
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 37–45,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Learning Phoneme Mappings for Transliteration without Parallel Data

Sujith Ravi and Kevin Knight
University of Southern California

Information Sciences Institute
Marina del Rey, California 90292
{sravi,knight}@isi.edu

Abstract

We present a method for performing machine
transliteration without any parallel resources.
We frame the transliteration task as a deci-
pherment problem and show that it is possi-
ble to learn cross-language phoneme mapping
tables using only monolingual resources. We
compare various methods and evaluate their
accuracies on a standard name transliteration
task.

1 Introduction

Transliteration refers to the transport of names and
terms between languages with different writing sys-
tems and phoneme inventories. Recently there has
been a large amount of interesting work in this
area, and the literature has outgrown being citable
in its entirety. Much of this work focuses on back-
transliteration, which tries to restore a name or
term that has been transported into a foreign lan-
guage. Here, there is often only one correct target
spelling—for example, given jyon.kairu (the
name of a U.S. Senator transported to Japanese), we
must output “Jon Kyl”, not “John Kyre” or any other
variation.

There are many techniques for transliteration and
back-transliteration, and they vary along a number
of dimensions:

• phoneme substitution vs. character substitution

• heuristic vs. generative vs. discriminative mod-
els

• manual vs. automatic knowledge acquisition

We explore the third dimension, where we see
several techniques in use:

• Manually-constructed transliteration models,
e.g., (Hermjakob et al., 2008).

• Models constructed from bilingual dictionaries
of terms and names, e.g., (Knight and Graehl,
1998; Huang et al., 2004; Haizhou et al., 2004;
Zelenko and Aone, 2006; Yoon et al., 2007;
Li et al., 2007; Karimi et al., 2007; Sherif
and Kondrak, 2007b; Goldwasser and Roth,
2008b).

• Extraction of parallel examples from bilin-
gual corpora, using bootstrap dictionaries e.g.,
(Sherif and Kondrak, 2007a; Goldwasser and
Roth, 2008a).

• Extraction of parallel examples from compara-
ble corpora, using bootstrap dictionaries, and
temporal and word co-occurrence, e.g., (Sproat
et al., 2006; Klementiev and Roth, 2008).

• Extraction of parallel examples from web
queries, using bootstrap dictionaries, e.g., (Na-
gata et al., 2001; Oh and Isahara, 2006; Kuo et
al., 2006; Wu and Chang, 2007).

• Comparing terms from different languages in
phonetic space, e.g., (Tao et al., 2006; Goldberg
and Elhadad, 2008).

In this paper, we investigate methods to acquire
transliteration mappings from non-parallel sources.
We are inspired by previous work in unsupervised
learning for natural language, e.g. (Yarowsky, 1995;

37

WFSA - A WFST - B

English word

sequence
English sound

sequence

(SPENCER ABRAHAM)
(S P EH N S ER

EY B R AH HH AE M)

WFST - C WFST - D

Japanese sound

sequence

(ス ペ ン サ ー ・ エ ー ブ ラ ハ ム)

Japanese katakana

sequence

(S U P E N S A A

E E B U R A H A M U)

Figure 1: Model used for back-transliteration of Japanese katakana names and terms into English. The model employs
a four-stage cascade of weighted finite-state transducers (Knight and Graehl, 1998).

Goldwater and Griffiths, 2007), and we are also in-
spired by cryptanalysis—we view a corpus of for-
eign terms as a code for English, and we attempt to
break the code.

2 Background

We follow (Knight and Graehl, 1998) in tackling
back-transliteration of Japanese katakana expres-
sions into English. Knight and Graehl (1998) devel-
oped a four-stage cascade of finite-state transducers,
shown in Figure 1.

• WFSA A - produces an English word sequence
w with probability P(w) (based on a unigram
word model).

• WFST B - generates an English phoneme se-
quence e corresponding to w with probability
P(e|w).

• WFST C - transforms the English phoneme se-
quence into a Japanese phoneme sequence j ac-
cording to a model P(j|e).

• WFST D - writes out the Japanese phoneme
sequence into Japanese katakana characters ac-
cording to a model P(k|j).

Using the cascade in the reverse (noisy-channel)
direction, they are able to translate new katakana
names and terms into English. They report 36% er-
ror in translating 100 U.S. Senators’ names, and they
report exceeding human transliteration performance
in the presence of optical scanning noise.

The only transducer that requires parallel training
data is WFST C. Knight and Graehl (1998) take sev-
eral thousand phoneme string pairs, automatically
align them with the EM algorithm (Dempster et
al., 1977), and construct WFST C from the aligned
phoneme pieces.

We re-implement their basic method by instanti-
ating a densely-connected version of WFST C with

all 1-to-1 and 1-to-2 phoneme connections between
English and Japanese. Phoneme bigrams that occur
fewer than 10 times in a Japanese corpus are omit-
ted, and we omit 1-to-3 connections. This initial
WFST C model has 15320 uniformly weighted pa-
rameters. We then train the model on 3343 phoneme
string pairs from a bilingual dictionary, using the
EM algorithm. EM immediately reduces the con-
nections in the model to those actually observed in
the parallel data, and after 14 iterations, there are
only 188 connections left with P(j|e) ≥ 0.01. Fig-
ure 2 shows the phonemic substitution table learnt
from parallel training.

We use this trained WFST C model and apply it
to the U.S. Senator name transliteration task (which
we update to the 2008 roster). We obtain 40% er-
ror, roughly matching the performance observed in
(Knight and Graehl, 1998).

