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Abstract The big dog barks
Unsupervised grammar induction models tend Figure 1: Example dependency parse.

to employ relatively simple models of syntax

when Com%"_"red tl? thﬁ" supervised c(:jountzr- Dependency Model with Valence (DMV) by Klein
parts. Traditionally, the unsupervised mod- and Manning (2004). DMV was the first unsu-

els have been kept simple due to tractabil- . . .
ity and data sparsity concerns. In this paper, pervised dependency grammar induction system to

we introduce basic valence frames and lexi-  @chieve accuracy above a right-branching baseline.
cal information into an unsupervised depen- However, DMV is not able to capture some of the

dency grammar inducer and show how this more complex aspects of language. Borrowing some
additional information can be leveraged via  ideas from the supervised parsing literature, we

smoothing. Our model produces state-of-the-  present two new models: Extended Valence Gram-
i;:?sg:;gr: tihni t?(j’vkmOf :\:‘:r“tair‘k’)':;d ?:‘/:" mar (EVG) and its lexicalized extension (L-EVG).
ous work by aimogt 10 pgercentage poinfs. The primary difference _betweeq EVG and DMV is
that DMV uses valence information to determine the
_ number of arguments a head takes but not their cat-
1 Introduction egories. In contrast, EVG allows different distri-

The last decade has seen great strides in statigptions over arguments for different valence slots.
cal natural language parsing. Supervised and senbi-EVG extends EVG by conditioning on lexical in-
supervised methods now provide highly accuratfPrmation as well. T_hls _aIIows L-EVGto _potentlally_
parsers for a number of languages, but require traif&Pture subcategorizations. The downside of adding

ing from corpora hand-annotated with parse tree@dditional conditioning events is that we introduce
Unfortunately, manually annotating corpora withdat@ sparsity problems. Incorporating more valence
parse trees is expensive and time consuming so f8Rd lexical information increases the number of pa-
languages and domains with minimal resources it i&Meters to estimate. A common solution to data
valuable to study methods for parsing without reSParsity in supervised parsing is to add smoothing.
quiring annotated sentences. We show that smoothing can be employed in an un-
In this work, we focus on unsupervised O|epen§upervised fashion as well, and show that mixing
dency parsing. Our goal is to produce a directe®MV: EVG, and L-EVG together produces state-of-

graph of dependency relations (e.g. Figure 1) Whe,rge-a}rt re'sults on this task. To our kpovyledge, thisis
each edge indicates a head-argument relation. Sin@ first time that grammars with differing levels of
the task is unsupervised, we are not given any e551_'e'[all have been succe;sfully combined for unsuper-
amples of correct dependency graphs and only takésed dependency parsing.

words and their parts of speech as input. Most A brief overview of the paper follows. In Section
of the recent work in this area (Smith, 2006; Co2, we discuss the relevant background. Section 3
hen et al., 2008) has focused on variants of thpresents how we will extend DMV with additional
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features. We describe smoothing in an unsupervisedat satisfies the following properties:
context in Section 4. In Section 5, we discuss search _ -
issues. We present our experiments in Section 6 andl- 11€d rules have the same probability.

conclude in Section 7. 2. Rules expanding the same nonterminal are

never tied.
2 Background

3. If Ny — 81 and Ny, — (35 are tied then the ty-
In this paper, the observed variables will be a corpus  jng relation defines a one-to-one mapping be-
of n sentences of texd = s;...s,, and for each tween rules iRy, andRy,, and we say that
word s;; an associated part-of-speegh We denote N; and N, are tied nonterminals.
the set of all words a¥), and the set of all parts-of-
speech ad/.. The hidden variables are parse treefS We see below, we can estimate tied PCFGs using
t = t,...t, and parameterg which specify a dis- standard techniques. Clearly, the tying relation also
tribution overt. A dependency tree is a directed defines an equivalence class over nonterminals. The
acyclic graph whose nodes are the words;inThe tying relation allows us to formulate the distribu-
graph has a single incoming edge for each word ions over trees in terms of rule equivalence classes
each sentence, except one calledrthat of ¢;. An and nonterminal equivalence classes. Supfose
edge from wordi to word j means that worg is the set of rule equivalence classes aids the set
anargumentof word i or alternatively, word is the of nonterminal equivalence classes. Since all rules
headof word j. Note that each word token may peln an equivalence clagshave the same probability
the argument of at most one head, but a head mégondition 1), and_ sincei all the nonterminals in an
have several arguments. equivalence clas® € N have the same distribu-

