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Abstract 

  This paper presents a three-step dependency 

parser to parse Chinese deterministically. By divid-

ing a sentence into several parts and parsing them 

separately, it aims to reduce the error propagation 

coming from the greedy characteristic of determi-

nistic parsing. Experimental results showed that 

compared with the deterministic parser which 

parsed a sentence in sequence, the proposed parser 

achieved extremely significant improvement on 

dependency accuracy.  

1 Introduction 

Recently, as an attractive alternative to probabilistic 

parsing, deterministic parsing (Yamada and Matsumoto, 

2003; Nivre and Scholz, 2004) has drawn great attention 

with its high efficiency, simplicity and good accuracy 

comparable to the state-of-the-art generative probabilis-

tic models. The basic idea of deterministic parsing is 

using a greedy parsing algorithm that approximates a 

globally optimal solution by making a sequence of lo-

cally optimal choices (Hall et al., 2006). This greedy 

idea guarantees the simplicity and efficiency, but at the 

same time it also suffers from the error propagation 

from the previous parsing choices to the left decisions.  

For example, given a Chinese sentence, which means 

Paternity test is a test that gets personal identity 

through DNA analysis, and it brings proof for finding 

lost children, the correct dependency tree is shown by 

solid line  (see Figure 1). But, if word 通过(through) is 

incorrectly parsed as depending on word 是(is) (shown 

by dotted line), this error will result in the incorrect 

parse of word 鉴定(a test) as depending on word 提供
(brings) (shown by dotted line).  

This problem exists not only in Chinese, but also in 

other languages. Some efforts have been done to solve 

this problem. Cheng et al. (2005) used a root finder to 

divide one sentence into two parts by the root word and 

parsed them separately. But the two-part division is not 

enough when a sentence is composed of several coordi-

nating sub-sentences. Chang et al. (2006) applied a 

pipeline framework in their dependency parser to make 

the local predictions more robust. While it did not show 

great help for stopping the error propagation between 

different parsing stages.  

 
Figure 1. Dependency tree of a sentence  (word sequence is top-down) 

This paper focuses on resolving this issue for Chi-

nese. After analyzing the dependency structure of sen-

tences in Penn Chinese Treebank 5.1 (Xue et al., 2002), 

we found an interesting phenomenon: if we define a 

main-root as the head of a sentence, and define a sub-

sentence as a sequence of words separated by punctua-

tions, and the head
1
 of these words is the child of main-

root or main-root itself, then the punctuations that de-

pend on main-root can be a separator of sub-sentences.  

For example, in the example sentence there are three 

punctuations marked as PU_A, PU_B and PU_C, in 

which PU_B and PU_C depends on main-root but 

PU_A depends on word 得出(gets). According to our 

observation, PU_B and PU_C can be used for segment-

ing this sentence into two sub-sentences A and B (cir-

cled by dotted line in Figure 2), where the sub-root of A 

is main-root and the sub-root of B depends on main-root.  

This phenomenon gives us a useful clue: if we divide 

a sentence by the punctuations whose head is main-root, 

then the divided sub-sentences are basically independ-

ent of each other, which means we can parse them sepa-

rately. The shortening of sentence length and the recog-

nition of sentence structure guarantee the robustness of 

deterministic parsing. The independent parsing of each 

sub-sentence also prevents the error-propagation. In 

                                                 
1 The head of sub-sentence is defined as a sub-root. 
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addition, because the sub-root depends on main-root or 

is main-root itself, it is easy to combine the dependency 

structure of each sub-sentence to create the final de-

pendency tree. 

 
Figure 2. A segmentation of the sentence in Figure 1 

Based on above analyses, this paper proposes a three-

step deterministic dependency parser for Chinese, which 

works as: 

Step1(Sentence Segmentation): Segmenting a sen-

tence into sub-sentences by punctuations (sub-sentences 

do not contain the punctuations for segmentation); 

Step2(Sub-sentence Parsing): Parsing each sub-

sentence deterministically; 

Step3(Parsing Combination): Finding main-root 

among all the sub-roots, then combining the dependency 

structure of sub-sentences by making main-root as the 

head of both the left sub-roots and the punctuations for 

sentence segmentation. 