3 Task and Data

The task of this paper is to learn the mappings in
Figure 2, but without parallel data, and to test those
mappings in end-to-end transliteration. We imagine
our problem as one faced by monolingual English
speaker wandering around Japan, reading a multi-
tude of katakana signs, listening to people speak
Japanese, and eventually deciphering those signs
into English. To mis-quote Warren Weaver:

“When I look at a corpus of Japanese
katakana, I say to myself, this is really
written in English, but it has been coded
in some strange symbols. I will now pro-
ceed to decode.”

Our larger motivation is to move toward
easily-built transliteration systems for all language
pairs, regardless of parallel resources. While
Japanese/English transliteration has its own partic-
ular features, we believe it is a reasonable starting
point.

38

e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e)

AA o 0.49 AY a i 0.84 EH e 0.94 HH h 0.95 L r 0.62 OY o i 0.89 SH sh y 0.33 V b 0.75
a 0.46 i 0.09 a 0.03 w 0.02 r u 0.37 o e 0.04 sh 0.31 b u 0.17
o o 0.02 a 0.03 h a 0.02 o 0.04 y u 0.17 w 0.03
a a 0.02 i y 0.01 i 0.04 ssh y 0.12 a 0.02

a y 0.01 sh i 0.04
ssh 0.02
e 0.01

AE a 0.93 B b 0.82 ER a a 0.8 IH i 0.89 M m 0.68 P p 0.63 T t 0.43 W w 0.73
a ssh 0.02 b u 0.15 a 0.08 e 0.05 m u 0.22 p u 0.16 t o 0.25 u 0.17
a n 0.02 a r 0.03 i n 0.01 n 0.08 pp u 0.13 tt o 0.17 o 0.04

r u 0.02 a 0.01 pp 0.06 ts 0.04 i 0.02
o r 0.02 tt 0.03
e r 0.02 u 0.02

ts u 0.02
ch 0.02

AH a 0.6 CH tch i 0.27 EY e e 0.58 IY i i 0.58 N n 0.96 PAUSE pause 1.0 TH s u 0.48 Y y 0.7
o 0.13 ch 0.24 e 0.15 i 0.3 nn 0.02 s 0.22 i 0.26
e 0.11 ch i 0.23 e i 0.12 e 0.07 sh 0.16 e 0.02
i 0.07 ch y 0.2 a 0.1 e e 0.03 t o 0.04 a 0.02
u 0.06 tch y 0.02 a i 0.03 ch 0.04

tch 0.02 t e 0.02
ssh y 0.01 t 0.02
k 0.01 a 0.02

AO o 0.6 D d 0.54 F h 0.58 JH j y 0.35 NG n 0.62 R r 0.61 UH u 0.79 Z z 0.27
o o 0.27 d o 0.27 h u 0.35 j 0.24 g u 0.22 a 0.27 u u 0.09 z u 0.25
a 0.05 dd o 0.06 hh 0.04 j i 0.21 n g 0.09 o 0.07 u a 0.04 u 0.16
o n 0.03 z 0.02 hh u 0.02 jj i 0.14 i 0.04 r u 0.03 dd 0.03 s u 0.07
a u 0.03 j 0.02 z 0.04 u 0.01 a a 0.01 u ssh 0.02 j 0.06
u 0.01 u 0.01 o 0.01 o 0.02 a 0.06

a 0.01 n 0.03
i 0.03
s 0.02
o 0.02

AW a u 0.69 DH z 0.87 G g 0.66 K k 0.53 OW o 0.57 S s u 0.43 UW u u 0.67 ZH j y 0.43
a w 0.15 z u 0.08 g u 0.19 k u 0.2 o o 0.39 s 0.37 u 0.29 j i 0.29
a o 0.06 a z 0.04 gg u 0.1 kk u 0.16 o u 0.02 sh 0.08 y u 0.02 j 0.29
a 0.04 g y 0.03 kk 0.05 u 0.05
u u 0.02 gg 0.01 k y 0.02 ss 0.02
o o 0.02 g a 0.01 k i 0.01 ssh 0.01
o 0.02

Figure 2: Phonemic substitution table learnt from 3343 parallel English/Japanese phoneme string pairs. English
phonemes are in uppercase, Japanese in lowercase. Mappings with P(j|e) > 0.01 are shown.

A A CH I D O CH E N J I N E B A D A W A K O B I A
A A K U P U R A Z A CH E S : W A N K A PP U
A A N D O : O P U T I K U S U W A N T E N P O
A A T I S U T O D E K O R A T I B U : W A S E R I N
A A T O S E R I N A P I S U T O N D E T O M O R U T O P I I T A A Y U N I O N
A I A N B I R U E P I G U R A M U P I KK A A Y U N I TT O SH I S U T E M U
A I D I I D O E R A N D O P I N G U U Y U U
A I K E N B E R I I : P I P E R A J I N A M I D O :
A J I A K A PP U J Y A I A N TS U P I S A :
A J I T O J Y A Z U P I U R A Z E N E R A R U E A K O N
A K A SH I A K O O S U : P O I N T O Z E R O
A K U A M Y U U Z E U M U : Z O N B I I Z U

: : : :
: : : :

Figure 3: Some Japanese phoneme sequences generated from the monolingual katakana corpus using WFST D.

Our monolingual resources are:

• 43717 unique Japanese katakana sequences
collected from web newspaper data. We split
multi-word katakana phrases on the center-dot
(“·”) character, and select a final corpus of
9350 unique sequences. We add monolingual
Japanese versions of the 2008 U.S. Senate ros-
ter.1

• The CMU pronunciation dictionary of English,
1We use “open” EM testing, in which unlabeled test data

is allowed to be part of unsupervised training. However, no
parallel data is allowed.

with 112,151 entries.

