
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 92–100,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Efficiently Parsable Extensions to Tree-Local Multicomponent TAG

Rebecca Nesson
School of Engineering
and Applied Sciences
Harvard University

Cambridge, MA
nesson@seas.harvard.edu

Stuart M. Shieber
School of Engineering
and Applied Sciences
Harvard University

Cambridge, MA
shieber@seas.harvard.edu

Abstract

Recent applications of Tree-Adjoining Gram-
mar (TAG) to the domain of semantics as well
as new attention to syntactic phenomena have
given rise to increased interested in more ex-
pressive and complex multicomponent TAG
formalisms (MCTAG). Although many con-
structions can be modeled using tree-local
MCTAG (TL-MCTAG), certain applications
require even more flexibility. In this pa-
per we suggest a shift in focus from con-
straining locality and complexity through tree-
and set-locality to constraining locality and
complexity through restrictions on the deriva-
tional distance between trees in the same tree
set in a valid derivation. We examine three
formalisms, restricted NS-MCTAG, restricted
Vector-TAG and delayed TL-MCTAG, that
use notions of derivational distance to con-
strain locality and demonstrate how they
permit additional expressivity beyond TL-
MCTAG without increasing complexity to the
level of set local MCTAG.

1 Introduction

Tree-Adjoining Grammar (TAG) has long been pop-
ular for natural language applications because of its
ability to naturally capture syntactic relationships
while also remaining efficient to process. More re-
cent applications of TAG to the domain of seman-
tics as well as new attention to syntactic phenomena
such as scrambling have given rise to increased in-
terested in multicomponent TAG formalisms (MC-
TAG), which extend the flexibility, and in some
cases generative capacity of the formalism but also

have substantial costs in terms of efficient process-
ing. Much work in TAG semantics makes use of
tree-local MCTAG (TL-MCTAG) to model phenom-
ena such as quantifier scoping, Wh-question forma-
tion, and many other constructions (Kallmeyer and
Romero, 2004; Romero et al., 2004). Certain ap-
plications, however, appear to require even more
flexibility than is provided by TL-MCTAG. Scram-
bling is one well-known example (Rambow, 1994).
In addition, in the semantics domain, the use of a
new TAG operation, flexible composition, is used to
perform certain semantic operations that seemingly
cannot be modeled with TL-MCTAG alone (Chiang
and Scheffler, 2008) and in work in synchronous
TAG semantics, constructions such as nested quanti-
fiers require a set-local MCTAG (SL-MCTAG) anal-
ysis (Nesson and Shieber, 2006).

In this paper we suggest a shift in focus from
constraining locality and complexity through restric-
tions that all trees in a tree set must adjoin within
a single tree or tree set to constraining locality and
complexity through restrictions on the derivational
distance between trees in the same tree set in a
valid derivation. We examine three formalisms, two
of them introduced in this work for the first time,
that use derivational distance to constrain locality
and demonstrate by construction of parsers their re-
lationship to TL-MCTAG in both expressivity and
complexity. In Section 2 we give a very brief in-
troduction to TAG. In Section 3 we elaborate fur-
ther the distinction between these two types of lo-
cality restrictions using TAG derivation trees. Sec-
tion 4 briefly addresses the simultaneity requirement
present in MCTAG formalisms but not in Vector-

92

S

X

a

X↓ Y

b

S

X

a

Y

b

S

X

a

Y

b
Y∗

c

Y

Z

S

X

a Y

b c

Y

Z

⇒ ⇒

Figure 1: An example of the TAG operations substitu-
tion and adjunction.

TAG formalisms and argues for dropping the re-
quirement. In Sections 5 and 6 we introduce two
novel formalisms, restricted non-simultaneous MC-
TAG and restricted Vector-TAG, respectively, and
define CKY-style parsers for them. In Section 7
we recall the delayed TL-MCTAG formalism intro-
duced by Chiang and Scheffler (2008) and define a
CKY-style parser for it as well. In Section 8 we
explore the complexity of all three parsers and the
relationship between the formalisms. In Section 9
we discuss the linguistic applications of these for-
malisms and show that they permit analyses of some
of the hard cases that have led researchers to look
beyond TL-MCTAG.

