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Abstract

Current phrase-based statistical machine
translation systems process each test sentence
in isolation and do not enforce global consis-
tency constraints, even though the test data
is often internally consistent with respect to
topic or style. We propose a new consistency
model for machine translation in the form
of a graph-based semi-supervised learning
algorithm that exploits similarities between
training and test data and also similarities
between different test sentences. The algo-
rithm learns a regression function jointly over
training and test data and uses the resulting
scores to rerank translation hypotheses. Eval-
uation on two travel expression translation
tasks demonstrates improvements of up to 2.6
BLEU points absolute and 2.8% in PER.

1 Introduction

Current phrase-based statistical machine translation
(SMT) systems commonly operate at the sentence
level—each sentence is translated in isolation, even
when the test data consists of internally coherent
paragraphs or stories, such as news articles. For
each sentence, SMT systems choose the translation
hypothesis that maximizes a combined log-linear
model score, which is computed independently of
all other sentences, using globally optimized com-
bination weights. Thus, similar input strings may
be translated in very different ways, depending on
which component model happens to dominate the
combined score for that sentence. This is illustrated
by the following example (from the IWSLT 2007

Arabic-English translation task):
Source 1: Asf lA ymknk *lk hnAk klfp HwAly vmAnyn
dwlAr lAlsAEp AlwAHdp
Ref: sorry you can’t there is a cost the charge is eighty
dollars per hour
1-best: i’m sorry you can’t there in the cost about eighty
dollars for a one o’clock
Source 2: E*rA lA ymknk t$gyl AltlfAz HtY tqlE
AlTA }rp
Ref: sorry you cannot turn the tv on until the plane has
taken off
1-best: excuse me i you turn tv until the plane departs

The phraselA ymknk (you may not/you cannot)
is translated differently (and wrongly in the sec-
ond case) due to different segmentations and phrase
translations chosen by the decoder. Though differ-
ent choices may be sometimes appropriate, the lack
of constraints enforcing translation consistency of-
ten leads to suboptimal translation performance. It
would be desirable to counter this effect by encour-
aging similar outputs for similar inputs (under a suit-
ably defined notion of similarity, which may include
e.g. a context specification for the phrase/sentence).

In machine learning, the idea of forcing the out-
puts of a statistical learner to vary smoothly with the
underlying structure of the inputs has been formal-
ized in the graph-based learning (GBL) framework.
In GBL, both labeled (train) and unlabeled (test)
data samples are jointly represented as vertices in a
graph whose edges encode pairwise similarities be-
tween samples. Various learning algorithms can be
applied to assign labels to the test samples while en-
suring that the classification output varies smoothly
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along the manifold defined by the graph. GBL has
been successfully applied to a range of problems in
computer vision, computational biology, and natu-
ral language processing. However, in most cases,
the learning tasks consisted of unstructured classi-
fication, where the input was represented by fixed-
length feature vectors and the output was one of a
finite set of discrete labels. In machine translation,
by contrast, both inputs and outputs consist of word
strings of variable length, and the number of possi-
ble outputs is not fixed and practically unlimited.

In this paper we propose a new graph-based learn-
ing algorithm with structured inputs and outputs to
improve consistency in phrase-based statistical ma-
chine translation. We define a joint similarity graph
over training and test data and use an iterative label
propagation procedure to regress a scoring function
over the graph. The resulting scores for unlabeled
samples (translation hypotheses) are then combined
with standard model scores in a log-linear transla-
tion model for the purpose of reranking. Our con-
tributions are twofold. First, from a machine trans-
lation perspective, we design and evaluate a global
consistency model enforcing that similar inputs re-
ceive similar translations. Second, from a machine
learning perspective, we apply graph-based learning
to a task with structured inputs and outputs, which
is a novel contribution in itself since previous ap-
plications of GBL have focused on predicting cat-
egorical labels. We evaluate our approach on two
machine translation tasks, the IWSLT 2007 Italian-
to-English and Arabic-to-English tasks, and demon-
strate significant improvements over the baseline.