• The English gigaword corpus. Knight and
Graehl (1998) already use frequently-occurring
capitalized words to build the WFSA A compo-
nent of their four-stage cascade.

We seek to use our English knowledge (derived
from 2 and 3) to decipher the Japanese katakana cor-
pus (1) into English. Figure 3 shows a portion of the
Japanese corpus, which we transform into Japanese
phoneme sequences using the monolingual resource
of WFST D. We note that the Japanese phoneme in-
ventory contains 39 unique (“ciphertext”) symbols,

39

compared to the 40 English (“plaintext”) phonemes.
Our goal is to compare and evaluate the WFST C

model learnt under two different scenarios—(a) us-
ing parallel data, and (b) using monolingual data.
For each experiment, we train only the WFST C
model and then apply it to the name translitera-
tion task—decoding 100 U.S. Senator names from
Japanese to English using the automata shown in
Figure 1. For all experiments, we keep the rest of
the models in the cascade (WFSA A, WFST B, and
WFST D) unchanged. We evaluate on whole-name
error-rate (maximum of 100/100) as well as normal-
ized word edit distance, which gives partial credit
for getting the first or last name correct.

4 Acquiring Phoneme Mappings from
Non-Parallel Data

Our main data consists of 9350 unique Japanese
phoneme sequences, which we can consider as a sin-
gle long sequence j. As suggested by Knight et
al (2006), we explain the existence of j as the re-
sult of someone initially producing a long English
phoneme sequence e, according to P(e), then trans-
forming it into j, according to P(j|e). The probabil-
ity of our observed data P(j) can be written as:

P (j) =
∑

e

P (e) · P (j|e)

We take P(e) to be some fixed model of mono-
lingual English phoneme production, represented
as a weighted finite-state acceptor (WFSA). P(j|e)
is implemented as the initial, uniformly-weighted
WFST C described in Section 2, with 15320 phone-
mic connections.

We next maximize P(j) by manipulating the sub-
stitution table P(j|e), aiming to produce a result
such as shown in Figure 2. We accomplish this by
composing the English phoneme model P(e) WFSA
with the P(j|e) transducer. We then use the EM al-
gorithm to train just the P(j|e) parameters (inside
the composition that predicts j), and guess the val-
ues for the individual phonemic substitutions that
maximize the likelihood of the observed data P(j).2

2In our experiments, we use the Carmel finite-state trans-
ducer package (Graehl, 1997), a toolkit with an algorithm for
EM training of weighted finite-state transducers.

We allow EM to run until the P(j) likelihood ra-
tio between subsequent training iterations reaches
0.9999, and we terminate early if 200 iterations are
reached.

Finally, we decode our test set of U.S. Senator
names. Following Knight et al (2006), we stretch
out the P(j|e) model probabilities after decipher-
ment training and prior to decoding our test set, by
cubing their values.

Decipherment under the conditions of translit-
eration is substantially more difficult than solv-
ing letter-substitution ciphers (Knight et al., 2006;
Ravi and Knight, 2008; Ravi and Knight, 2009) or
phoneme-substitution ciphers (Knight and Yamada,
1999). This is because the target table contains sig-
nificant non-determinism, and because each symbol
has multiple possible fertilities, which introduces
uncertainty about the length of the target string.

4.1 Baseline P(e) Model

Clearly, we can design P(e) in a number of ways. We
might expect that the more the system knows about
English, the better it will be able to decipher the
Japanese. Our baseline P(e) is a 2-gram phoneme
model trained on phoneme sequences from the CMU
dictionary. The second row (2a) in Figure 4 shows
results when we decipher with this fixed P(e). This
approach performs poorly and gets all the Senator
names wrong.

4.2 Consonant Parity

When training under non-parallel conditions, we
find that we would like to keep our WFST C model
small, rather than instantiating a fully-connected
model. In the supervised case, parallel training al-
lows the trained model to retain only those con-
nections which were observed from the data, and
this helps eliminate many bad connections from the
model. In the unsupervised case, there is no parallel
data available to help us make the right choices.

We therefore use prior knowledge and place a
consonant-parity constraint on the WFST C model.
Prior to EM training, we throw out any mapping
from the P(j|e) substitution model that does not
have the same number of English and Japanese con-
sonant phonemes. This is a pattern that we observe
across a range of transliteration tasks. Here are ex-

40

Phonemic Substitution Model Name Transliteration Error
whole-name error norm. edit distance

1 e → j = { 1-to-1, 1-to-2 } 40 25.9
+ EM aligned with parallel data

2a e → j = { 1-to-1, 1-to-2 } 100 100.0
+ decipherment training with 2-gram English P(e)

2b e → j = { 1-to-1, 1-to-2 } 98 89.8
+ decipherment training with 2-gram English P(e)
+ consonant-parity

2c e → j = { 1-to-1, 1-to-2 } 94 73.6
+ decipherment training with 3-gram English P(e)
+ consonant-parity

2d e → j = { 1-to-1, 1-to-2 } 77 57.2
+ decipherment training with a word-based English model
+ consonant-parity

2e e → j = { 1-to-1, 1-to-2 } 73 54.2
+ decipherment training with a word-based English model
+ consonant-parity
+ initialize mappings having consonant matches with higher proba-
bility weights

Figure 4: Results on name transliteration obtained when using the phonemic substitution model trained under different
scenarios—(1) parallel training data, (2a-e) using only monolingual resources.

amples of mappings where consonant parity is vio-
lated:

K => a N => e e
EH => s a EY => n

Modifying the WFST C in this way leads to bet-
ter decipherment tables and slightly better results
for the U.S. Senator task. Normalized edit distance
drops from 100 to just under 90 (row 2b in Figure 4).