2 Background

A tree-adjoining grammar consists of a set of el-
ementary tree structures of arbitrary depth, which
are combined by operations of adjunction and sub-
stitution. Auxiliary trees are elementary trees in
which the root and a frontier node, called the foot
node and distinguished by the diacritic ∗, are labeled
with the same nonterminalA. The adjunction opera-
tion entails splicing an auxiliary tree in at an internal
node in an elementary tree also labeled with nonter-
minal A. Trees without a foot node, which serve as
a base for derivations and may combine with other
trees by substitution, are called initial trees. Exam-
ples of the adjunction and substitution operations are
given in Figure 1. For further background, refer to
the survey by (Joshi and Schabes, 1997).

Shieber et al. (1995) and Vijay-Shanker (1987)
apply the Cocke-Kasami-Younger (CKY) algorithm
first introduced for use with context-free grammars
in Chomsky normal form (Kasami, 1965; Younger,
1967) to the TAG parsing problem to generate
parsers with a time complexity of O(n6|G|2). In

order to clarify the presentation of our extended TL-
MCTAG parsers below, we briefly review the algo-
rithm of Shieber et al. (1995) using the inference
rule notation from that paper. As shown in Figure 2,
items in CKY-style TAG parsing consist of a node
in an elementary tree and the indices that mark the
edges of the span dominated by that node. Nodes,
notated α@a◦, are specified by three pieces of infor-
mation: the identifier α of the elementary tree the
node is in, the Gorn address a of the node in that
tree1, and a diacritic, ◦, indicating that an adjunc-
tion or substitution is still available at that node or •,
indicating that one has already taken place.

Each item has four indices, indicating the left and
right edges of the span covered by the node as well
as any gap in the node that may be the result of a
foot node dominated by the node. Nodes that do
not dominate a foot node will have no gap in them,
which we indicate by the use of underscores in place
of the indices for the gap. To limit the number of in-
ference rules needed, we define the following func-
tion i ∪ j for combining indices:

i ∪ j =





i j =
j i =
i i = j
undefined otherwise

The side conditions Init(α) and Aux(α) hold if α
is an initial tree or an auxiliary tree, respectively.
Label(α@a) specifies the label of the node in tree
α at address a. Ft(α) specifies the address of the
foot node of tree α. Adj(α@a, β) holds if tree β
may adjoin into tree α at address a. Subst(α@a, β)
holds if tree β may substitute into tree α at address
a. These conditions fail if the adjunction or substitu-
tion is prevented by constraints such as mismatched
node labels.

Multi-component TAG (MCTAG) generalizes
TAG by allowing the elementary items to be sets
of trees rather than single trees (Joshi and Schabes,
1997). The basic operations are the same but all
trees in a set must adjoin (or substitute) into another
tree or tree set in a single step in the derivation.

An MCTAG is tree-local if tree sets are required
to adjoin within a single elementary tree (Weir,

1A Gorn address uniquely identifies a node within a tree.
The Gorn address of the root node is ε. The jth child of the
node with address i has address i · j.

93

Goal Item: 〈α@ε•, 0, , , n〉 Init(α)
Label(α@ε) = S

Terminal Axiom: 〈α@a•, i− 1, , , i〉 Label(α@a) = wi

Empty Axiom: 〈α@a•, i, , , i〉 Label(α@a) = ε

Foot Axiom: 〈α@Ft(α)◦, p, p, q, q〉 Aux(α)

Unary Complete: 〈α@(a · 1)•, i, j, k, l〉 α@(a · 2) undefined
〈α@a◦, i, j, k, l〉

Binary Complete: 〈α@(a · 1)•, i, j, k, l〉, 〈α@(a · 2)•, l, j′, k′,m〉
〈α@a◦, i, j ∪ j′, k ∪ k′,m〉

Adjoin: 〈β@ε•, i, p, q, l〉, 〈α@a◦, p, j, k, q〉 Adj(α@a, β)
〈α@a•, i, j, k, l〉

No Adjoin: 〈α@a◦, i, j, k, l〉
〈α@a•, i, j, k, l〉

Substitute: 〈β@ε•, i, , , l〉 Subst(α@a, β)
〈α@a•, i, , , l〉

Figure 2: The CKY algorithm for TAG

1988). Although tree-local MCTAG (TL-MCTAG)
has the same generative capacity as TAG (Weir,
1988), the conversion to TAG is exponential and
the TL-MCTAG formalism is NP-hard to recognize
(Søgaard et al., 2007). An MCTAG is set-local
if tree sets required to adjoin within a single ele-
mentary tree set (Weir, 1988). Set-local MCTAG
(SL-MCTAG) has equivalent expressivity to linear
context-free rewriting systems and recognition is
provably PSPACE complete (Nesson et al., 2008).