If parse tree;; can be drawn on a plane above thdion Over rule equivalence classes (condition 1 and
sentence with no crossing edges, it is capeojec- 3)» We can define the set of rule equivalence classes
tive. Otherwise it isnonprojective As in previous 7 associated with a nonterminal equivalence class
work, we restrict ourselves to projective dependenc})+ @nd @ vectod of probabilities, indexed by rule
trees. The dependency models in this paper will pgduivalence classes € R . 0y refers to the sub-
formulated as a particular kind of Probabilistic ConVector off associated with nonterminal equivalence

text Free Grammar (PCFG), described below, ~ ¢lassN, indexed byr € Ry. Since rules in the
same equivalence class have the same probability,

2.1 Tied Probabilistic Context Free Grammars We have that for each € 7, 0, = 0.

. _— Let f(t,r) denote the number of times ruteap-
In order to perform smoothing, we will find useful a . _
class of PCFGs in which the probabilities of certaip ca's In e, and Ietf(t,r)_: Z’“Ef f(t’r)' We
: o see that the complete data likelihood is

rules are required to be the same. This will allow
us to make independence assumptions for smooth- _ t,r) 57 (6,7)
ing purposes without losing information, by giving Pls, t10) = H HHZ( = H Or
analogous rules the same probability.

LetG = (N,7,5S,R,6) be a Probabilistic Con- That is, the likelihood is a product of multinomi-
text Free Grammar with nonterminal symbadl§, als, one for each nonterminal equivalence class, and
terminal symbols7, start symbolS € N, set of there are no constraints placed on the parameters of
productionsR of the form N — 3, N € N, € these multinomials besides being positive and sum-
(MUT)*. LetRy indicate the subset 0 whose ming to one. This means that all the standard es-
left-hand sides aré&/. ¢ is a vector of lengthR|, in-  timation methods (e.g. Expectation Maximization,
dexed by productiond/ — 3 € R. 0_.5 specifies Variational Bayes) extend directly to tied PCFGs.
the probability thatV rewrites tos. We will let 6y Maximum likelihood estimation provides a point
indicate the subvector éfcorresponding t&R . estimate o). However, often we want to incorpo-

A tied PCFG constrains a PCFG with a tying rate information about by modeling itsprior distri-
relation, which is an equivalence relation over rulesution. As a prior, for eaciv € N we will specify a

FERTET FER
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Dirichlet distribution overd y with hyperparameters andQ(t). Kurihara and Sato (2004) show that each
ay. The Dirichlet has the density function: Q(05) is a Dirichlet distribution with parameters

Qp = oy + EQ(t)f(th)
= F(ZFQ??N o)

nor—1 . . .
P(Oylay) = m H 0=, 2.2 Split-head Bilexical CFGs
" reRy In the sections that follow, we frame various de-

Thus the prior ovefl is a product of Dirichlets,which Pendency models as a particular variety of CFGs

is conjugateto the PCFG likelihood function (John- known as split-head bilexical CFGs (Eisner and
son et al., 2007). That is, the posteriB(d]s, t, o) Satta, 1999). These allow us to use the fast Eisner

is also a product of Dirichlets, also factoring into s2"d Satta (1999) parsing algorithm to compute the

Dirichlet for each nonterminaV, where the param- €xPectations required by VB i(m?) time (Eis-

etersa; are augmented by the number of times rul@€r and Blatz, 2007; Johnson, 2007) wherés the
7 is observed in tree: length of the sentence.