2 Graph-Based Learning

GBL algorithms rely on a similarity graph consisting
of a set of nodes representing data samplesxi (where
i ranges over1, . . . , l labeled points andl+1, . . . , n
unlabeled points), and a set of weighted edges en-
coding pairwise similarities between samples. The
graph is characterized by a weight matrixW whose
elementsWij ≥ 0 are the similarity values for edges
between verticesxi andxj, and by its label vector
Y = (y1, . . . yl), yi ∈ {1, . . . , C} that defines la-
bels for the firstl points. If there is no edge linking
nodesxi andxj, thenWij = 0. There is consider-
able freedom in choosing the weights. The similar-

ity measure used to compute the edge weights de-
termines the graph structure and is the most impor-
tant factor in successfully applying GBL. In most
applications of GBL, data samples are represented
by fixed-length feature vectors, and cosine similar-
ity or Euclidean distance-based measures are used
for edge weights.

Learning algorithms on similarity graphs include
e.g. min-cut (Blum and Chawla, 2001), spectral
graph transducer (Joachims, 2003), random walk-
based approaches (Szummer and Jaakkola, 2001),
and label propagation (Zhu and Ghahramani, 2002).
The algorithm proposed herein is based on the latter.

2.1 Label Propagation

Given a graph defined by a weight matrixW and
a label setY , the basic label propagation algorithm
proceeds as follows:

1. Initialize the matrixP asPij = Wij−Wii
P

j Wij−Wii

2. Initialize an× C matrix f with binary vectors
encoding the known labels for the firstl rows:
fi = δC(yi) ∀i ∈ {1, 2, . . . , l}, whereδC(yi) is
the Kronecker vector of lengthC with 1 in po-
sition yi and 0 elsewhere. The remaining rows
of f can be zero.

3. f ′ ← P × f
4. Clamp already-labeled data rows:f ′i = δC(yi)
∀i ∈ {1, 2, . . . , l}

5. If f ′ ∼= f , stop.
6. f ← f ′

7. Repeat from step 3.

After convergence,f contains the solution in rows
l + 1 to n in the form of unnormalized label proba-
bility distributions. Hard labels can be obtained by

ŷi = arg max
j∈{1,...,C}

fij ∀i ∈ {l + 1, . . . , n} (1)

The algorithm minimizes the following cost func-
tion (Zhu, 2005):

S =
C∑

k=1

∑

i>l ∨ j>l

Wij(fik − fjk)2 (2)

S measures the smoothness of the learned function,
i.e., the extent to which the labeling allows large-
weight edges to link nodes of different labels. By
minimizing S, label propagation finds a labeling
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that, to the extent possible, assigns similar soft labels
(identical hard labels) to nodes linked by edges with
large weights (i.e., highly similar samples). The
labeling decision takes into account not only sim-
ilarities between labeled and unlabeled nodes (as
in nearest-neighbor approaches) but also similarities
among unlabeled nodes. Label propagation has been
used successfully for various classification tasks,
e.g. image classification and handwriting recogni-
tion (Zhu, 2005). In natural language processing, la-
bel propagation has been used for document classifi-
cation (Zhu, 2005), word sense disambiguation (Niu
et al., 2005; Alexandrescu and Kirchhoff, 2007), and
sentiment categorization (Goldberg and Zhu, 2006).

3 Graph-Based Learning for Machine
Translation

Our goal is to exploit graph-based learning for im-
proving consistency in statistical phrase-based ma-
chine translation. Intuitively, a set of similar source
sentences should receive similar target-language
translations. This means that similarities between
training and test sentences should be taken into ac-
count, butalso similarities between different test
sentences, which is a source of information currently
not exploited by standard SMT systems. To this
end we define a graph over the training and test sets
with edges between test and training sentences as
well as between different test sentences. In cases
where a test sentence does not have any connections
to training sentences but is connected to other test
sentences, helpful information about preferred trans-
lations can be propagated via these edges.

As mentioned above, the problem of machine
translation does not neatly fit into the standard
GBL framework. Given that our samples consist
of variable-length word strings instead of feature
vectors, the standard cosine or Euclidean-distance
based similarity measures cannot be used mean-
ingfully, and the number of possible “labels”—
correct translations—is unbounded and practically
very large. We thus need to modify both the graph
construction and the label propagation algorithms.