2 Sentence Segmentation 

As mentioned in section 1, the punctuations depending 

on main-root can be used to segment a sentence into 

several sub-sentences, whose sub-root depends on main-

root or is main-root. But by analysis, we found only 

several punctuations were used as separator commonly. 

To ensure the accuracy of sentence segmentation, we 

first define the punctuations which are possible for seg-

mentation as valid punctuation, which includes comma, 

period, colon, semicolon, question mark, exclamatory 

mark and ellipsis. Then the task in step 1 is to find 

punctuations which are able to segment a sentence from 

all the valid punctuations in a sentence, and use them to 

divide the sentence into two or more sub-sentences. 

We define a classifier (called as sentence seg-

menter) to classify the valid punctuations in a sentence 

to be good or bad for sentence segmentation. SVM (Se-

bastiani, 2002) is selected as classification model for its 

robustness to over-fitting and high performance.  

Table 1 shows the binary features defined for sen-

tence segmentation. We use a lexicon consisting of all 

the words in Penn Chinese Treebank 5.1 to lexicalize 

word features. For example, if word 为 (for) is the 

27150th word in the lexicon, then feature Word1 of 

PU_B (see Figure 2) is ‘27150:1’. The pos-tag features 

are got in the same way by a pos-tag list containing 33 

pos-tags, which follow the definition in Penn Chinese 

Treebank. Such method is also used to get word and 

pos-tag features in other modules. 
Table 1. Features for sentence segmenter 

Feature Description 

Wordn/Posn word/pos-tag in different position, n=-2,-1,0,1,2 

Word_left/ 

Pos_left 

word/pos-tag between the first left valid punctua-

tion and current punctuation 

Word_right/ 

Pos_right 

word/pos-tag between current punctuation and 

the first right valid punctuation 

#Word_left/ 

#Word_right 

if the number of words between the first left/right 

valid punctuation and current punctuation is 

higher than 2, set as 1; otherwise set as 0 

V_left/ 

V_right 

if there is a verb between the first left/right valid 

punctuation and current punctuation, set as 1; 

otherwise set as 0 

N_leftFirst/ 

N_rightFirst 

if the left/right neighbor word is a noun, set as 1; 

otherwise set as 0 

P_rightFirst/ 

CS_rightFirst 

if the right neighbor word is a preposi-

tion/subordinating conjunction, set as 1; other-

wise set as 0 

3 Sub-sentence Parsing  

3.1 Parsing Algorithm 

The parsing algorithm in step 2 is a shift-reduce parser 

based on (Yamada and Matsumoto, 2003). We call it as 

sub-sentence parser. 

Two stacks P and U are defined, where stack P keeps 

the words under consideration and stack U remains all 

the unparsed words. All the dependency relations cre-

ated by the parser are stored in queue A.  

At start, stack P and queue A are empty and stack U 

contains all the words. Then word on the top of stack U 

is pushed into stack P, and a trained classifier finds 

probable action for word pair <p,u> on the top of the 

two stacks. After that, according to different actions, 

dependency relations are created and pushed into queue 

A, and the elements in the two stacks move at the same 

time. Parser stops when stack U is empty and the de-

pendency tree can be drawn according to the relations 

stored in queue A.  

Four actions are defined for word pair <p, u>: 

LEFT: if word p modifies word u, then push p�u 

into A and push u into P. 

RIGHT: if word u modifies word p, then push u�p 

into A and pop p. 

REDUCE: if there is no word u’ (u’∊U and u’≠u) 

which modifies p, and word next to p in stack P is p’s 

head, then pop p. 

SHIFT: if there is no dependency relation between p 

and u, and word next to p in stack P is not p’s head, then 

push u into stack P. 
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We construct a classifier for each action separately, 

and classify each word pair by all the classifiers. Then 

the action with the highest classification score is se-

lected. SVM is used as the classifier, and One vs. All 

strategy (Berger, 1999) is applied for its good efficiency 

to extend binary classifier to multi-class classifier. 

3.2 Features 

Features are crucial to this step. First, we define some 

features based on local context (see Flocal in Table 2), 

which are often used in other deterministic parsers 

(Yamada and Matsumoto, 2003; Nivre et al., 2006). 

Then, to get top-down information, we add some global 

features (see Fglobal in Table 2). All the features are bi-

nary features, except that Distance is normalized be-

tween 0-1 by the length of sub-sentence.  