In the split-head bilexical CFG framework, each
P(0s,t,a) o P(s,t|0)P(0|a) nonterminal in the grammar is annotated with a ter-
~ H gl t:0)+ar—1 minal symbol. For dependency grammars, these
" annotations correspond to words and/or parts-of-
speech. Additionally, split-head bilexical CFGs re-
We can see that; acts as a pseudocount of the numguire that each word;; in sentence; is represented
ber of timesr is observed prior ta. in a split form by two terminals called its left part
To make use of this prior, we use the Variationab;;. and right parts;;z. The set of these parts con-
Bayes (VB) technique for PCFGs with Dirichlet Pri-stitutes the terminal symbols of the grammar. This
ors presented by Kurihara and Sato (2004). VB esplit-head property relates to a particular type of de-
timates a distribution ovef. In contrast, Expec- pendency grammar in which the left and right depen-
tation Maximization estimates merely a point estidents of a head are generated independently. Note
mate ofd. In VB, one estimates)(t,#), called that like CFGs, split-head bilexical CFGs can be
the variational distribution, which approximates thenade probabilistic.
posterior distributionP(t, §|s, o) by minimizing the
KL divergence ofP from (). Minimizing the KL
divergence, it turns out, is equivalent to maximiz-The most successful recent work on dependency
ing a lower boundF of the log marginal likelihood induction has focused on the Dependency Model
log P(s|a). with Valence (DMV) by Klein and Manning (2004).
- DMV is a generative model in which the head of
log P(sla) > Z/Q(t’é) log P(s,t,0]a) & the sentence is generated and then each head recur-
T Jo

FER

2.3 Dependency Model with Valence

Q(t,0) sively generates its left and right dependents. The
arguments of head{ in direction d are generated
The negative of the lower bound.F, is sometimes by repeatedly deciding whether to generate another
called thefree energy new argument or to stop and then generating the
As is typical in variational approaches, Kuri-argument if required. The probability of deciding
hara and Sato (2004) make certain independence agether to generate another argument is conditioned
sumptions about the hidden variables in the varien H, d and whether this would be the first argument
ational posterior, which will make estimating it (this is the sense in which it models valence). When
simpler. It factorsQ(t,0) = Q(t)Q(¢) = DMV generates an argument, the part-of-speech of
[Tie, Qi(t:) [Tyen Q@(Ox). The goal is to recover that argument is generated givedl andd.
Q(0), the estimate of the posterior distribution over——— ) _ o
Efficiently parsable versions of split-head bilexical CFGs

pgra_me';ers and(t), the ,eSFImate of the p(_)Stenorfor the models described in this paper can be derived usiag th
distribution over trees. Finding a local maximum Offold-unfold grammar transform (Eisner and Blatz, 2007;nJoh

F is done via an alternating maximization @{#) son, 2007).
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S
Rule Description |
Yoarks
S — Yy SelectH as root /\
Yy — Ly Ry Move to split-head representation Loarke Rb“'l”“
[ barksg
Ly — Hp, STOP| dir = L, head = H,val =0 /\
Ly — LYy CONT| dir = L, head = H,val =0 Y dog L aries
|
Ly — Hy, STOP| dir = L, head = H,val =1 /\ barksy,
/ 1 Ldog Raog
Ly — Ly CONT| dir = L, head = H,val =1 | [
Léug dogr
LY —YaLy AgA|dir=L head=H /\
. . . YThe Lo
Figure 2: Rule schema for DMV. For brevity, we omit /Th\ v
the portion of the grammar that handles the right argu+,,.  Rrn. Liog
ments since they are symmetric to the left (all rules areTh'e Th'e
. 'L . /
the same except for the attachment rule where the RHS is " Vbig Ldog
.. PN I
reversed)wal € {0, 1} indicates whether we have made Lyig  Roig  900L
any attachments. [ [
bigr,  bigr

The grammar schema for this model is shown ifFigure 3: DMV split-head bilexical CFG parse of “The
Figure 2. The first rule generates the root of the setig dog barks.”
tence. Note that these rules are ¥, A € V; so _ _ _ _
there is an instance of the first schema rule for each SMith (2006) also investigates two techniques for
part-of-speech.Yy; splits words into their left and Maximizing likelihood while incorporating the lo-
right components.Ly; encodes the stopping deci_callty bias encoqled in the harmonic _|n_|t|§1I|zer for
sion given that we have not generated any argumerPéV'V- One technique, skewed deterministic anneal-

so far. I, encodes the same decision after generaf?d: ameliorates the local maximum problem by flat-
ing one or more arguments., represents the distri- tening the likelihood and adding a bias towards the

bution over left attachments. To extract dependend§!€in and Manning initializer, which is decreased
uring learning. The second technique is structural

relations from these parse trees, we scan for atta _ _ : _
ment rules (e.g.L}, — Y4 L’,) and record that annealing (Smith and Eisner, 2006; Smith, 2006)

