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Abstract 

In the past, NLP has always been based 
on the explicit or implicit use of linguistic 
knowledge. In classical computer linguis-
tic applications explicit rule based ap-
proaches prevail, while machine learning 
algorithms use implicit knowledge for 
generating linguistic knowledge. The 
question behind this work is: how far can 
we go in NLP without assuming explicit 
or implicit linguistic knowledge? How 
much efforts in annotation and resource 
building are needed for what level of so-
phistication in text processing? This work 
tries to answer the question by experi-
menting with algorithms that do not pre-

sume any linguistic knowledge in the 
system. The claim is that the knowledge 
needed can largely be acquired by know-
ledge-free and unsupervised methods. 
Here, graph models are employed for rep-
resenting language data. A new graph 
clustering method finds related lexical 
units, which form word sets on various 
levels of homogeneity. This is exempli-
fied and evaluated on language separation 
and unsupervised part-of-speech tagging, 
further applications are discussed. 

1 Introduction 

1.1 Unsupervised and Knowledge-Free 

A frequent remark on work dealing with unsuper-
vised methods in NLP is the question: “Why not 

take linguistic knowledge into account?” While for 
English, annotated corpora, classification exam-
ples, sets of rules and lexical semantic word nets of 
high coverage do exist, this does not reflect the 
situation for most of even the major world lan-
guages. Further, as e.g. Lin (1997) notes, hand-
made and generic resources often do not fit the 
application domain, whereas resources created 
from and for the target data will not suffer from 
these discrepancies.  

Shifting the workload from creating resources 
manually to developing generic methods, a one-
size-fits-all solution needing only minimal adapta-
tion to new domains and other languages comes 
into reach. 

1.2 Graph Models 

The interest in incorporating graph models into 
NLP arose quite recently, and there is still a high 
potential exploiting this combination (cf. Wid-
dows, 2005). An important parallelism between 
human language and network models is the small 
world structure of lexical networks both built 
manually and automatically (Steyvers and 
Tenenbaum, 2005), providing explanation for 
power-law distributions like Zipf’s law and others, 
see Biemann (2007). For many problems in NLP, a 
graph representation is an intuitive, natural and 
direct way to represent the data.  

The pure vector space model (cf. Schütze, 
1993) is not suited to highly skewed distributions 
omni-present in natural language. Computationally 
expensive, sometimes lossy transformations have 
to be applied for effectiveness and efficiency in 
processing. Graph models are a veritable alterna-
tive, as the equivalent of zero-entries in the vector 
representation are neither represented nor have to 
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be processed, rendering dimensionality reduction 
techniques unnecessary while still retaining the 
exact information. 

1.3 Roadmap 

For the entirety of this research, nothing more is 
required as input data than plain, tokenized text, 
separated into sentences. This is surely quite a bit 
of knowledge that is provided to the system, but 
unsupervised word boundary and sentence bound-
ary detection is left for future work. Three steps are 
undertaken to identify similar words on different 
levels of homogeneity: same language, same part-
of-speech, or same distributional properties. Figure 
1 shows a coarse overview of the processing steps 
discussed in this work. 

 
Figure 1: Coarse overview: From multilingual in-
put to typed relations and instances 

2 Methods in Unsupervised Processing 

Having at hand neither explicit nor implicit knowl-
edge, but in turn the goal of identifying structure of 
equivalent function, the only possibility that is left 
in unsupervised and knowledge-free processing is 
statistics and clustering.  

2.1 Co-occurrence Statistics 

As a building block, co-occurrence statistics are 
used in several components of the system de-
scribed here. A significance measure for co-
occurrence is a means to distinguish between ob-
servations that are there by chance and effects that 
take place due to an underlying structure. 
Throughout, the likelihood ratio (Dunning, 1993) 
is used as significance measure because of its sta-
ble performance in various evaluations, yet many 
more measures are possible. Dependent on the con-
text range in co-occurrence calculation, they will 

be called sentence-based or neighbor-based co-
occurrences in the remainder of this paper. The 
entirety of all co-occurrences of a corpus is called 
its co-occurrence graph. Edges are weighted by co-
occurrence significance; often a threshold on edge 
weight is applied. 