3 Domains of Locality and Derivation
Trees

The domains of locality of TL-MCTAG and SL-
MCTAG (and trivially, TAG) can be thought of as
lexically defined. That is, all locations at which the
adjunction of one tree set into another may occur
must be present within a single lexical item. How-
ever, we can also think of locality derivationally. In
a derivationally local system the constraint is on the

relationships allowed between members of the same
tree set in the derivation tree.

TAG derivation trees provide the information
about how the elementary structures of the grammar
combine that is necessary to construct the derived
tree. Nodes in a TAG derivation tree are labeled with
identifiers of elementary structures. One elementary
structure is the child of another in the derivation tree
if it adjoins or substitutes into it in the derivation.
Arcs in the derivation tree are labeled with the ad-
dress in the target elementary structure at which the
operation takes place.

In MCTAG the derivation trees are often drawn
with identifiers of entire tree sets as the nodes of
the tree because the lexical locality constraints re-
quire that each elementary tree set be the deriva-
tional child of only one other tree set. However, if
we elaborate the derivation tree to include a node for
each tree in the grammar rather than only for each
tree set we can see a stark contrast in the derivational

94

S

A B

ε ε

A∗ B∗a

b

{ }A

a

B

A∗ B∗

A B

b{ }

1:

2:

3:

1

2a 2b

3a 3b

3a 3b

2a 2b

···

···

Figure 3: An example SL-MCTAG grammar that gener-
ates the language ww and associated derivation tree that
demonstrating an arbitrarily long derivational distance
between the trees of a given tree set and their nearest com-
mon ancestor. Note that if this grammar is interpreted as
a TL-MCTAG grammar only two derivations are possible
(for the strings aa and bb).

locality of these two formalisms. In TL-MCTAG
all trees in a set must adjoin to the same tree. This
means that they must all be siblings in the derivation
tree. In SL-MCTAG, on the other hand, it is possi-
ble to generate derivations with arbitrarily long dis-
tances before the nearest common ancestor of two
trees from the same elementary tree set is reached.
An example SL-MCTAG grammar that can produce
an arbitrarily long derivational distance to the near-
est common ancestor of the trees in a given tree set
is given in Figure 3.

Chiang and Scheffler (2008) recently introduced
one variant of MCTAG, delayed Tree-Local MC-
TAG (delayed TL-MCTAG) that uses a derivational
notion of locality. In this paper we introduce two ad-
ditional derivationally local TAG-based formalisms,
restricted non-simultaneous MCTAG (restricted NS-
MCTAG) and restricted Vector TAG (restricted V-
TAG) and demonstrate by construction of parsers
how each gives rise to a hierarchy of derivation-
ally local formalisms with a well-defined efficiency
penalty for each step of derivational distance permit-
ted.

4 The Simultaneity Requirement

In addition to lexical locality constraints the defini-
tion of MCTAG requires that all trees from a set ad-

join simultaneously. In terms of well-formed deriva-
tion trees, this amounts to disallowing derivations
in which a tree from a given set is the ancestor of
a tree from the same tree set. For most linguistic
applications of TAG, this requirement seems natu-
ral and is strictly obeyed. There are a few appli-
cations, including flexible composition and scram-
bling in free-word order languages that benefit from
TAG-based grammars that drop the simultaneity re-
quirement (Chiang and Scheffler, 2008; Rambow,
1994). From a complexity perspective, however,
checking the simultaneity requirement is expensive
(Kallmeyer, 2007). As a result, it can be advan-
tageous to select a base formalism that does not
require simultaneity even if the grammars imple-
mented with it do not make use of that additional
freedom.

5 Restricted Non-simultaneous MCTAG

The simplest version of a derivationally local TAG-
based formalism is most similar to non-local MC-
TAG. There is no lexical locality requirement at all.
In addition, we drop the simultaneity requirement.
Thus the only constraint on elementary tree sets is
the limit, d, on the derivational distance between
the trees in a given set and their nearest common
ancestor. We call this formalism restricted non-
simultaneous MCTAG. Note that if we constrain d to
be one, this happens to enforce both the derivational
delay limit and the lexical locality requirement of
TL-MCTAG.