A depends orff. The schema omits the rules forWhich penalizes long dependencies initially, grad-

right arguments since they are symmetric. We shoff2!ly weakening the penalty during estimation. If
a parse of “The big dog barks” in Figure?3. hand-annotated dependencies on a held-out set are

Much of the extensions to this work have fo_available for parameter selection, this performs far
etter than EM; however, performing parameter se-

cused on estimation procedures. Klein and Mannirl% ) held th h £ qold d
(2004) use Expectation Maximization to estimat ction on a held-out set without the use of gold de-
rp&ndenmes does not perform as well.

the model parameters. Smith and Eisner (2005) a ) ) ) )

Smith (2006) investigate using Contrastive Estima- pohen_ et al. (2008) mvesjugate using Bayesian
tion to estimate DMV. Contrastive Estimation max-P_”f)rS with D_MV' The two priors they use are the
imizes the conditional probability of the observeol:)'”Chl_(':‘t (Wh'_Ch we use here) and the Logistic Nor-
sentences given a neighborhood of similar unsedf@ Prior. which allows the model to capture correla-
sequences. The results of this approach vary widew)_ns between different distributions. They initialize

based on regularization and neighborhood, but oftdfcind the harmonic initializer of Klein and Manning
outperforms EM. (2004). They find that the Logistic Normal distri-

bution performs much better than the Dirichlet with

2Note that our examples use words as leaf nodes but in o&pis initialization scheme.
unlexicalized models, the leaf nodes are in fact partgpeesh. Cohen and Smith (2009), investigate (concur-
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Rule Description

S — Yy SelectH as root Ldog

Yu — Ly Ry Move to split-head representation o0

|
Ldog
Ly — Hyp STOP| dir = L, head = H,val =0 /\ dos

— r
) ~

YThe Liog
I

Ly — Ly CONT| dir = L, head = H,val =0 The, Thep Ly, v s
Ly — L STOP| dir = L, head = H,val = 1 Ybig The;, Thep Lhog

/ 2 . _ | /////A\\\\\
L'y — LY CONT| dir = L, head = H,val =1 bigz, bigr dogy, Yoig dogy,

_

L% - YaLy ArgA|dir =L, head = H,val =1 bigy, bigr
Ly —Ya H, ArgA|dir=L, head = H,val =0 Figure 5: An example of moving from DMV to EVG

for a fragment of “The big dog.” Boxed nodes indicate

Figure 4: Extended Valence Grammar schema. As béhanges. The key difference is that EVG distinguishes
fore, we omit rules involving the right parts of words. Inbetween the distributions over the argument nearest the
this casepal € {0, 1} indicates whether we are generat-head big) from arguments farther awayge.

ing the nearest argument (0) or not (1). o
ure shows that EVG allows these two distributions to

rently with our work) an extension of this, thebe different (nonterminald, andLj,,) whereas
Shared Logistic Normal prior, which allows differ- DMV forces them to be equivalent (both us g aS
ent PCFG rule distributions to share componentshe nonterminal).

They use this machinery to investigate smoothing

the attachment distributions for (nouns/verbs), and-1 Lexicalization

for learning using multiple languages. All of the probabilistic models discussed thus far
) have incorporated only part-of-speech information
3 Enriched Contexts (see Footnote 2). In supervised parsing of both de-

DMV models the distribution over arauments iCIen_pendencies and constituency, lexical information is
ticallv without regard to their orderg Instead Wecritical (Collins, 1999). We incorporate lexical in-

y It rega S ' " “formation into EVG (henceforth L-EVG) by extend-
propose to distinguish the distribution over the argu- o
ment nearest the head from the distribution of sufird 1€ distributions over argument parts-of-speech
sequent argument3 A to condition on the head wordin addition to the

. . head part-of-speecH, directiond and argument po-
Consider the following changes to the DMV _... P P \and argu P
g . . sitionwv. The argument word distribution is merely
grammar (results shown in Figure 4). First, we will

; . conditioned on part-of-speech; we leave refinin
introduce the ruld.?, — Y4 L/, to denote the deci- . P P g
. g this model to future work.
sion of what argument to generate for positions not : S
In order to incorporate lexicalization, we extend

nearest to the head. Next, instead of haulijg ex- the EVG CFG to allow the nonterminals to be anno-

