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Abstract

We present a method for automatic deter-
miner selection, based on an existing lan-
guage model. We train on the Penn Tree-
bank and also use additional data from the
North American News Text Corpus. Our
results are a significant improvement over
previous best.

1 Introduction

Determiner placement (choosing if a noun phrase
needs a determiner, and if so, which one) is a
non-trivial problem in several language processing
tasks. While context beyond that of the current sen-
tence can sometimes be necessary, native speakers
of languages with determiners can select determin-
ers quite well for most NPs. Native speakers of lan-
guages without determiners have a much more diffi-
cult time.

Automating determiner selection is helpful in sev-
eral applications. A determiner selection program
can aid in Machine Translation of determiner-free
languages (by adding determiners after the text has
been translated), correct English text written by non-
native speakers (Lee, 2004), and choose determiners
for text generation programs.

Early work on determiner selection focuses on
rule-based systems (Gawronska, 1990; Murata and
Nagao, 1993; Bond and Ogura, 1994; Heine, 1998).
Knight and Chander (1994) use decision trees to
choose betweentheanda/an, ignoring NPs with no
determiner, and achieve 78% accuracy on their Wall

Street Journal corpus. (Deciding betweena andan
is a trivial postprocessing step.)

Minnen et al. (2000) use a memory-based learner
(Daelemans et al., 2000) to choose determiners of
base noun phrases. They choose between no deter-
miner (henceforenull), the, anda/an. They use syn-
tactic features (head of the NP, part-of-speech tag of
the head of the NP, functional tag of the head of the
NP, category of the constituent embedding the NP,
and functional tag of the constituent embedding the
NP), whether the head is a mass or count noun and
semantic classes of the head of the NP (Ikehara et
al., 1991). They report 83.58% accuracy.

In this paper, we use the Charniak language model
(Charniak, 2001) for determiner selection. Our ap-
proach significantly improves upon the work of Min-
nen et al. (2000). We also use additional automat-
ically parsed data from the North American News
Text Corpus (Graff, 1995), further improving our re-
sults.

2 The Immediate-Head Parsing Model

The language model we use is described in (Char-
niak, 2001). It is based upon a parser that, for a
sentences, tries to find the parseπ defined as:

arg maxπp(π | s) = arg maxπp(π, s) (1)

The parser can be turned into a language modelp(s)
describing the probability distribution over all pos-
sible stringss in the language, by considering all
parsesπ of s:

p(s) =
∑

π
p(π, s) (2)
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Herep(π, s) is zero if the yield ofπ 6= s.
The parsing model assigns a probability to a parse

π by a top-down process. For each constituentc in
π it first guesses the pre-terminal ofc, t(c) (t for
“tag”), then the lexical head ofc, h(c), and then the
expansion ofc into further constituentse(c). Thus
the probability of a parse is given by the equation

p(π) =
∏

c∈π
p(t(c) | l(c),H(c))

· p(h(c) | t(c), l(c),H(c))

· p(e(c) | l(c), t(c), h(c),H(c))

wherel(c) is the label ofc (e.g., whether it is a noun
phrase NP, verb phrase, etc.) andH(c) is the rel-
evant history ofc — information outsidec deemed
important in determining the probability in question.
H(c) approximately consists of the label, head, and
head-part-of-speech for the parent ofc: m(c), i(c),
and u(c) respectively and also a secondary head
(e.g., in “Monday Night Football” Monday would
be conditioned on both the head of the noun-phrase
“Football” and the secondary head “Night”).

It is usually clear to which constituent we are re-
ferring and we omit the(c) in, e.g.,h(c). In this no-
tation the above equation takes the following form:

p(π) =
∏

c∈π
p(t | l,m, u, i) · p(h | t, l,m, u, i)

· p(e | l, t, h,m, u). (3)

Next we describe how we assign a probability to
the expansione of a constituent. We break up a tra-
ditional probabilistic context-free grammar (PCFG)
rule into a left-hand side with a labell(c) drawn
from the non-terminal symbols of our grammar, and
a right-hand side that is a sequence of one or more
such symbols. For each expansion we distinguish
one of the right-hand side labels as the “middle” or
“head” symbolM(c). M(c) is the constituent from
which the head lexical itemh is obtained according
to deterministic rules that pick the head of a con-
stituent from among the heads of its children. To the
left of M is a sequence of one or more left labels
Li(c) including the special termination symbol△,
which indicates that there are no more symbols to
the left. We do the same for the labels to the right,
Ri(c). Thus, an expansione(c) looks like:

l →△Lm...L1MR1...Rn△. (4)

The expansion is generated first by guessingM ,
then in orderL1 throughLm+1 (= △), and then,R1

throughRn+1.
Let us turn to how this works in the case of de-

terminer recovery. Consider a noun-phrase, which,
missing a possible determiner, is simply “FBI.” The
language model is interested in the probability of the
strings “the FBI,” “a/an FBI” and “FBI.” The ver-
sion with the highest probability will dictate the de-
terminer, or lack thereof. So, consider (most of) the
probability calculation for the answer “the FBI:”

p(NNP | H) · p(FBI | NNP,H)

· p(det | FBI, NNP,H)

· p(△ | det, FBI, NNP,H)

· p(the | det, FBI, NNP,H) (5)