A CKY-style parser for restricted NS-MCTAG
with a restriction of d is given in Figure 4. The items
of this parser contain d lists, Λ1, . . . ,Λd, called his-
tories that record the identities of the trees that have
already adjoined in the derivation in order to enforce
the locality constraints. The identities of the trees in
a tree set that have adjoined in a given derivation are
maintained in the histories until all the trees from
that set have adjoined. Once the locality constraint
is checked for a tree set, the Filter side condition
expunges those trees from the histories. A tree is
recorded in this history list with superscript i, where
i is the derivational distance between the location
where the recorded tree adjoined and the location of
the current item. The locality constraint is enforced
at the point of adjunction or substitution where the

95

Goal Item Init(α1)
〈α0@ε•, 0, , , n, ∅, . . . , ∅〉 Label(α0@ε) = S

|α| = 1
Terminal Axiom

〈αx@a•, i− 1, , , i, ∅, . . . , ∅〉 Label(αx@a) = wi
Empty Axiom

〈αx@a•, i, , , i, ∅, . . . , ∅〉 Label(αx@a) = ε
Foot Axiom

〈αx@Ft(αx)◦, p, p, q, q, ∅, . . . , ∅〉 Aux(αx)
Unary Complete

〈αx@(a · 1)•, i, j, k, l,Λ1, . . . ,Λd〉 αx@(a · 2) undefined
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉

Binary Complete Filter(Λ1
1 ∪ Λ1

2, . . . ,
〈αx@(a · 1)•, i, j, k, l,Λ1

1, . . . ,Λ
d
1〉〈αx@(a · 2)•, l, j′, k′,m,Λ1

2, . . . ,Λ
d
2〉 Λd1 ∪ Λd2) =

〈αx@a◦, i, j ∪ j′, k ∪ k′,m,Λ1, . . . ,Λd〉 Λ1, . . . ,Λd

Adjoin: Adj(αx@a, βy)
〈βy@ε•, i, p, q, l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉〈αx@a◦, p, j, k, q,Λ1

2, . . . ,Λ
d
2〉 Filter(Λ1

2 ∪ {βy},Λ2
2 ∪ Λ1

1,

〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉 . . . ,Λd2 ∪ Λd−1
1) =

Λ1, . . . ,Λd

Substitute:
〈βy@ε•, i, , , l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉 Subst(αx@a, βy)

〈αx@a•, i, , , l,Λ1, . . . ,Λd〉 Filter({βy},Λ1
1, . . . ,Λ

d−1
1)

= Λ1, . . . ,Λd

No Adjoin:
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉
〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉

Figure 4: Axioms and inference rules for the CKY algorithm for restricted NS-MCTAG with a restriction of d.

history at the limit of the permissible delay must be
empty for the operation to succeed.

6 Restricted V-TAG

A Vector-TAG (V-TAG) (Rambow, 1994) is similar
to an MCTAG in that the elementary structures are
sets (or vectors) of TAG trees. A derivation in a V-
TAG is defined as in TAG. There is no locality re-
quirement or other restriction on adjunction except
that if one tree from a vector is used in a derivation,
all trees from that vector must be used in the deriva-
tion. The trees in a vector may be connected by
dominance links between the foot nodes of auxiliary
trees and any node in other trees in the vector. All
adjunctions must respect the dominance relations in
that a node η1 that dominates a node η2 must appear
on the path from η2 to the root of the derived tree.
The definition of V-TAG is very similar to that of

non-local MCTAG as defined by Weir (1988) except
that in non-local MCTAG all trees from a tree set are
required to adjoin simultaneously.

Restricted V-TAG constrains V-TAG in several
ways. First, the dominance chain in each elementary
tree vector is required to define a total order over
the trees in the vector. This means there is a sin-
gle base tree in each vector. Note also that all trees
other than the base tree must be auxiliary trees in or-
der to dominate other trees in the vector. The base
tree may be either an initial tree or an auxiliary tree.
Second, a restricted V-TAG has a restriction level,
d, that determines the largest derivational distance
that may exists between the base tree and the high-
est tree in a tree vector in a derivation. Restricted
V-TAG differs from restricted NS-MCTAG in one
important respect: the dominance requirements of
restricted V-TAG require that trees from the same

96

set must appear along a single path in the derived
tree, whereas in restricted NS-MCTAG trees from
the same set need not adhere to any dominance rela-
tionship in the derived tree.