1 H H 1
pand toH, or Ly, we will expand it toL; (attach tated with both the word and part-of-speech of the

to nearest argument and st_op)l@ (attach to. NON head. We first remove the old ruléy; — Ly Ry
nearest argument and continue). We call thisBke
for eachH € V.. Then we mark each nonter-

ter;?lseg \c/zgl:}cnrcefeeerjgnmn;?:v;)r;si der the phrase “thginal which is annotated with a part-of-speech as
’ so annotated with its head, with a single excep-
big hungry dog” (Figure 5). We would expect thal g P

R ttion: Y. We add a new nonterminaly ;, for each
distribution over the nearest left argument for “dog” H H,h

. >H ¢ V.,h € V,, and the ruley’ Yy, and
to be different than farther left arguments. The flg-YHh _j Lin é’Hh The ruIeYIf : Y}f: cor-

3McClosky (2008) explores this idea further in an un-F€Sponds to selecting the word, given its part-of-
smoothed grammar. speech.
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4 Smoothing events Ny ... N(;_1) in common (differing in a

conditioning eventV;,), and with rule sets of the

In supervised estimation one common smoothingame cardinality. 163 is our model's PCEG. we can
technique islinear interpolation (Jelinek, 1997). define a new ti)gd PCF&' — (N',T,S 7’€’ %)

This section explallns how Imear_mtgrpolatlon can, v ere N = N U {Nbé INEB, (€ {1’2}}’
be represented using a PCFG with tied rule proba- . . .
. . . meaning for each nontermindV in the backoff
bilities, and how one might estimate smoothing pa- . b ~rb
: ; set we add two nonterminald’®, N2 represent-
rameters in an unsupervised framework. . o
o . .ing each distributionP, and P,. The new rule
In many probabilistic models itis common to estl-set R/ (U R’) where for al N € B
mate the distribution of some eventonditioned on NeN N

) . rule setR)y, = {N — N% |¢e{1,2}}, mean-
some set of context informatioR(z| N ... N)) _u RN, { = | G.{ . }}.
. ) . \ .ing at N in G’ we decide which distributiod®; , P,
by smoothing it with less complicated condi-

. S . . . ._to use; and forN € B and ¢ < {1,2},
tional distributions.  Using linear interpolation ., b o

. b, = {N" — 8| N — € Ry} indicating a
we model P(z|N(y) ... Nigy) as a weighted aver- 30 ¢ distribution?,. For nonterminalsy ¢ B
age of two distributions\y P (z|N(y), ..., Ny ) + , ¢ '

= . Finally, for eachN, M we
A2 P2 (x| Ny, ..., N—1y), where the distribution Ry , RN. W § € b
. . .specify a tying relation between the rules?,
P, makes an independence assumption by droppin ; . 2_ .
o dR’ .., grouping together analogous rules. This
the conditioning evendV ;. MP2 . .
. has the effect of making an independence assump-
In a PCFG a nonterminaV can encode a collec- .. o "
tion aboutP,, namely that it ignores the condition-

tion of conditioning events\yy, ... N, andfy de- ing event\,,), drawing from a common distribution
termines a distribution conditioned @y ... N h i terminaV® | itt
over events represented by the rules Ry. For each fime a nontermin IS rewritten.

: N For example, in EVG to smootf?(A = DT |
example, in EVG the nonterminaly , encodes .

. L. NN . d = left,H = NN,v = 0) with (A = DT |

three separate pieces of conditioning mformatlond ~ leftw — 0 define the backoff set t
the directiond = left, the head part—of-speechb —Llef,; _V )vlvethemet ((jedac o set to
H = NN, and the argument position = 0; e {Ljy | H € V-}. In the extended grammar we

QL}VNHYU \w, represents the probability of gener_dleflne tf;)e glng relatlont :;1) form rulet equwaflence )
ating JJ as the first left argument oNN. Sup- classes by Ine argument ey generate, 1.€. Tor eac

pose in EVG we are interested in smoothiRgA | argument4 € V., we have a rule equivalence class

d, H,v) with a component that excludes the hea({Lllalr)2 —YaHy|HE€ Vr}-
conditioning event. Using linear interpolation, this We can see that in grammaf eachN € B even-
would be: tually ends up rewriting to one d¥'’s expansiong’

in G. There are two indirect paths, one throuyht
P(A[d,H,v) =MPi(A|d Hv)+ P (A|d,v) and one throughiV®2. Thus this defines the proba-