4.3 Better English Models

Row 2c in Figure 4 shows decipherment results
when we move to a 3-gram English phoneme model
for P(e). We notice considerable improvements in
accuracy. On the U.S. Senator task, normalized edit
distance drops from 89.8 to 73.6, and whole-name
error decreases from 98 to 94.

When we analyze the results from deciphering
with a 3-gram P(e) model, we find that many of the
Japanese phoneme test sequences are decoded into
English phoneme sequences (such as “IH K R IH
N” and “AE G M AH N”) that are not valid words.
This happens because the models we used for de-
cipherment so far have no knowledge of what con-
stitutes a globally valid English sequence. To help
the phonemic substitution model learn this infor-
mation automatically, we build a word-based P(e)
from English phoneme sequences in the CMU dic-
tionary and use this model for decipherment train-

ing. The word-based model produces complete En-
glish phoneme sequences corresponding to 76,152
actual English words from the CMU dictionary.
The English phoneme sequences are represented as
paths through a WFSA, and all paths are weighted
equally. We represent the word-based model in com-
pact form, using determinization and minimization
techniques applicable to weighted finite-state au-
tomata. This allows us to perform efficient EM train-
ing on the cascade of P(e) and P(j|e) models. Under
this scheme, English phoneme sequences resulting
from decipherment are always analyzable into actual
words.

Row 2d in Figure 4 shows the results we ob-
tain when training our WFST C with a word-based
English phoneme model. Using the word-based
model produces the best result so far on the phone-
mic substitution task with non-parallel data. On the
U.S. Senator task, word-based decipherment outper-
forms the other methods by a large margin. It gets
23 out of 100 Senator names exactly right, with a
much lower normalized edit distance (57.2). We
have managed to achieve this performance using
only monolingual data. This also puts us within
reach of the parallel-trained system’s performance
(40% whole-name errors, and 25.9 word edit dis-
tance error) without using a single English/Japanese
pair for training.

To summarize, the quality of the English phoneme

41

e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e)

AA a 0.37 AY a i 0.36 EH e 0.37 HH h 0.45 L r 0.3 OY a 0.27 SH sh y 0.22 V b 0.34
o 0.25 o o 0.13 a 0.24 s 0.12 n 0.19 i 0.16 m 0.11 k 0.14
i 0.15 e 0.12 o 0.12 k 0.09 r u 0.15 y u 0.1 r 0.1 m 0.13
u 0.08 i 0.11 i 0.12 b 0.08 r i 0.04 o i 0.1 s 0.06 s 0.07
e 0.07 a 0.11 u 0.06 m 0.07 t 0.03 y a 0.09 p 0.06 d 0.07
o o 0.03 u u 0.05 o o 0.04 w 0.03 m u 0.02 y o 0.08 s a 0.05 r 0.04
y a 0.01 y u 0.02 y u 0.01 p 0.03 m 0.02 e 0.08 h 0.05 t 0.03
a a 0.01 u 0.02 a i 0.01 g 0.03 w a 0.01 o 0.06 b 0.05 h 0.02

o 0.02 k y 0.02 t a 0.01 o o 0.02 t 0.04 sh 0.01
e e 0.02 d 0.02 r a 0.01 e i 0.02 k 0.04 n 0.01

AE a 0.52 B b 0.41 ER a a 0.47 IH i 0.36 M m 0.3 P p 0.18 T t 0.2 W w 0.23
i 0.19 p 0.12 a 0.17 e 0.25 n 0.08 p u 0.08 t o 0.16 r 0.2
e 0.11 k 0.09 u 0.08 a 0.15 k 0.08 n 0.05 t a 0.05 m 0.13
o 0.08 m 0.07 o 0.07 u 0.09 r 0.07 k 0.05 n 0.04 s 0.08
u 0.03 s 0.04 e 0.04 o 0.09 s 0.06 sh i 0.04 k u 0.03 k 0.07
u u 0.02 g 0.04 o o 0.03 o o 0.01 h 0.05 k u 0.04 k 0.03 h 0.06
o o 0.02 t 0.03 i i 0.03 t 0.04 s u 0.03 t e 0.02 b 0.06

z 0.02 y u 0.02 g 0.04 p a 0.03 s 0.02 t 0.04
d 0.02 u u 0.02 b 0.04 t 0.02 r 0.02 p 0.04
ch y 0.02 i 0.02 m u 0.03 m a 0.02 g u 0.02 d 0.02

AH a 0.31 CH g 0.12 EY e e 0.3 IY i 0.25 N n 0.56 PAUSE pause 1.0 TH k 0.21 Y s 0.25
o 0.23 k 0.11 a 0.22 i i 0.21 r u 0.09 p u 0.11 k 0.18
i 0.17 b 0.09 i 0.11 a 0.15 s u 0.04 k u 0.1 m 0.07
e 0.12 sh 0.07 u 0.09 a a 0.12 m u 0.02 d 0.08 g 0.06
u 0.1 s 0.07 o 0.06 u 0.07 kk u 0.02 h u 0.07 p 0.05
e e 0.02 r 0.07 e 0.06 o 0.05 k u 0.02 s u 0.05 b 0.05
o o 0.01 ch y 0.07 o o 0.05 o o 0.02 h u 0.02 b u 0.04 r 0.04
a a 0.01 p 0.06 e i 0.04 i a 0.02 t o 0.01 k o 0.03 d 0.04

m 0.06 i i 0.02 e e 0.02 pp u 0.01 g a 0.03 u r 0.03
ch 0.06 u u 0.01 e 0.02 b i 0.01 s a 0.02 n y 0.03