Before parsing, we use a root finder (i.e. the sub-

sentence root finder introduced in Section 4) to get 

Rootn feature, and develop a baseNP chunker to get 

BaseNPn feature. In the baseNP chunker, IOB represen-

tation is applied for each word, where B means the word 

is the beginning of a baseNP, I means the word is inside 

of a baseNP, and O means the word is outside of a 

baseNP. Tagging is performed by SVM with One vs. All 

strategy. Features used in baseNP chunking are current 

word, surrounding words and their corresponding pos-

tags. Window size is 5. 
Table 2. Features for sub-sentence parser 

Feature Description 

Wordn/ 

Posn 

word/pos-tag in different position, 

n= P0, P1, P2, U0, U1, U2 (Pi/Ui mean 

the ith position from top in stack P/U) 

Word_childn/ 

Pos_childn 

the word/pos-tag of the children of 

Wordn, n= P0, P1, P2, U0, U1, U2 

Local 

Feature 

(Flocal) 

Distance distance between p and u in sentence 

Rootn 
if Wordn is the sub-root of this sub-

sentence, set as 1; otherwise set as 0 

Global 

Feature 

(Fglobal) BaseNPn baseNP tag of Wordn 

Table 3. Features for sentence/sub-sentence root finder 

Feature Description 

Wordn/Posn words in different position, n=-2,-1,0,1,2 

Word_left/Pos_left wordn/posn where n<-2 

Word_right/Pos_right wordn/posn where n>2 

#Word_left/ 

#Word_right 

if the number of words between the 

start/end of sentence and current word is 

higher than 2, set as 1; otherwise set as 0 

V_left/V_right 

if there is a verb between the start/end of 

sentence and current word, set as 1; oth-

erwise set as 0 

Nounn/Verbn/Adjn 

if the word in different position is a 

noun/verb/adjective, set as 1; otherwise 

set as 0. n=-2,-1,1,2 

Dec_right 
if the word next to current word in right 

side is 的(of), set as 1; otherwise set as 0 

CC_left 

if there is a coordinating conjunction 

between the start of sentence and current 

word, set as 1; otherwise set as 0 

BaseNPn baseNP tag of Wordn 

4 Parsing Combination 

A root finder is developed to find main-root for parsing 

combination. We call it as sentence root finder. We 

also retrain the same module to find the sub-root in step 

2, and call it as sub-sentence root finder. 

We define the root finding problem as a classification 

problem. A classifier, where we still select SVM, is 

trained to classify each word to be root or not. Then the 

word with the highest classification score is chosen as 

root. All the binary features for root finding are listed in 

Table 3. Here the baseNP chunker introduced in section 

3.2 is used to get the BaseNPn feature. 

5 Experimental Results 

5.1 Data Set and Experimental Setting 

We use Penn Chinese Treebank 5.1 as data set. To 

transfer the phrase structure into dependency structure, 

head rules are defined based on Xia’s head percolation 

table (Xia and Palmer, 2001). 16,984 sentences and 

1,292 sentences are used for training and testing. The 

same training data is also used to train the sentence 

segmenter, the baseNP chunker, the sub-sentence root 

finder, and the sentence root finder. During both train-

ing and testing, the gold-standard word segmentation 

and pos-tag are applied. 

TinySVM is selected as a SVM toolkit. We use a 

polynomial kernel and set the degree as 2 in all the ex-

periments.  

5.2 Three-step Parsing vs. One-step Parsing 

First, we evaluated the dependency accuracy and root 

accuracy of both three-step parsing and one-step parsing. 

Three-step parsing is the proposed parser and one-step 

parsing means parsing a sentence in sequence (i.e. only 

using step 2). Local and global features are used in both 

of them. 

Results (see Table 4) showed that because of the 

shortening of sentence length and the prevention of er-

ror propagation three-step parsing got 2.14% increase 

on dependency accuracy compared with one-step pars-

ing. Based on McNemar’s test (Gillick and Cox, 1989), 

this improvement was considered extremely statistically 

significant (p<0.0001).  In addition, the proposed parser 

got 1.01% increase on root accuracy.  
Table 4. Parsing result of three-step and one-step parsing 

Parsing Strategy 
Dep.Accu. 