We will estimate PCFG rules with linearly interpo-blhty. C.Jf N—F n G, H.N Hﬁb’ as thebprobab|_llt.y of
o . . . rewriting N asgin G’ via N°* and N°2. That is:
lated probabilities by creating a tied PCFG which

is extended by adding rules that select between the,gNﬁg —

main distribution?”; and the backoff distributior,

and also rules that correspond to draws from thosehe example in Figure 6 shows the probability that

distributions. We will make use of tied rule proba—L}log rewrites toYy;, dog;, in grammarG.

bilities to make the independence assumption in the Typically when smoothing we need to incorporate

backoff distribution. the prior knowledge that conditioning events that
We still use the original grammar to parse the serkave been seen fewer times should be more strongly

tence. However, we estimate the parameters in tsenoothed. We accomplish this by setting the Dirich-

extended grammar and then translate them back intet hyperparameters for eadfi — N N — N?2

the original grammar for parsing. decision to K, 2K), whereK = |R s, | is the num-
More formally, supposé8 C N is a set of non- ber of rewrite rules forA. This ensures that the

terminals (called the backoff set) with conditioningmodel will only start to ignore the backoff distribu-

ON_NP1 ¢Nb1—>ﬁ + On_ b2 ¢sz—>,8
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p Lélog Lélog initializes the attachment probabilities to favor ar-
Pe ( P ) — Pu Ly + P L2 guments that appear more closely in the data. This
Voig oo starts EM in a state preferring shorter attachments.
Since our goal is to expand the model to incor-
Figure 6: Using linear interpolation to smooﬂjiog —  porate lexical information, we want an initializa-
Yyig dogyr: The first component represents the distrition scheme which does not depend on the details
bution fully conditioned on headog, while the second of DMV. The method we use is to creald sets of
component represents the distribution ignoring the heag .5nqom initial settings and to run VB some small

Ypig  dogr Ypig  dogr

cr?ndit:org?b% even}t/. Thcils later is} acpomplishe?bzby tyingnumber of iterations (40 in all our experiments) for
the rule Ly,, — Ybig dogy, 10, for instance.L.,; — each initial setting. For each of th&/ sets, the

. 1bo . .
Yoig catr, Lyign — Yoig fishy, etc. model with the best free energy of the runs is

tion after having seen a sufficiently large number of'€n 'un out until convergence (as measured by like-

training examples® lihood of a held-out data set); the other models are
pruned away. In this paper we uge = 20 and

4.1 Smoothed Dependency M odels M = 50.

Our first experiments examine smoothing the dis- For the bth setting, we draw a random sample

tributions over an argument in the DMV and EvGfrom the prior 6¢).  We set the initialQ(t) =

models. In DMV we smooth the probability of argu-P(t/s,0*)) which can be calculated using the

mentA given head part-of-speedii and directiond  Expectation-Maximization E-Stel§)(6) is then ini-

with a distribution that ignoregZ. In EVG, which tialized using the standard VB M-step.

conditions onH, d and argument positionwe back ~ For the Lexicalized-EVG, we modify this proce-

off two ways. The first is to ignore and use back- dure slightly, by first running\/ B smoothed EVG

off conditioning eventH, d. This yields a backoff models for 40 iterations each and selecting the best

distribution with the same conditioning informationmodel in each cohort as before; each L-EVG dis-

as the argument distribution from DMV. We call thistribution is initialized from its corresponding EVG

EVG smoothed-skip-val. distribution. The newP(A|h, H,d,v) distributions
The second possibility is to have the backoffre set initially to their corresponding(A|H, d, v)

distribution ignore the head part-of-speethand values.

use backoff conditioning event d. This assumes

that arguments share a common distribution acro$s Results

heads. We call this EVG smoothed-skip-head. As .

we see below, backing off by ignoring the part-of-We trained on the standard Penn Treebank WSJ cor-

speech of the headl worked better than ignoring pus (Marcus et al., 1993). Following Klein and Man-
the argument position ning (2002), sentences longer than 10 words after