AO o 0.29 D d 0.16 F h 0.18 JH b 0.13 NG tt o 0.21 R r 0.53 UH a 0.24 Z t o 0.14
a 0.26 d o 0.15 h u 0.14 k 0.1 r u 0.17 n 0.07 o 0.14 z u 0.11
e 0.14 n 0.05 b 0.09 j y 0.1 n 0.14 u r 0.05 e 0.11 r u 0.11
o o 0.12 t o 0.03 sh i 0.07 s 0.08 kk u 0.1 r i 0.03 y u 0.1 s u 0.1
i 0.08 sh i 0.03 p 0.07 m 0.08 s u 0.07 r u 0.02 a i 0.09 g u 0.09
u 0.05 k u 0.03 m 0.06 t 0.07 m u 0.06 d 0.02 i 0.08 m u 0.07
y u 0.03 k 0.03 r 0.04 j 0.07 dd o 0.04 t 0.01 u u 0.07 n 0.06
e e 0.01 g u 0.03 s 0.03 h 0.07 tch i 0.03 s 0.01 o o 0.07 d o 0.06

b 0.03 h a 0.03 sh 0.06 pp u 0.03 m 0.01 a a 0.03 j i 0.02
s 0.02 b u 0.02 d 0.05 jj i 0.03 k 0.01 u 0.02 ch i 0.02

AW o o 0.2 DH h 0.13 G g u 0.13 K k 0.17 OW a 0.3 S s u 0.4 UW u 0.39 ZH m 0.17
a u 0.19 r 0.12 g 0.11 n 0.1 o 0.25 n 0.11 a 0.15 p 0.16
a 0.18 b 0.09 k u 0.08 k u 0.1 o o 0.12 r u 0.05 o 0.13 t 0.15
a i 0.11 w 0.08 b u 0.06 kk u 0.05 u 0.09 t o 0.03 u u 0.12 h 0.13
a a 0.11 t 0.07 k 0.04 t o 0.03 i 0.07 k u 0.03 i 0.04 d 0.1
e 0.05 p 0.07 b 0.04 s u 0.03 y a 0.04 sh i 0.02 y u 0.03 s 0.08
o 0.04 g 0.06 t o 0.03 sh i 0.02 e 0.04 r i 0.02 i i 0.03 b 0.07
i 0.04 j y 0.05 t 0.03 r 0.02 u u 0.02 m u 0.02 e 0.03 r 0.05
i y 0.02 d 0.05 h a 0.03 k o 0.02 a i 0.02 h u 0.02 o o 0.02 j y 0.03
e a 0.01 k 0.03 d 0.03 k a 0.02 i i 0.01 ch i 0.02 e e 0.02 k 0.02

Figure 5: Phonemic substitution table learnt from non-parallel corpora. For each English phoneme, only the top ten
mappings with P(j|e) > 0.01 are shown.

model used in decipherment training has a large ef-
fect on the learnt P(j|e) phonemic substitution ta-
ble (i.e., probabilities for the various phoneme map-
pings within the WFST C model), which in turn af-
fects the quality of the back-transliterated English
output produced when decoding Japanese.

Figure 5 shows the phonemic substitution table
learnt using word-based decipherment. The map-
pings are reasonable, given the lack of parallel data.
They are not entirely correct—for example, the map-
ping “S→ s u” is there, but “S→ s” is missing.

Sample end-to-end transliterations are illustrated
in Figure 6. The figure shows how the transliteration
results from non-parallel training improve steadily
as we use stronger decipherment techniques. We
note that in one case (LAUTENBERG), the deci-
pherment mapping table leads to a correct answer

where the mapping table derived from parallel data
does not. Because parallel data is limited, it may not
contain all of the necessary mappings.

4.4 Size of Japanese Training Data

Monolingual corpora are more easily available than
parallel corpora, so we can use increasing amounts
of monolingual Japanese training data during de-
cipherment training. The table below shows that
using more Japanese training data produces bet-
ter transliteration results when deciphering with the
word-based English model.

Japanese training data Error on name transliteration task
(# of phoneme sequences) whole-name error normalized word

edit distance
4,674 87 69.7
9,350 77 57.2

42

!"#$%&'()*'+"%,)-./0%12%,0)2,/$34/&'#$5

!"#$#%&' ()""*+,-.%/0*" 1&"&''*' 12)%*,#+

3"&#%#%$

45678-9::;<

=*+#>2*"?*%,-

@A*,2)B-9C

=*+#>2*"?*%,-

@A*,2)B-DC

=*+#>2*"?*%,

@A*,2)B EC

!"#$%&
'%()*+

F1GH(GI-

.JI.K.A-

F1GH(GI-

.JI.K.A

F1GH(GI

67689:.)

;!:*6)*<=9=) F1GH(GI-

.JI.K.A-

,-'.&

/00

=.HLGM-.7.7.- =.HLGM :*:)>: >=?6:)6:;2) ;*@6?A.B)6:;2) 7:.A6886):C:*=)

123#&

/)%4

N.OHG-.MM.I=- N.OHG-.MM.I= *@=A*6)D=@.) N.OHG CE?7) N.OHG-.MM.I=-

567!&

8%0!