Of these, the first two terms, the probability that
the head will be an NNP (a singular proper noun)
and the probability that it will be “FBI”, are shared
by all three competitors,null, the, anda/an. These
terms can therefore be ignored when we only wish to
identify the competitor with the highest probability.
The next two probabilities state that the noun-phrase
contains a determiner to the left of “FBI” and that
the determiner is the last constituent of the left-hand
side. The last of the probabilities states that the de-
terminer in question isthe. Ignoring the first two
probabilities, the critical probabilities for “the FBI”
are:

p(det | FBI, NNP,H)

· p(△ | det, FBI, NNP,H)

· p(the | det, FBI, NNP,H) (6)

Conversely, to evaluate the probability of the noun-
phrase “FBI” — i.e., no determiner, we evaluate:

p(△ | FBI, NNP,H) (7)

We ask the probability of the NP stopping immedi-
ately to the left of “FBI.” For “a/an FBI” we evalu-
ate:

p(det | FBI, NNP,H)

· p(△ | det, FBI, NNP,H) (8)

· (p(a | det, FBI, NNP,H) +

p(an | det, FBI, NNP,H))
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Test Data Method Accuracy
leave-one-out Minnen et al. 83.58%

Language Model (LM) 86.74%
tenfold on development LM 84.72%

LM trained on WSJ + 3 million words of NANC 85.83%
LM trained on WSJ + 10 million words of NANC 86.36%
LM trained on WSJ + 20 million words of NANC 86.64%

tenfold on test LM trained on WSJ + 20 million words of NANC 86.63%

Table 1: Results of classification

This equation is very similar to Equation 6 (the
equation for “the FBI”, except the term for the prob-
ability of the is replaced by the sum of the probabil-
ities for a andan.

To choose betweennull, the, ora/an, the language
model in effect constructs Equations 6, 7 and 8 and
we pick the one that has the highest probability.

2.1 Training the model

As with (Minnen et al., 2000), we train the lan-
guage model on the Penn Treebank (Marcus et al.,
1993). As far as we know, language modeling
always improves with additional training data, so
we add data from the North American News Text
Corpus (NANC) (Graff, 1995) automatically parsed
with the Charniak parser (McClosky et al., 2006) to
train our language model on up to 20 million addi-
tional words.

3 Results and Discussion

The best results of Minnen et al. (2000) are using
leave-one-out cross-validation. We also test our lan-
guage model using leave-one-out cross-validation
on the Penn Treebank (Marcus et al., 1993) (WSJ),
giving us 86.74% accuracy (see Table 1).

Leave-one-out cross-validation does not make
sense in this case. When choosing determiners, we
can train a language model on similar data, but not
on other NPs in the article. Therefore, for the rest
of our tests, we use tenfold cross-validation. The
difference between leave-one-out and tenfold cross-
validation is due to the co-occurrence of NPs within
an article. Church (2000) shows that a word appears
with much higher probability when seen elsewhere
in an article. Thus, a rare NP might be unseen in
tenfold cross-validation, but seen in leave-one-out.

For each of our sets in tenfold cross validation,
we use 80% of the Penn Treebank for training, 10%
for development, and 10% for testing. The divisions
occur at article boundaries. On our development set
with tenfold cross-validation, we get 84.72% accu-
racy using the language model (Table 1).

As expected, we achieve significant improvement
when adding NANC data over training on data from
the Penn Treebank alone (Table 1). With 20 mil-
lion additional words, we seem to be approaching
an upper bound on the language model features. We
obtain improvement despite the fact that the parses
were automatic, but there may have been errors in
determiner selection due to parsing error.

Table 2 gives “error” examples. Some errors are
wrong (either grammatically or yielding a signifi-
cantly different interpretation), but some “incorrect”
answers are reasonable possibilities. Furthermore,
even all the text of the article is not enough for clas-
sification at times. In particular note Example 5,
where unless you know whether IBM wastheworld
leader or simply one of the world leaders at the time
of the article, no additional context would help.

4 Conclusions and Future Work

With the Charniak (Charniak, 2001) language
model, our results exceed those of the previous best
(Minnen et al., 2000) on the determiner selection
task. This shows the benefits of the language model
features in determining the most grammatical deter-
miner to use in a noun phrase. Such a language
model looks at much of the structure in individual
sentences, but there may be additional features that
could improve performance. There is a high rate of
ambiguity for many of the misclassified sentences.

The success of using a state-of-the-art language
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Guess Correct Sentence
the null (1) The computers were crude bytoday’s standards.
null the (2) In addition,the Apple II was an affordable $1,298.

(3) Highway officials insistthe ornamental railings on older bridges aren’t strong enough
to prevent vehicles from crashing through.

a/an the (4) The new carrier can tote as many as four cups at once.
(5) IBM, the world leader in computers, didn’t offer its first PC
until August 1981 as many other companies entered the market.

the a/an (6) In addition, the Apple II wasan affordable $1,298.
(7) “The primary purpose ofa railing is to contain a vehicle and not to provide
a scenic view,” says Jack White, a planner with the Indiana Highway Department.

a/an null (8) Crude as they were, these early PCs triggeredexplosive product development in
desktop models for the home and office.

Table 2: Examples of “errors”

model in determiner selection also suggests that one
would be helpful in making other decisions in the
surface realization stage of text generation. This is
an avenue worth exploring.
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