For L-EVG we smooth the argument part_Of_removing punctuation are ignored. We refer to this

speech distribution (conditioned on the head worciﬁ""riant as WSJ10. Following Cohen et al. (2008),

with the unlexicalized EVG smoothed-skip-head"® train on sections 2-21, used 22 as a held-out de-
model. velopment corpus, and present results evaluated on

section 23. The models were all trained using Varia-

5 |Initialization and Search issues tional Bayes, and initialized as described in Section
, ) _ 5. To evaluate, we follow Cohen et al. (2008) in us-
Klein and Manning (2004) strongly emphasize thg,q the mean of the variational posterior Dirichlets
importance of smart initialization in getting good ;4 4 point estimat@. For the unsmoothed models

performance from DMV. The likelihood function is \\,a gecode by selecting the Viterbi parse gi#éror
full of local maxima and different initial parameterargmaxtp(ﬂs 7).

values yield vastly different quality solutions. They For the smoothed models we find the Viterbi parse

offer what they call a “harmonic initializer” which ¢ o0 thed CFG, but use the smoothed prob-

“We set the other Dirichlet hyperparameters to 1. abilities. We evaluate against the gold standard
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Dir. Acc. ‘ ‘ Dir,VaI‘ Arg ‘ ProbH Dir,Val ‘ Arg ‘ Prob‘

Model ‘ Variant

DMV harmonic init 46.9* left, O NN 0.65 right, 0 | NN 0.26

DMV random init 55.7 8.0) NNP 0.18 RB 0.23

DMV log normal-families 59.4* DT 0.12 NNS | 0.12

DMV shared log normal-families 62.4; IN 0.11

DMV smoothed 61.2 (1.2) left, 1 CcC 0.35 || right,1 | IN 0.78

EVG random init 53.3(.1) RB 0.27

EVG smoothed-skip-val 62.1 (1.9) IN 0.18

EVG | smoothed-skip-head 65060 Table 2: Most likely arguments given valence and direc-
L-EVG | smoothed 68.8 (4.5) tion, according to smoothing distributid®(arg|dir, val)

in EVG smoothed-skip-head model with lowest free en-
Table 1: Directed accuracy (DA) for WSJ10, section 23grqy.

* 1 indicate results reported by Cohen et al. (2008), Co-
hen and Smith (2009) respectively. Standard deviations )
over 10 runs are given in parentheses 7 Conclusion

We present a smoothing technique for unsupervised
PCFG estimation which allows us to explore more

dependencies for section 23, which were extractetPPhisticated dependency grammars. Our method
from the phrase structure trees using the standaf@MPpines linear interpolation with a Bayesian prior

rules by Yamada and Matsumoto (2003). We medhat ensures the backoff distribution receives proba-
sure the percent accuracy of the directed dependerfety mass. Estimating the smoothed model requires

edges. For the lexicalized model, we replaced ajNnning the standard Variational Bayes on an ex-
words that were seen fewer than 100 times witfended PCFG. We used this technique to estimate a

“UNK.” We ran each of our systems 10 times, anderies of dependency grammars which extend DMV

report the average directed accuracy achieved. THMdth additional valence and lexical information. We
results are shown in Table 1. We compare to worfound that both were helpful in learning English de-

by Cohen et al. (2008) and Cohen and Smith (Zoogz_endency grammars. Our L-EVG model gives the
est reported accuracy to date on the WSJ10 corpus.

Looking at Table 1, we can first of all see the Future work includes using lexical information
benefit of randomized initialization over the har-more deeply in the model by conditioning argument
monic initializer for DMV. We can also see a largewords and valence on the lexical head. We suspect
gain by adding smoothing to DMV, topping eventhat successfully doing so will require using much
the logistic normal prior. The unsmoothed EVG aclarger datasets. We would also like to explore us-
tually performs worse than unsmoothed DMV, buing our smoothing technique in other models such
both smoothed versions improve even on smoothets HMMs. For instance, we could do unsupervised
DMV. Adding lexical information (L-EVG) yields a HMM part-of-speech induction by smooth a tritag
moderate further improvement. model with a bitag model. Finally, we would like to

learn the parts-of-speech in our dependency model

As the greatest improvement comes from movingom text and not rely on the gold-standard tags.
to model EVG smoothed-skip-head, we show in Ta-

ble 2 the most probable arguments for each dir, Acknowledgements

using the mean of the appropriate variational Dirich=_, . .
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