A.P-J.Q(QF- A.P-J.Q(QF 966;6)D:96;) A.P C==>;) A.P F=*<;)

8(&9:6; J!J-JGHHG33- J!J-JGHHG33 9E);*@6?A.B) D:*>)CA88A.B) C=2@)C6..A.B)

<=>?&

@3A#

R!FG1K-JL=GH- R!FG1K-JL=GH @=<;6)8:C=?) D:!:.)CA76.) R!FG1K-JL=GH-

<2?&

B#C5#

RGSS-JLH5.A.H- RGSS-JLH5.A.H D=@.)!F6AFF6? RGSS C6.D:9A.) RGSS C6.D:9A.)

?)#7&

D%E#@%7

SI.H7-

M.Q3GHJGI5

SI.H7

8:<26.C:*@

;<.)F8A.2) F?:.*6)

M.Q3GHJGI5-

F?:.*6)

M.Q3GHJGI5-

!,#G,%33)?%+#,&H).#)!/,/44%4)7/&/)<3%IH
!"#$%&'()*'+"%,)-./0%12%,0)2,/$34/&'#$5

!"#$#%&' ()""*+,-.%/0*" 1&"&''*' 12)%*,#+

3"&#%#%$

45678-9::;<

=*+#>2*"?*%,-

@A*,2)B-9C

=*+#>2*"?*%,-

@A*,2)B-DC

=*+#>2*"?*%,

@A*,2)B EC

!"#$%&
'%()*+

F1GH(GI-

.JI.K.A-

F1GH(GI-

.JI.K.A

F1GH(GI

67689:.)

;!:*6)*<=9=) F1GH(GI-

.JI.K.A-

,-'.&

/00

=.HLGM-.7.7.- =.HLGM :*:)>: >=?6:)6:;2) ;*@6?A.B)6:;2) 7:.A6886):C:*=)

123#&

/)%4

N.OHG-.MM.I=- N.OHG-.MM.I= *@=A*6)D=@.) N.OHG CE?7) N.OHG-.MM.I=-

567!&

8%0!

A.P-J.Q(QF- A.P-J.Q(QF 966;6)D:96;) A.P C==>;) A.P F=*<;)

8(&9:6; J!J-JGHHG33- J!J-JGHHG33 9E);*@6?A.B) D:*>)CA88A.B) C=2@)C6..A.B)

<=>?&

@3A#

R!FG1K-JL=GH- R!FG1K-JL=GH @=<;6)8:C=?) D:!:.)CA76.) R!FG1K-JL=GH-

<2?&

B#C5#

RGSS-JLH5.A.H- RGSS-JLH5.A.H D=@.)!F6AFF6? RGSS C6.D:9A.) RGSS C6.D:9A.)

?)#7&

D%E#@%7

SI.H7-

M.Q3GHJGI5

SI.H7

8:<26.C:*@

;<.)F8A.2) F?:.*6)

M.Q3GHJGI5-

F?:.*6)

M.Q3GHJGI5-

!,#G,%33)?%+#,&H).#)!/,/44%4)7/&/)<3%IH

!"#$%&'()*'+"%,)-./0%12%,0)2,/$34/&'#$5

!"#$#%&' ()""*+,-.%/0*" 1&"&''*' 12)%*,#+

3"&#%#%$

45678-9::;<

=*+#>2*"?*%,-

@A*,2)B-9C

=*+#>2*"?*%,-

@A*,2)B-DC

=*+#>2*"?*%,

@A*,2)B EC

!"#$%&
'%()*+

F1GH(GI-

.JI.K.A-

F1GH(GI-

.JI.K.A

F1GH(GI

67689:.)

;!:*6)*<=9=) F1GH(GI-

.JI.K.A-

,-'.&

/00

=.HLGM-.7.7.- =.HLGM :*:)>: >=?6:)6:;2) ;*@6?A.B)6:;2) 7:.A6886):C:*=)

123#&

/)%4

N.OHG-.MM.I=- N.OHG-.MM.I= *@=A*6)D=@.) N.OHG CE?7) N.OHG-.MM.I=-

567!&

8%0!

A.P-J.Q(QF- A.P-J.Q(QF 966;6)D:96;) A.P C==>;) A.P F=*<;)

8(&9:6; J!J-JGHHG33- J!J-JGHHG33 9E);*@6?A.B) D:*>)CA88A.B) C=2@)C6..A.B)

<=>?&

@3A#

R!FG1K-JL=GH- R!FG1K-JL=GH @=<;6)8:C=?) D:!:.)CA76.) R!FG1K-JL=GH-

<2?&

B#C5#

RGSS-JLH5.A.H- RGSS-JLH5.A.H D=@.)!F6AFF6? RGSS C6.D:9A.) RGSS C6.D:9A.)

?)#7&

D%E#@%7

SI.H7-

M.Q3GHJGI5

SI.H7

8:<26.C:*@

;<.)F8A.2) F?:.*6)

M.Q3GHJGI5-

F?:.*6)

M.Q3GHJGI5-

!,#G,%33)?%+#,&H).#)!/,/44%4)7/&/)<3%IH
!"#$%&'()*'+"%,)-./0%12%,0)2,/$34/&'#$5

!"#$#%&' ()""*+,-.%/0*" 1&"&''*' 12)%*,#+

3"&#%#%$

45678-9::;<

=*+#>2*"?*%,-

@A*,2)B-9C

=*+#>2*"?*%,-

@A*,2)B-DC

=*+#>2*"?*%,

@A*,2)B EC

!"#$%&
'%()*+

F1GH(GI-

.JI.K.A-

F1GH(GI-

.JI.K.A

F1GH(GI

67689:.)