First, we handle the problem of unlimited out-
puts by applying GBL to rescoring only. In most
SMT systems, anN -best list (generated by a first de-
coding pass) approximates the search space of good

hypotheses reasonably well, providedN is large
enough. For all hypotheses of all sentences in the
test set (set we denote withH), the system learns a
ranking functionr : H → [0, 1]. Larger values ofr
indicate better hypotheses. The corresponding loss
functional is

L(r) =
∑

i,j

Wij [r(xi)− r(xj)]
2 (3)

L(r) measures the smoothness ofr over the graph
by penalizing highly similar clusters of nodes that
have a high variance ofr (in other words, simi-
lar input sentences that have very different transla-
tions). The smallerL(r), the “smoother”r is over
the graph. Thus, instead of directly learning a clas-
sification function, we learn a regression function—
similar to (Goldberg and Zhu, 2006)—that is then
used for ranking the hypotheses.

3.1 Graph Construction

Each graph node represents a sentencepair (consist-
ing of source and target strings), and edge weights
represent the combined similarity scores computed
from comparing both the source sides and target
sides of a pair of nodes. Given a training set
with l source and target language sentence pairs
(s1, t1), . . . , (sl, tl) and a test set withl + 1, ..., n
source sentences,sl+1, . . . , sn, the construction of
the similarity graph proceeds as follows:

1. For each test sentencesi, i = l + 1, . . . , n,
find a setStraini of similar training source
sentences and a setStesti of similar test sen-
tences (excludingsi and sentences identical to
it) by applying a string similarity functionσ to
the source sides only and retaining sentences
whose similarity exceeds a thresholdθ. Dif-
ferentθ’s can be used for training vs. test sen-
tences; we use the sameθ for both sets.

2. For each hypothesishsi generated forsi by a
baseline system, compute its similarity to the
target sides of all sentences inStraini . The
overall similarity is then defined by the com-
bined score

αij = κ
(
σ(si, s

j), σ(hsi , t
j)
)

(4)

wherei = l + 1, . . . n, j = 1, . . . , |Straini | and
κ : R+ × R+ → R+ is an averaging function.
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If αij > 0, establish graph nodes forhsi andtj
and link them with an edge of weightαij .

3. For each hypothesishsi and each hypothe-
sis generated for each of the sentencessk ∈
Σtesti , compute similarity on the target side and
use the combined similarity score as the edge
weight between nodes forhsi andhsk

.
4. Finally,for each nodext representing a train-

ing sentence, assignr(xt) = 1 and also de-
fine its synthetic counterpart: a vertexx′t with
r(x′t) = 0. For each edge incident toxt of
weight Wth, define a corresponding edge of
weight1−Wt′h.

The synthetic nodes and edges need to be added
to prevent the label propagation algorithm from con-
verging to the trivial solution that assignsr = 1 to
all points in the graph. This choice is theoretically
motivated—a similarity graph for regression should
have not only “sources” (good nodes with high value
of r) but also “sinks” (counterparts for the sources).
Figure 1 illustrates the connections of a test node.

Similarity Measure The similarity measure used
for comparing source and target sides is of prime
importance, as it determines the structure of the
graph. This has consequences for both computa-
tional efficiency (denser graphs require more com-
putation and memory) and the accuracy of the out-
come. A low similarity threshold results in a rich
graph with a large number of edges but possibly in-
troduces noise. A higher threshold leads to a small
graph emphasizing highly similar samples but with
too many disconnected components. The similarity
measure is also the means by which domain knowl-
edge can be incorporated into the graph construc-
tion process. Similarity may be defined at the level
of surface word strings, but may also include lin-
guistic information such as morphological features,
part-of-speech tags, or syntactic structures. Here,
we compare two similarity measures: the famil-
iar BLEU score (Papineni et al., 2002) and a score
based on string kernels. In using BLEU we treat
each sentence as a complete document. BLEU is not
symmetric—when comparing two sentences, differ-
ent results are obtained depending on which one is
considered the reference and which one is the hy-
pothesis. For computing similarities between train
and test translations, we use the train translation as

the reference. For computing similarity between two
test hypotheses, we compute BLEU in both direc-
tions and take the average. We note that more ap-
propriate distance measures are certainly possible.
Many previous studies, such as (Callison-Burch et
al., 2006), have pointed out drawbacks of BLEU,
and any other similarity measure could be utilized
instead. In particular, similarity measures that model
aspects of sentences that are ill handled by standard
phrase-based decoders (such as syntactic structure
or semantic information) could be useful here.