A CKY-style parser for restricted V-TAG with re-
striction level d is given in Figure 5. Parsing is sim-
ilar to delayed TL-MCTAG in that we have a set
of histories for each restriction level. However, be-
cause of the total order over trees in a vector, the
parser only needs to maintain the identity of the
highest tree from a vector that has been used in the
derivation along with its distance from the base tree
from that vector. The Filter side condition accord-
ingly expunges trees that are the top tree in the dom-
inance chain of their tree vector. The side conditions
for the Adjoin non-base rule enforce that the domi-
nance constraints are satisfied and that the deriva-
tional distance from the base of a tree vector to its
currently highest adjoined tree is maintained accu-
rately. We note that in order to allow a non-total or-
dering of the trees in a vector we would simply have
to record all trees in a tree vector in the histories as
is done in the delayed TL-MCTAG parser.

7 Delayed TL-MCTAG

Chiang and Scheffler (2008) introduce the de-
layed TL-MCTAG formalism which makes use of
a derivational distance restriction in a somewhat dif-
ferent way. Rather than restricting the absolute dis-
tance between the trees of a set and their nearest
common ancestor, given a node α in a derivation
tree, delayed TL-MCTAG restricts the number of
tree sets that are not fully dominated by α. Bor-
rowing directly from Chiang and Scheffler (2008),
Figure 7 gives two examples.

Parsing for delayed TL-MCTAG is not discussed
by Chiang and Scheffler (2008) but can be accom-
plished using a similar CKY-style strategy as in the
two parsers above. We present a parser in Fig-
ure 6. Rather than keeping histories that record
derivational distance, we keep an active delay list
for each item that records the delays that are active
(by recording the identities of the trees that have ad-
joined) for the tree of which the current node is a
part. At the root of each tree the active delay list is
filtered using the Filter side condition to remove all
tree sets that are fully dominated and the resulting

Figure 7: Examples of 1-delay (top) and 2-delay (bottom)
taken from Chiang and Scheffler (2008). The delays are
marked with dashed boxes on the derivation trees.

list is checked using the Size to ensure that it con-
tains no more than d distinct tree sets where d is the
specified delay for the grammar. The active delays
for a given tree are passed to its derivational parent
when it adjoins or substitutes.

Delayed TL-MCTAG differs from both of the pre-
vious formalisms in that it places no constraint on
the length of a delay. On the other hand while
the previous formalisms allow unlimited short de-
lays to be pending at the same time, in delayed TL-
MCTAG, only a restricted number of delays may be
active at once. Similar to restricted V-TAG, there
is no simultaneity requirement, so a tree may have
another tree from the same set as an ancestor.

8 Complexity

The complexity of the restricted NS-MCTAG and
restricted V-TAG parsers presented above depends
on the number of possible histories that may appear
in an item. For each step of derivational distance
permitted between trees of the same set, the corre-
sponding history permits many more entries. His-
tory Λ1 may contain trees that have adjoined into
the same tree as the node of the current item. The
number of entries is therefore limited by the num-
ber of adjunction sites in that tree, which is in turn
limited by the number of nodes in that tree. We will
call the maximum number of nodes in a tree in the
grammar t. Theoretically, any tree in the grammar
could adjoin at any of these adjunction sites, mean-
ing that the number of possible values for each entry
in the history is bounded by the size of the grammar
|G|. Thus the size of Λ1 is O(|G|t). For Λ2 the en-

97

Unary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1, . . . ,Λd〉 αx@(a · 2) undefined
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉

Binary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1

1, . . . ,Λ
d
1〉〈αx@(a · 2)•, l, j′, k′,m,Λ1

2, . . . ,Λ
d
2〉

〈αx@a◦, i, j ∪ j′, k ∪ k′,m,Λ1
1 ∪ Λ1

2, . . . ,Λ
d
1 ∪ Λd2〉

Adjoin base: Adj(αx@a, β1)
〈β1@ε•, i, p, q, l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉〈αx@a◦, p, j, k, q,Λ1