;!:*6)*<=9=) F1GH(GI-

.JI.K.A-

,-'.&

/00

=.HLGM-.7.7.- =.HLGM :*:)>: >=?6:)6:;2) ;*@6?A.B)6:;2) 7:.A6886):C:*=)

123#&

/)%4

N.OHG-.MM.I=- N.OHG-.MM.I= *@=A*6)D=@.) N.OHG CE?7) N.OHG-.MM.I=-

567!&

8%0!

A.P-J.Q(QF- A.P-J.Q(QF 966;6)D:96;) A.P C==>;) A.P F=*<;)

8(&9:6; J!J-JGHHG33- J!J-JGHHG33 9E);*@6?A.B) D:*>)CA88A.B) C=2@)C6..A.B)

<=>?&

@3A#

R!FG1K-JL=GH- R!FG1K-JL=GH @=<;6)8:C=?) D:!:.)CA76.) R!FG1K-JL=GH-

<2?&

B#C5#

RGSS-JLH5.A.H- RGSS-JLH5.A.H D=@.)!F6AFF6? RGSS C6.D:9A.) RGSS C6.D:9A.)

?)#7&

D%E#@%7

SI.H7-

M.Q3GHJGI5

SI.H7

8:<26.C:*@

;<.)F8A.2) F?:.*6)

M.Q3GHJGI5-

F?:.*6)

M.Q3GHJGI5-

!,#G,%33)?%+#,&H).#)!/,/44%4)7/&/)<3%IH

Figure 6: Results for end-to-end name transliteration. This figure shows the correct answer, the answer obtained
by training mappings on parallel data (Knight and Graehl, 1998), and various answers obtained by deciphering non-
parallel data. Method 1 uses a 2-gram P(e), Method 2 uses a 3-gram P(e), and Method 3 uses a word-based P(e).

4.5 P(j|e) Initialization

So far, the P(j|e) connections within the WFST C
model were initialized with uniform weights prior
to EM training. It is a known fact that the EM al-
gorithm does not necessarily find a global minimum
for the given objective function. If the search space
is bumpy and non-convex as is the case in our prob-
lem, EM can get stuck in any of the local minima
depending on what weights were used to initialize
the search. Different sets of initialization weights
can lead to different convergence points during EM
training, or in other words, depending on how the
P(j|e) probabilities are initialized, the final P(j|e)
substitution table learnt by EM can vary.

We can use some prior knowledge to initialize the
probability weights in our WFST C model, so as to
give EM a good starting point to work with. In-
stead of using uniform weights, in the P(j|e) model
we set higher weights for the mappings where En-
glish and Japanese sounds share common consonant
phonemes.

For example, mappings such as:

N => n N => a n
D => d D => d o

are weighted X (a constant) times higher than
other mappings such as:

N => b N => r
D => B EY => a a

in the P(j|e) model. In our experiments, we set
the value X to 100.

Initializing the WFST C in this way results in EM
learning better substitution tables and yields slightly
better results for the Senator task. Normalized edit
distance drops from 57.2 to 54.2, and the whole-
name error is also reduced from 77% to 73% (row
2e in Figure 4).

4.6 Size of English Training Data

We saw earlier (in Section 4.4) that using more
monolingual Japanese training data yields improve-
ments in decipherment results. Similarly, we hy-
pothesize that using more monolingual English data
can drive the decipherment towards better translit-
eration results. On the English side, we build dif-
ferent word-based P(e) models, each trained on dif-
ferent amounts of data (English phoneme sequences
from the CMU dictionary). The table below shows
that deciphering with a word-based English model

43

built from more data produces better transliteration
results.

English training data Error on name transliteration task
(# of phoneme sequences) whole-name error normalized word

edit distance
76,152 73 54.2
97,912 66 49.3

This yields the best transliteration results on the
Senator task with non-parallel data, getting 34 out
of 100 Senator names exactly right.

4.7 Re-ranking Results Using the Web

It is possible to improve our results on the U.S. Sen-
ator task further using external monolingual re-
sources. Web counts are frequently used to auto-
matically re-rank candidate lists for various NLP
tasks (Al-Onaizan and Knight, 2002). We extract
the top 10 English candidates produced by our word-
based decipherment method for each Japanese test
name. Using a search engine, we query the entire
English name (first and last name) corresponding to
each candidate, and collect search result counts. We
then re-rank the candidates using the collected Web
counts and pick the most frequent candidate as our
choice.

For example, France Murkowski gets only 1 hit
on Google, whereas Frank Murkowski gets 135,000
hits. Re-ranking the results in this manner lowers
the whole-name error on the Senator task from 66%
to 61%, and also lowers the normalized edit dis-
tance from 49.3 to 48.8. However, we do note that
re-ranking using Web counts produces similar im-
provements in the case of parallel training as well
and lowers the whole-name error from 40% to 24%.

So, the re-ranking idea, which is simple and re-
quires only monolingual resources, seems like a nice
strategy to apply at the end of transliteration exper-
iments (during decoding), and can result in further
gains on the final transliteration performance.

5 Comparable versus Non-Parallel
Corpora

We also present decipherment results when using
comparable corpora for training the WFST C model.
We use English and Japanese phoneme sequences
derived from a parallel corpus containing 2,683
phoneme sequence pairs to construct comparable
corpora (such that for each Japanese phoneme se-

quence, the correct back-transliterated phoneme se-
quence is present somewhere in the English data)
and apply the same decipherment strategy using a
word-based English model. The table below com-
pares the transliteration results for the U.S. Sena-
tor task, when using comparable versus non-parallel
data for decipherment training. While training on
comparable corpora does have benefits and reduces
the whole-name error to 59% on the Senator task, it
is encouraging to see that our best decipherment re-
sults using only non-parallel data comes close (66%
error).