A more general way of computing similarity be-
tween strings is provided by string kernels (Lodhi et
al., 2002; Rousu and Shawe-Taylor, 2005), which
have been extensively used in bioinformatics and
email spam detection. String kernels map strings
into a feature space defined by all possible sub-
strings of the string up a fixed lengthk, and com-
puting the dot product between the resulting feature
vectors. Several variants of basic string kernels ex-
ist, notably those allowing gaps or mismatches, and
efficient implementations have been devised even
for large scale applications. Formally, we define a
sentences as a concatenation of symbols from a fi-
nite alphabetΣ (the vocabulary of the language) and
an embedding function from strings to feature vec-
tors,φ : Σ∗ → H. A kernel functionK(s, t) com-
putes the distance between the resulting vectors for
two sentencess andt. In our case, the embedding
function is defined as

φk
u(s) :=

∑

i:u=s(i)

λ|i| u ∈ Σk (5)

wherek is the maximum length of substrings,|i| is
the length ofi, andλ is a penalty parameter for each
gap encountered in the substring.K is defined as

K(s, t) =
∑

u

〈φu(s), φu(t)〉wu (6)

wherew is a weight dependent on the length of the
substringu. Finally, the kernel score is normalized
by
√
K(s, s) · K(t, t) to discourage long sentences

from being favored. Thus, our similarity measure is
a gapped, normalized string kernel, which is a more
general measure than BLEU in that is considers non-
contiguous substrings. We use a dynamic program-
ming implementation of string kernels (Rousu and
Shawe-Taylor, 2005).
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For the combination of source-side and target-
side similarity scores (the function we denoted asκ)
we test two simple schemes, using either the ge-
ometric or the arithmetic mean of the individual
scores. In the first case, large edge weights only re-
sult when both source and target are close to each
other; the latter may produce high edge weights
when only one of them (typically the source score)
is high. More sophisticated combination schemes,
using e.g. weighted combination, could be used but
were not investigated in this study.

Scalability Poor scalability is often mentioned as
a drawback of graph-based learning. Straightfor-
ward implementations of GBL algorithms often rep-
resent the joint training and test data in working
memory and therefore do not scale well to large
data sets. However, we have developed several tech-
niques to improve scalability without impeding ac-
curacy. First, we construct separate graphs for each
test sentence without losing global connectivity in-
formation. The graph for a test sentence is com-
puted as thetransitive closure of the edge setE over
the nodes containing all hypotheses for that test sen-
tence. This smaller graph does not affect the out-
come of the learning process for the chosen sentence
because in label propagation the learned valuer(xi)
can be influenced by that of another nodexj if and
only if xj is reachable fromxi. In the worst the-
oretical case, the transitive closure could compre-
hend the entire graph, but in practice the edge set is
never that dense and can be easily pruned based on
the heuristic that faraway nodes connected through
low-weight edges have less influence on the result.
We use a simple embodiment of this heuristic in a
work-list approach: starting from the nodes of inter-
est (hypotheses for the focal sentence), we expand
the closure starting with the direct neighbors, which
have the largest influence; then add their neighbors,
which have less influence, and so forth. A thresh-
old on the number of added vertices limits undue
expansion while capturing either the entire closure
or a good approximation of it. Another practical
computational advantage of portioning work is that
graphs for different hypothesis sets can be trivially
created and used in parallel, whereas distributing
large matrix-vector multiplication is much more dif-
ficult (Choi, 1998). The disadvantage is that overall

1 0

1 0
. . . . . .

