponds precisely to using the base-
line nominal classifier in the combined nominal-
argument task. The MLE nominal classifier is able
to reduce this loss by 25% to anF1 of 0.7080. The
LibLinear nominal classifier reduces this loss by
46%, resulting in an overall argument classification
F1 of 0.7235. This improvement is the direct result
of filtering out nominal instances that do not bear
overt arguments.

Similarly to the nominal evaluation, we can view
argument classification performance with respect to
the probability that a nominal bears overt arguments.
This is shown in Figure 1c for the three configura-
tions. The configuration using the MLE nominal
classifier obtains an argumentF1 of zero for nom-
inals below its prediction threshold. Compared to
the baseline nominal classifier, the LibLinear clas-
sifier achieves argument classification gains as large
as 150.94% (interval 0.05), with an average gain of
52.87% for intervals 0.05 to 0.4. As with nomi-
nal classification, argument classification gains di-
minish for nominals that express arguments more
overtly - we observe an average gain of only 2.15%
for intervals 0.45 to 1.00. One possible explana-
tion for this is that the argument prediction model
has substantially more training data for the nomi-
nals in intervals 0.45 to 1.00. Thus, even if the nom-

6Baseline and MLE are identical above the MLE threshold.

Nominals
Deverbal Deverbal-like Other

Baseline 0.7975 0.6789 0.6757
MLE 0.8298 0.7332 0.7486
LibLinear 0.9261 0.8826 0.8905

Arguments
Baseline 0.7059 0.6738 0.7454
MLE 0.7206 0.6641 0.7675
LibLinear 0.7282 0.7178 0.7847

Table 5: Nominal and argumentF1 scores for dever-
bal, deverbal-like, and other nominals in the all-token
evaluation.

inal classifier makes a false positive prediction in the
0.45 to 1.00 interval range, the argument model may
correctly avoid labeling any arguments.

As noted in section 2, these results are not di-
rectly comparable to the results of the recent CoNLL
Shared Task (Surdeanu et al., 2008). This is due to
the fact that the semantic labeledF1 in the Shared
Task combines predicate and argument predictions
into a single score. The same combinedF1 score for
our best two-stage nominal SRL system (logistic re-
gression nominal and argument models) is 0.7806;
however, this result is not precisely comparable be-
cause we do not identify the predicate role set as re-
quired by the CoNLL Shared Task.

5.3 NomLex-based analysis of results

As demonstrated in section 1, NomBank annotates
many classes of deverbal and non-deverbal nomi-
nals, which have been categorized on syntactic and
semantic bases in NomLex-PLUS (Meyers, 2007b).
To help understand what types of nominals are par-
ticularly affected by implicit argumentation, we fur-
ther analyzed performance with respect to these
classes.

Figure 2a shows the distribution of nominals
across classes defined by the NomLex resource. As
shown in Figure 2b, many of the most frequent
classes exhibit significant gains. For example, the
classification of partitive nominals (13% of all nom-
inal instances) with the LibLinear classifier results
in gains of 55.45% and 33.72% over the baseline
and MLE classifiers, respectively. For the 5 most
common classes, which constitute 82% of all nomi-
nals instances, we observe average gains of 27.47%
and 19.30% over the baseline and MLE classifiers,
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(a)Distribution of nominals across the NomLex classes. The
y-axis denotes the percentage of all nominal instances that is
occupied by nominals in the class.
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(b) Nominal classification performance with respect to the
NomLex classes in Figure 2a. They-axis denotes the com-
binedF1 for nominals in the class.

Figure 2: Evaluation results with respect to NomLex classes.

respectively.
Table 5 separates nominal and argument classifi-

cation results into sets of deverbal (NomLex class
nom), deverbal-like (NomLex classnom-like), and
all other nominalizations. A deverbal-like nominal
is closely related to some verb, although not mor-
phologically. For example, the nounaccoladeshares
argument interpretation withaward, but the two are
not morphologically related. As shown by Table 5,
nominal classification tends to be easier - and ar-
gument classification harder - for deverbals when
compared to other types of nominals. The differ-
ence in argumentF1 between deverbal/deverbal-like
nominals and the others is due primarily to relational
nominals, which are relatively easy to classify (Fig-
ure 2b); additionally, relational nominals exhibit a
high rate of argument incorporation, which is eas-
ily handled by the maximum-likelihood model de-
scribed in section 3.1.

6 Conclusions and future work

The application of nominal SRL to practical NLP
problems requires a system that is able to accurately
process each token it encounters. Previously, it was
unclear whether the models proposed by Jiang and
Ng (2006) and Liu and Ng (2007) would operate ef-
fectively in such an environment. The systems de-
scribed by Surdeanu et al. (2008) are designed with
this environment in mind, but their evaluation did
not focus on the issue of implicit argumentation.
These two problems motivate the work presented in

this paper.
Our contribution is three-fold. First, we improve

upon previous nominal SRL results using a single-
stage classifier with additional new features. Sec-
ond, we show that this model suffers a substantial
performance degradation when evaluated over nom-
inals with implicit arguments. Finally, we identify a
set of features - many of them new - that can be used
to reliably detect nominals with explicit arguments,
thus significantly increasing the performance of the
nominal SRL system.

Our results also suggest interesting directions for
future work. As described in section 5.2, many nom-
inals do not have enough labeled training data to
produce accurate argument models. The general-
ization procedures developed by Gordon and Swan-
son (2007) for PropBank SRL and Padó et al. (2008)
for NomBank SRL might alleviate this problem.
Additionally, instead of ignoring nominals with im-
plicit arguments, we would prefer to identify the im-
plicit arguments using information contained in the
surrounding discourse. Such inferences would help
connect entities and events across sentences, provid-
ing a fuller interpretation of the text.
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