2, . . . ,Λ
d
2〉 Filter(Λ1

2 ∪ {β1},Λ2
2 ∪ Λ1

1,

〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉 . . . ,Λd2 ∪ Λd−1
1) =

Λ1, . . . ,Λd

Adjoin non-base:
〈βy@ε•, i, p, q, l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉〈αx@a◦, p, j, k, q,Λ1

2, . . . ,Λ
d
2〉 Adj(αx@a, βy)

〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉 Filter(Λ1
2′ ,Λ

2
2′ ∪ Λ1

1, . . . ,

for unique Λi2 s.t. βy−1 ∈ Λi2,Λ
i
2′ = (Λi2 ∪ Λi−1

1 ∪ {βy})− {βy−1} Λd2′ ∪ Λd−1
1) =

for Λi2 s.t. βy−1 /∈ Λi2,Λ
i
2′ = Λi2 ∪ Λi−1

1 Λ1, . . . ,Λd

Substitute:
〈β1@ε•, i, , , l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉 Subst(αx@a, β1)

〈αx@a•, i, , , l,Λ1, . . . ,Λd〉 Filter({β1},Λ1
1, . . . ,Λ

d−1
1)

= Λ1, . . . ,Λd

No Adjoin:
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉
〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉

Figure 5: Inference rules for the CKY algorithm for restricted V-TAG with a restriction of d. Item form, goal item and
axioms are omitted because they are identical to those in restricted NS-MCTAG parser.

tries correspond to tree that have adjoined into a tree
that has adjoined into the tree of the current item.
Thus, for each of the t trees that may have adjoined
at a derivational distance of one, there are t more
trees that may have adjoined at a derivational dis-
tance of two. The size of Λ2 is therefore |G|t2 . The
combined size of the histories for a grammar with a

delay or restriction of d is therefore O(|G|
∑d

i=1
td).

Replacing the sum with its closed form solution, we

have O(|G|
td+1−1

t−1
−1) histories.

Using the reasoning about the size of the histories
given above, the restricted NS-MCTAG parser pre-

sented here has a complexity of O(n6 |G|1+ td+1−1
t−1),

where t is as defined above and d is the limit on de-
lay of adjunction. For a tree-local MCTAG, the com-
plexity reduces to O(n6 |G|2+t). For the linguis-
tic applications that motivate this chapter no delay
greater than two is needed, resulting in a complexity
of O(n6 |G|2+t+t2).

The same complexity analysis applies for re-

stricted V-TAG. However, we can provide a some-
what tighter bound by noting that the rank, r, of
the grammar—how many tree sets adjoin in a sin-
gle tree—and the fan out, f of the grammar—how
many trees may be in a single tree set—are limited
by t. That is, a complete derivation containing |D|
tree sets can contain no more than t |D| individual
trees and also no more than rf |D| individual trees.
In the restricted V-TAG algorithm we maintain only
one tree from a tree set in the history at a time, so
rather than maintaining O(t) entries in each history,
we only need to maintain the smaller O(r) entries.

The complexity of the delayed TL-MCTAG
parser depends on the number of possible active de-
lay lists. As above, each delay list may have a maxi-
mum of t entries for trees that adjoin directly into it.
The restriction on the number of active delays means
that the active delay lists passed up from these child
nodes at the point of adjunction or substitution can
have size no more than d. This results in an addi-
tional td(f − 1) possible entries in the active de-

98

Goal Item: Init(α1)
〈α0@ε•, 0, , , n, ∅, . . . , ∅〉 Label(α0@ε) = S

|α| = 1
Terminal Axiom

〈αx@a•, i− 1, , , i, ∅, . . . , {αx}〉 Label(αx@a) = wi
Empty Axiom

〈αx@a•, i, , , i, ∅, . . . , {αx}〉 Label(αx@a) = ε
Foot Axiom

〈αx@Ft(αx)◦, p, p, q, q, ∅, . . . , {αx}〉 Aux(αx)
Unary Complete

〈αx@(a · 1)•, i, j, k, l,Λ〉 αx@(a · 2) undefined
〈αx@a◦, i, j, k, l,Λ〉

Binary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1〉〈αx@(a · 2)•, l, j′, k′,m,Λ2〉

〈αx@a◦, i, j ∪ j′, k ∪ k′,m,Λ1 ∪ Λ2〉
Adjoin:

〈βy@ε•, i, p, q, l,Λβ〉〈αx@a◦, p, j, k, q,Λα〉 Adj(αx@a, βy)
〈αx@a•, i, j, k, l,Λ′β ∪ Λα〉 Filter(Λβ,Λ′β)

Size(Λ′β) ≤ d
Substitute:

〈βy@ε•, i, , , l,Λβ〉 Subst(αx@a, βy)
〈αx@a•, i, , , l,Λ′β ∪ {αx}〉 Filter(Λβ,Λ′β)

Size(Λ′β) ≤ d
No Adjoin:

〈αx@a◦, i, j, k, l,Λ〉
〈αx@a•, i, j, k, l,Λ〉

Figure 6: Axioms and inference rules for the CKY algorithm for delayed TL-MCTAG with a delay of d.

lay list, giving a total number of active delay lists
of O(|G|t(1+d(f−1))). Thus the complexity of the
parser is O(n6 |G|2+t(1+d(f−1))).

9 Conclusion

Each of the formalisms presented above extends the
flexibility of MCTAG beyond that of TL-MCTAG
while maintaining, as we have shown herein, com-
plexity much less than that of SL-MCTAG. All three
formalisms permit modeling of flexible composi-
tion (because they permit one member of a tree set
to be a derivational ancestor of another tree in the
same set), at least restricted NS-MCTAG and re-
stricted V-TAG permit analyses of scrambling, and
all three permit analyses of the various challeng-
ing semantic constructions mentioned in the intro-
duction. We conclude that extending locality by
constraining derivational distance may be an effec-

tive way to add flexibility to MCTAG without losing
computational tractability.

Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No. BCS-
0827979.

References

David Chiang and Tatjana Scheffler. 2008. Flexible com-
position and delayed tree-locality. In The Ninth Inter-
national Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+9).

Aravind K. Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, pages
69–124. Springer.

99

Laura Kallmeyer and Maribel Romero. 2004. LTAG
semantics with semantic unification. In Proceedings
of the 7th International Workshop on Tree-Adjoining
Grammars and Related Formalisms (TAG+7), pages
155–162, Vancouver, May.

Laura Kallmeyer. 2007. A declarative characterization
of different types of multicomponent tree adjoining
grammars. In Andreas Witt Georg Rehm and Lothar
Lemnitzer, editors, Datenstrukturen für linguistische
Ressourcen und ihre Anwendungen, pages 111–120.

T. Kasami. 1965. An efficient recognition and syntax
algorithm for context-free languages. Technical Re-
port AF-CRL-65-758, Air Force Cambridge Research
Laboratory, Bedford, MA.

Rebecca Nesson and Stuart M. Shieber. 2006. Sim-
pler TAG semantics through synchronization. In Pro-
ceedings of the 11th Conference on Formal Grammar,
Malaga, Spain, 29–30 July.

Rebecca Nesson, Giorgio Satta, and Stuart M. Shieber.
2008. Complexity, parsing, and factorization of tree-
local multi-component tree-adjoining grammar. Tech-
nical report, Harvard University.

Owen Rambow. 1994. Formal and computational as-
pects of natural language syntax. Ph.D. thesis, Uni-
versity of Pennsylvania, Philadelphia, PA.

Maribel Romero, Laura Kallmeyer, and Olga Babko-
Malaya. 2004. LTAG semantics for questions. In
Proceedings of the 7th International Workshop on
Tree-Adjoining Grammars and Related Formalisms
(TAG+7), pages 186–193, Vancouver, May.

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of
deductive parsing. Journal of Logic Programming,
24(1–2):3–36, July–August. Also available as cmp-
lg/9404008.

Anders Søgaard, Timm Lichte, and Wolfgang Maier.
2007. On the complexity of linguistically motivated
extensions of tree-adjoining grammar. In Recent Ad-
vances in Natural Language Processing 2007.

K. Vijay-Shanker. 1987. A study of tree-adjoining gram-
mars. PhD Thesis, Department of Computer and In-
formation Science, University of Pennsylvania.

David Weir. 1988. Characterizing mildly context-
sensitive grammar formalisms. PhD Thesis, Depart-
ment of Computer and Information Science, Univer-
sity of Pennsylvania.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10(2):189–208.

100