W2h

W1h 1−W1h
1−W

2h

Figure 1: Connections for hypothesis nodexh. Similar-
ity edges with weightsWth link the node with train sen-
tencesxt, for whichr(xt) = 1. For each of these edges
we define a dissimilarity edge of weight1−Wth, linking
the node with nodex′

t for whichr(x′
t) = 0. The vertex is

also connected to other test vertices (the dotted edges).

redundant computations are being made: incomplete
estimates ofr are computed for the ancillary nodes
in the transitive closure and then discarded.

Second, we obtain a reduction in graph size of or-
ders of magnitude by collapsing all training vertices
of the samer that are connected to the same test
vertex into one and sum the edge weights. This is
equivalent to the full graph for learning purposes.

3.2 Propagation

Label propagation proceeds as follows:

1. Compute the transitive closure over the edges
starting from all hypothesis nodes of a given
sentence.

2. On the resulting graph, collapse all test-train
similarities for each test node by summing edge
weights. Obtain accumulated similarities in
row and column 1 of the similarity matrixW .

3. Normalize test-to-train weights such that∑
j W1j =

∑
j Wj1 = 1.

4. Initialize the matrixP asPij = Wij

1−Wi1+
P

j Wij
.

(The quantity1−W1i in the denominator is the
weight of the dissimilarity edge.)

5. Initialize a column vectorf of height n with
f1 = 1 (corresponding to nodex1) and 0 in the
remaining positions.

6. f ′ ← P × f
7. Clampf ′1: f ′1 = 1
8. If f ′ ∼= f , continue with step 11.
9. f ← f ′

10. Repeat from step 6.
11. The resultr is in the slots off that correspond

to the hypotheses of interest. Normalize per
sentence if needed, and rank in decreasing or-
der ofr.
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Convergence Our algorithm’s convergence proof
is similar to that for standard label propagation (Zhu,
2005, p. 6). We splitP as follows:

P =
[

0 PLU

PUL PUU

]
(7)

wherePUL is a column vector holding global simi-
larities of test hypotheses with train sentences,PLU

is a horizontal vector holding the same similarities
(though PLU 6= P T

UL due to normalization), and
PUU holds the normalized similarities between pairs
of test hypotheses. We also separatef :

f =
[

1
fU

]
(8)

where we distinguish the first entry because it repre-
sents the training part of the data. With these nota-
tions, the iteration formula becomes:

f ′U = PUUfU + PUL (9)

Unrolling the iteration yields:

fU = lim
n→∞

[
(PUU )nf0

U +

(
n∑

i=1

(PUU )i−1

)
PUL

]

It can be easily shown that the first term converges
to zero because of normalization in step 4 (Zhu,
2005). The sum in the second term converges to
(I − PUU )−1, so the unique fixed point is:

fU = (I − PUU )−1PUL (10)

Our system uses the iterative form. On the data sets
used, convergence took 61.07 steps on average.

At the end of the label propagation algorithm, nor-
malized scores are obtained for each N-best list (sen-
tences without any connections whatsoever are as-
signed zero scores). These are then used together
with the other component models in log-linear com-
bination. Combination weights are optimized on a
held-out data set.

4 Data and System

We evaluate our approach on the IWSLT 2007
Italian-to-English (IE) and Arabic-to-English (AE)
travel tasks. The first is a challenge task, where the

training set consists of read sentences but the de-
velopment and test data consist of spontaneous di-
alogues. The second is a standard travel expres-
sion translation task consisting entirely of read in-
put. For our experiments we chose the text input
(correct transcription) condition only. The data set
sizes are shown in Table 1. We split the IE develop-
ment set into two subsets of 500 and 496 sentences
each. The first set (dev-1) is used to train the system
parameters of the baseline system and as a training
set for GBL. The second is used to tune the GBL pa-
rameters. For each language pair, the baseline sys-
tem was trained with additional out-of-domain text
data: the Italian-English Europarl corpus (Koehn,
2005) in the case of the IE system, and 5.5M words
of newswire data (LDC Arabic Newswire, Multiple-
Translation Corpus and ISI automatically extracted
parallel data) in the case of the AE system.