2.2 Graph Clustering 

For clustering graphs, a plethora of algorithms ex-
ist that are motivated from a graph-theoretic view-
point, but often optimize NP-complete measures 
(cf. Šíma and Schaeffer, 2005), making them non-
applicable to lexical data that is naturally repre-
sented in graphs with millions of vertices. In Bie-
mann and Teresniak (2005) and more detailed in 
Biemann (2006a), the Chinese Whispers (CW) 
Graph Clustering algorithm is described, which is a 
randomized algorithm with edge-linear run-time. 
The core idea is that vertices retain class labels 
which are inherited along the edges: In an update 
step, a vertex gets assigned the predominant label 
in its neighborhood. For initialization, all vertices 
get different labels, and after a handful of update 
steps per vertex, almost no changes in the labeling 
are observed – especially small world graphs con-
verge fast. CW can be viewed as a more efficient 
modification and simplification of Markov Chain 
Clustering (van Dongen, 2000), which requires full 
matrix multiplications. 

CW is parameter-free, non-deterministic and 
finds the number of clusters automatically – a fea-
ture that is welcome in NLP, where the number of 
desired clusters (e.g. in word sense induction) is 
often unknown. 

3 Results  

3.1 Language Separation 

Clustering the sentence-based co-occurrence graph 
of a multilingual corpus with CW, a language 
separator with almost perfect performance is im-
plemented in the following way: The clusters rep-
resent languages; a sentence gets assigned the label 
of the cluster with the highest lexical overlap be-
tween sentence and cluster. The method is evalu-
ated in (Biemann and Teresniak, 2005) by sorting 
monolingual material that has been artificially 
mixed together. Dependent on similarities of lan-
guages, the method works almost error-free from 
about 100-1,000 sentences per language on. For 
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languages with different encoding, it is possible to 
un-mix corpora of size factors up to 10,000 for the 
monolingual parts.  

In a nutshell, comparable scores to supervised 
language identifiers are reached without training. 
Notice that the number of languages in a multilin-
gual chunk of text is unknown. This prohibits any 
clustering method that needs the number of clus-
ters to be specified be-forehand. 

3.2 Unsupervised POS Tagging 

Unlike in standard POS tagging, there is neither a 
set of predefined categories, nor annotation in a 
text. As POS tagging is not a system for its own 
sake, but serves as a preprocessing step for systems 
building upon it, the names and the number of 
categories are very often not important.  

The system presented in Biemann (2006b) uses 
CW clustering on graphs constructed by distribu-
tional similarity to induce a lexicon of supposedly 
non-ambiguous words w.r.t. POS by selecting only 
safe bets and excluding questionable cases from 
the lexicon. In this implementation, two clusterings 
are combined, one for high and medium frequency 
words, the other collecting medium and low fre-
quency words. High and medium frequency words 
are clustered by similarity of their stop word con-
text feature vectors: a graph is built, including only 
words that are involved in highly similar pairs. 
Clustering this graph of typically 5,000 vertices 
results in several hundred clusters, which are fur-
ther used as POS categories. To extend the lexicon, 
words of medium and low frequency are clustered 
using a graph that encodes similarity of neighbor-
based co-occurrences. Both clusterings are mapped 
by overlapping elements into a lexicon that pro-
vides POS information for some 50,000 words. For 
obtaining a clustering on datasets of this size, an 
effective algorithm like CW is crucial. Using this 
lexicon, a trigram tagger with a morphological ex-
tension is trained, which assigns a tag to every to-
ken in the corpus. 

The tagsets obtained with this method are usu-
ally more fine-grained than standard tagsets and 
reflect syntactic as well as semantic similarity. 
Figure 2 demonstrates the domain-dependence on 
the tagset for MEDLINE: distinguishing e.g. ill-
nesses and error probabilities already in the tagset 
might be a valuable feature for relation extraction 
tasks. 