English/Japanese Corpora Error on name transliteration task
(# of phoneme sequences) whole-name error normalized word

edit distance
Comparable Corpora 59 41.8
(English = 2,608
Japanese = 2,455)
Non-Parallel Corpora 66 49.3
(English = 98,000
Japanese = 9,350)

6 Conclusion

We have presented a method for attacking machine
transliteration problems without parallel data. We
developed phonemic substitution tables trained us-
ing only monolingual resources and demonstrated
their performance in an end-to-end name translitera-
tion task. We showed that consistent improvements
in transliteration performance are possible with the
use of strong decipherment techniques, and our best
system achieves significant improvements over the
baseline system. In future work, we would like to
develop more powerful decipherment models and
techniques, and we would like to harness the infor-
mation available from a wide variety of monolingual
resources, and use it to further narrow the gap be-
tween parallel-trained and non-parallel-trained ap-
proaches.

7 Acknowledgements

This research was supported by the Defense Ad-
vanced Research Projects Agency under SRI Inter-
national’s prime Contract Number NBCHD040058.

44

References
Y. Al-Onaizan and K. Knight. 2002. Translating named

entities using monolingual and bilingual resources. In
Proc. of ACL.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society Se-
ries, 39(4):1–38.

Y. Goldberg and M. Elhadad. 2008. Identification of
transliterated foreign words in Hebrew script. In Proc.
of CICLing.

D. Goldwasser and D. Roth. 2008a. Active sample se-
lection for named entity transliteration. In Proc. of
ACL/HLT Short Papers.

D. Goldwasser and D. Roth. 2008b. Transliteration as
constrained optimization. In Proc. of EMNLP.

S. Goldwater and L. Griffiths, T. 2007. A fully Bayesian
approach to unsupervised part-of-speech tagging. In
Proc. of ACL.

J. Graehl. 1997. Carmel finite-state toolkit.
http://www.isi.edu/licensed-sw/carmel.

L. Haizhou, Z. Min, and S. Jian. 2004. A joint source-
channel model for machine transliteration. In Proc. of
ACL.

U. Hermjakob, K. Knight, and H. Daume. 2008. Name
translation in statistical machine translation—learning
when to transliterate. In Proc. of ACL/HLT.

F. Huang, S. Vogel, and A. Waibel. 2004. Improving
named entity translation combining phonetic and se-
mantic similarities. In Proc. of HLT/NAACL.

S. Karimi, F. Scholer, and A. Turpin. 2007. Col-
lapsed consonant and vowel models: New ap-
proaches for English-Persian transliteration and back-
transliteration. In Proc. of ACL.

A. Klementiev and D. Roth. 2008. Named entity translit-
eration and discovery in multilingual corpora. In
Learning Machine Translation. MIT press.

K. Knight and J. Graehl. 1998. Machine transliteration.
Computational Linguistics, 24(4):599–612.

K. Knight and K. Yamada. 1999. A computational ap-
proach to deciphering unknown scripts. In Proc. of the
ACL Workshop on Unsupervised Learning in Natural
Language Processing.

K. Knight, A. Nair, N. Rathod, and K. Yamada. 2006.
Unsupervised analysis for decipherment problems. In
Proc. of COLING/ACL.

J. Kuo, H. Li, and Y. Yang. 2006. Learning translitera-
tion lexicons from the web. In Proc. of ACL/COLING.

H. Li, C. Sim, K., J. Kuo, and M. Dong. 2007. Semantic
transliteration of personal names. In Proc. of ACL.

M. Nagata, T. Saito, and K. Suzuki. 2001. Using the web
as a bilingual dictionary. In Proc. of the ACL Work-
shop on Data-driven Methods in Machine Translation.

J. Oh and H. Isahara. 2006. Mining the web for translit-
eration lexicons: Joint-validation approach. In Proc.
of the IEEE/WIC/ACM International Conference on
Web Intelligence.

S. Ravi and K. Knight. 2008. Attacking decipherment
problems optimally with low-order n-gram models. In
Proc. of EMNLP.

S. Ravi and K. Knight. 2009. Probabilistic methods for a
Japanese syllable cipher. In Proc. of the International
Conference on the Computer Processing of Oriental
Languages (ICCPOL).

T. Sherif and G. Kondrak. 2007a. Bootstrapping a
stochastic transducer for arabic-english transliteration
extraction. In Proc. of ACL.

T. Sherif and G. Kondrak. 2007b. Substring-based
transliteration. In Proc. of ACL.

R. Sproat, T. Tao, and C. Zhai. 2006. Named entity
transliteration with comparable corpora. In Proc. of
ACL.

T. Tao, S. Yoon, A. Fister, R. Sproat, and C. Zhai. 2006.
Unsupervised named entity transliteration using tem-
poral and phonetic correlation. In Proc. of EMNLP.

J. Wu and S. Chang, J. 2007. Learning to find English
to Chinese transliterations on the web. In Proc. of
EMNLP/CoNLL.

D. Yarowsky. 1995. Unsupervised word sense disam-
biguation rivaling supervised methods. In Proc. of
ACL.

S. Yoon, K. Kim, and R. Sproat. 2007. Multilingual
transliteration using feature based phonetic method. In
Proc. of ACL.

D. Zelenko and C. Aone. 2006. Discriminative methods
for transliteration. In Proc. of EMNLP.

45