(%) 

Root Accu. 

(%) 

Avg. Parsing 

Time (sec.) 

One-step Parsing 82.12 74.92 22.13 

Three-step Parsing 
84.26 

(+2.14) 

75.93 

(+1.01) 

24.27 

(+2.14) 

Then we tested the average parsing time for each sen-

tence to verify the efficiency of proposed parser. The 

average sentence length is 21.68 words. Results (see 

Table 4) showed that compared with one-step parsing, 

the proposed parser only used 2.14 more seconds aver-
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agely when parsing one sentence, which did not affect 

efficiency greatly. 

To verify the effectiveness of proposed parser on 

complex sentences, which contain two or more sub-

sentences according to our definition, we selected 665 

such sentences from testing data set and did evaluation 

again. Results (see Table 5) proved that our parser 

outperformed one-step parsing successfully.  
Table 5. Parsing result of complex sentence 

Parsing Strategy Dep.Accu. (%) Root Accu. (%) 

One-step Parsing 82.56 78.95 

Three-step Parsing 84.94 (+2.38) 79.25 (+0.30) 

5.3 Comparison with Others’ Work 

At last, we compare the proposed parser with Nivre’s 

parser (Hall et al., 2006). We use the same head rules 

for dependency transformation as what were used in 

Nivre’s work. We also used the same training (section 

1-9) and testing (section 0) data and retrained all the 

modules. Results showed that the proposed parser 

achieved 84.50% dependency accuracy, which was 

0.20% higher than Nivre’s parser (84.30%).  

6 Discussion 

In the proposed parser, we used five modules: sentence 

segmenter (step1); sub-sentence root finder (step2); 

baseNP chunker (step2&3); sub-sentence parser (step2); 

and sentence root finder (step3).  

The robustness of the modules will affect parsing ac-

curacy. Thus we evaluated each module separately. Re-

sults (see Table 6) showed that all the modules got rea-

sonable accuracy except for the sentence root finder. 

Considering about this, in step 3 we found main-root 

only from the sub-roots created by step 2. Because the 

sub-sentence parser used in step 2 had good accuracy, it 

could provide relatively correct candidates for main-root 

finding. Therefore it helped decrease the influence of 

the poor sentence root finding to the proposed parser. 
Table 6. Evaluation result of each module 

Module F-score(%) Dep.Accu(%) 

Sentence Segmenter (M1) 88.04 --- 

Sub-sentence Root Finder (M2) 88.73 --- 

BaseNP Chunker (M3) 89.25 --- 

Sub-sentence Parser (M4) --- 85.56 

Sentence Root Finder (M5) 78.01 --- 

Then we evaluated the proposed parser assuming us-

ing gold-standard modules (except for sub-sentence 

parser) to check the contribution of each module to 

parsing. Results (see Table 7) showed that (1) the accu-

racy of current sentence segmenter was acceptable be-

cause only small increase on dependency accuracy and 

root accuracy was got by using gold-standard sentence 

segmentation; (2) the correct recognition of baseNP 

could help improve dependency accuracy but gave a 

little contribution to root accuracy; (3) the accuracy of 

both sub-sentence root finder and sentence root finder 

was most crucial to parsing. Therefore improving the 

two root finders is an important task in our future work. 
Table 7. Parsing result with gold-standard modules 

Gold-standard Module Dep.Accu(%) Root.Accu(%) 

w/o 84.26 75.93 

M1 84.51 76.24 

M1+M2 86.57 80.34 

M1+M2+M3 88.63 80.57 

M1+M2+M3+M5 91.25 91.02 

7 Conclusion and Future Work 

We propose a three-step deterministic dependency 

parser for parsing Chinese. It aims to solve the error 

propagation problem by dividing a sentence into inde-

pendent parts and parsing them separately. Results 

based on Penn Chinese Treebank 5.1 showed that com-

pared with the deterministic parser which parsed a sen-

tence in sequence, the proposed parser achieved ex-

tremely significant increase on dependency accuracy. 

Currently, the proposed parser is designed only for 

Chinese. But we believe it can be easily adapted to other 

languages because no language-limited information is 

used. We will try this work in the future. In addition, 

improving sub-sentence root finder and sentence root 

finder will also be considered in the future. 
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