Set # sent pairs # words # refs

IE train 26.5K 160K 1
IE dev-1 500 4308 1
IE dev-2 496 4204 1
IE eval 724 6481 4

AE train 23K 160K 1
AE dev4 489 5392 7
AE dev5 500 5981 7
AE eval 489 2893 6

Table 1: Data set sizes and reference translations count.

Our baseline is a standard phrase-based SMT
system based on a log-linear model with the fol-
lowing feature functions: two phrase-based trans-
lation scores, two lexical translation scores, word
count and phrase count penalty, distortion score,
and language model score. We use the Moses de-
coder (Koehn et al., 2007) with a reordering limit of
4 for both languages, which generatesN -best lists
of up to 2000 hypotheses per sentence in a first pass.
The second pass uses a part-of-speech (POS) based
trigram model, trained on POS sequences generated
by a MaxEnt tagger (Ratnaparkhi, 1996). The lan-
guage models are trained on the English side using
SRILM (Stolcke, 2002) and modified Kneser-Ney
discounting for the first-pass models and Witten-
Bell discounting for the POS models. The baseline
system yields state-of-the-art performance.
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Weighting dev-2 eval

none (baseline) 22.3/53.3 29.6/45.5
(a) 23.4/51.5 30.7/44.1
(b) 23.5/51.6 30.6/44.3
(c) 23.2/51.8 30.0/44.6

Table 2: GBL results (%BLEU/PER) on IE task
for different weightings of labeled-labeled vs. labeled-
unlabeled graph edges (BLEU-based similarity measure).

5 Experiments and Results

We started with the IE system and initially inves-
tigated the effect of only including edges between
labeled and unlabeled samples in the graph. This
is equivalent to using a weightedk-nearest neighbor
reranker that, for each hypothesis, computes average
similarity with its neighborhood of labeled points,
and uses the resulting score for reranking.

Starting with the IE task and the BLEU-based
similarity metric, we ran optimization experiments
that varied the similarity threshold and compared
sum vs. product combination of source and target
similarity scores, settling forθ = 0.7 and prod-
uct combination. We experimented with three dif-
ferent ways of weighting the contributions from
labeled-unlabeled vs. unlabeled-unlabeled edges:
(a) no weighting, (b) labeled-to-unlabeled edges
were weighted 4 times stronger than unlabeled-
unlabeled ones; and (c) labeled-to-unlabeled edges
were weighted 2 times stronger. The weighting
schemes do not lead to significantly different results.
The best result obtained shows a gain of 1.2 BLEU
points on the dev set and 1 point on the eval set, re-
flecting PER gains of 2% and 1.2%, respectively.

We next tested the string kernel based similarity
measure. The parameter values were 0.5 for the gap
penalty, a maximum substring length ofk = 4, and
weights of 0, 0.1, 0.2, 0.7. These values were chosen
heuristically and were not tuned extensively due to
time constraints. Results (Table 3) show significant
improvements in PER and BLEU.

In the context of the BTEC challenge task it is
interesting to compare this approach to adding the
development set directly to the training set. Part of
the improvements may be due to utilizingkNN in-
formation from a data set that is matched to the test

System dev-2 eval

Baseline 22.3/53.3 29.6/45.5
GBL 24.3/51.0 32.2/42.7

Table 3: GBL results (%BLEU/PER) on IE tasks with
string-kernel based similarity measure.

set in terms of style. If this data were also used for
training the initial phrase table, the improvements
might disappear. We first optimized the log-linear
model combination weights on the entire dev07 set
(dev-1 and dev-2 in Table 1) before retraining the
phrase table using the combined train and dev07
data. The new baseline performance (shown in Ta-
ble 4) is much better than before, due to the im-
proved training data. We then added GBL to this
system by keeping the model combination weights
trained for the previous system, using the N-best
lists generated by the new system, and using the
combined train+dev07 set as a train set for select-
ing similar sentences. We used the GBL parameters
that yielded the best performance in the experiments
described above. As can be seen from Table 4, GBL
again yields an improvement of up to 1.2% absolute
in both BLEU and PER.