Size Sample words 

1613 colds, apnea, aspergilloma, ACS, 
breathlessness, lesions, perforations, ... 

1383 proven, supplied, engineered, distin-
guished, constrained, omitted, … 

589 dually, circumferentially, chronically, 
rarely, spectrally, satisfactorily, ... 

124 1-min, two-week, 4-min, 2-day, … 
6 P<0.001, P<0.01, p<0.001, p<0.01, ... 
Figure 2: Some examples for MEDLINE tagset: 
Number of lex. entries per tag and sample words.  

 
In Biemann (2006b), the tagger output was di-

rectly compared to supervised taggers for English, 
German and Finnish via information-theoretic 
measures. While it is possible to compare the con-
tribution of different components of a system rela-
tively along this scale, it only gives a poor 
impression on the utility of the unsupervised tag-
ger’s output. Therefore, the tagger was evaluated 
indirectly in machine learning tasks, where POS 
tags are used as features. Biemann et al. (2007) 
report that for standard Named Entity Recognition, 
Word Sense Disambiguation and Chunking tasks, 
using unsupervised POS tags as features helps 
about as much as supervised tagging: Overall, al-
most no significant differences between results 
could be observed, supporting the initial claim. 

3.3 Word Sense Induction (WSI) 

Co-occurrences are a widely used data source for 
WSI. The methodology of Dorow and Widdows 
(2003) was adopted: for the focus word, obtain its 
graph neighborhood (all vertices that are connected 
via edges to the focus word vertex and edges be-
tween these). Clustering this graph with CW and 
regarding clusters as senses, this method yields 
comparable results to Bordag (2006), tested using 
the unsupervised evaluation framework presented 
there. More detailed results are reported in Bie-
mann (2006a). 

4 Further Work 

4.1 Word Sense Disambiguation (WSD) 

The encouraging results in WSI enable support in 
automatic WSD systems. As described by Agirre et 
al. (2006), better performance can be expected if 
the WSI component distinguishes between a large 
number of so-called micro-senses. This illustrates a 
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principle of unsupervised NLP: It is not important 
to reproduce word senses found by introspection; 
rather, it is important that different usages of a 
word can be reliably distinguished, even if the cor-
responding WordNet sense is split into several sub-
senses. 

4.2 Distributional Thesaurus with Relations 

It is well understood that distributional similarity 
reflects semantic similarity and can be used to 
automatically construct a distributional thesaurus 
for frequent words (Lin, 1997; inter al). Until now, 
most works aiming at semantic similarity rely on a 
parser that extracts dependency relations. The 
claim here again is that similarity on parser output 
might be replaced by similarity on a pattern basis, 
(cf. Davidov and Rappoport 2006). For class-based 
generalization in these patterns, the system de-
scribed in section 3.2 might prove useful. Prelimi-
nary experiments revealed that similarity on 
significantly co-occurring patterns is able to pro-
duce very promising similarity rankings. A cluster-
ing of these with CW leads to thesaurus entries 
comparable to thesauri like Roget’s.  

Clustering not only words based on similarity 
of patterns, but also patterns based on similarity of 
words enables us to identify clusters of patterns 
with different relations they manifest.  

5 Conclusion 

The claim of this work is that unsupervised NLP 
can support and/or replace preprocessing steps in 
NLP that have previously been achieved by a large 
amount of manual work, i.e. annotation, rule con-
struction or resource building. This is proven em-
pirically on the tasks of language identification and 
part-of-speech tagging, exemplified on WSD and 
discussed for thesaurus construction and relation 
extraction. The main contributions of the disserta-
tion that is summarized here are: 

• A framework for unsupervised NLP 
• An efficient graph clustering algorithm 
• An unsupervised language separator 
• An unsupervised POS tagger 

The main advantage of unsupervised NLP, 
namely language independence, will enable the 
immediate processing of all languages and do-
mains for which a large amount of text is elec-
tronically available. 
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