System BLEU (%) PER

Baseline 37.9 38.4
GBL 39.2 37.2

Table 4: Effect of GBL on IE system trained with
matched data (eval set).

For the AE task we usedθ = 0.5; however, this
threshold was not tuned extensively. Results using
BLEU similarity are shown in Table 5. The best
result on the eval set yields an improvement of 1.2
BLEU points though only 0.2% reduction in PER.
Overall, results seem to vary with parameter settings
and nature of the test set (e.g. on dev5, used as a test
set, not for optimization, a surprisingly larger im-
provement in BLEU of 2.7 points is obtained!).

Overall, sentence similarities were observed to be
lower for this task. One reason may be that the AE
system includes statistical tokenization of the source
side, which is itself error-prone in that it can split the
same word in different ways depending on the con-

125



Method dev4 dev5 eval

Baseline 30.2/43.5 21.9/48.4 37.8/41.8
GBL 30.3/42.5 24.6/48.1 39.0/41.6

Table 5: AE results (%BLEU/PER,θ = 0.5)

text. Since our similarity measure is word-based,
this may cause similar sentences to fall below the
threshold. The string kernel does not yield any im-
provement over the BLEU-based similarity measure
on this task. One possible improvement would be to
use an extended string kernel that can take morpho-
logical similarity into account.

Example Below we give an actual example of a
translation improvement, showing the source sen-
tence, the 1-best hypotheses of the baseline system
and GBL system, respectively, the references, and
the translations of similar sentences in the graph
neighborhood of the current sentence.
Source: Al+ mE*rp Aymknk {ltqAT Swrp lnA
Baseline: i’m sorry could picture for us
GBL: excuse me could you take a picture of the us
Refs:
excuse me can you take a picture of us
excuse me could you take a photo of us
pardon would you mind taking a photo of us
pardon me could you take our picture
pardon me would you take a picture of us
excuse me could you take a picture of u
Similar sentences:
could you get two tickets for us
please take a picture for me
could you please take a picture of us

6 Related Work

GBL is an instance of semi-supervised learning,
specifically transductive learning. A different form
of semi-supervised learning (self-training) has been
applied to MT by (Ueffing et al., 2007). Ours is
the first study to explore a graph-based learning ap-
proach. In the machine learning community, work
on applying GBL to structured outputs is beginning
to emerge. Transductive graph-based regularization
has been applied to large-margin learning on struc-
tured data (Altun et al., 2005). However, scalability
quickly becomes a problem with these approaches;
we solve that issue by working on transitive closures

as opposed to entire graphs. String kernel represen-
tations have been used in MT (Szedmak, 2007) in
a kernel regression based framework, which, how-
ever, was an entirely supervised framework. Finally,
our approach can be likened to a probabilistic imple-
mentation of translation memories (Maruyana and
Watanabe, 1992; Veale and Way, 1997). Translation
memories are (usually commercial) databases of
segment translations extracted from a large database
of translation examples. They are typically used by
human translators to retrieve translation candidates
for subsequences of a new input text. Matches can
be exact or fuzzy; the latter is similar to the iden-
tification of graph neighborhoods in our approach.
However, our GBL scheme propagates similarity
scores not just from known to unknown sentences
but also indirectly, via connections through other un-
known sentences. The combination of a translation
memory and statistical translation was reported in
(Marcu, 2001); however, this is a combination of
word-based and phrase-based translation predating
the current phrase-based approach to SMT.

7 Conclusion

We have presented a graph-based learning scheme
to implement a consistency model for SMT that
encourages similar inputs to receive similar out-
puts. Evaluation on two small-scale translation tasks
showed significant improvements of up to 2.6 points
in BLEU and 2.8% PER. Future work will include
testing different graph construction schemes, in par-
ticular better parameter optimization approaches and
better string similarity measures. More gains can
be expected when using better domain knowledge
in constructing the string kernels. This may include
e.g. similarity measures that accommodate POS tags
or morphological features, or comparisons of the
syntax trees of parsed sentence. The latter could be
quite easily incorporated into a string kernel or the
related tree kernel similarity measure. Additionally,
we will investigate the effectiveness of this approach
on larger translation tasks.
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