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Abstract

This paper presents a way to perform
speaker adaptation for automatic speech
recognition using the stream weights in a
multi-stream setup, which included acous-
tic models for “Articulatory Features”
such as ROUNDED or VOICED. We
present supervised speaker adaptation ex-
periments on a spontaneous speech task
and compare the above stream-based ap-
proach to conventional approaches, in
which the models, and not stream com-
bination weights, are being adapted. In
the approach we present, stream weights
model the importance of features such as
VOICED for word discrimination, which
offers a descriptive interpretation of the
adaptation parameters.

1 Introduction

Almost all approaches to automatic speech recogni-
tion (ASR) using Hidden Markov Models (HMMs)
to model the time dependency of speech are also
based on phones, or context-dependent sub-phonetic
units derived from them, as the atomic unit of speech
modeling. In phonetics, a phone is a shorthand no-
tation for a certain configuration of underlying artic-
ulatory features (AFs) (Chomsky and Halle, 1968):
/p/ is for example defined as the unvoiced, bi-labial
plosive, from which /b/ can be distinguished by its
VOICED attribute. In this sense, instead of describ-
ing speech as a single, sequential stream of sym-
bols representing sounds, we can also look at speech
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as the result of a process involving several paral-
lel streams of information, each of which describes
some linguistic or articulatory property as being ei-
ther absent or present.

A multi-stream architecture is a relatively simple
approach to combining several information sources
in ASR, because it leaves the basic structure of
the Hidden Markov Model and its computational
complexity intact. Examples combining different
observations are audio-visual speech recognition
(Potamianos and Graf, 1998) and sub-band based
speech processing (Janin et al., 1999). The same
idea can also be used to combine different classi-
fiers on the same observation. In a multi-stream
HMM setup, log-linear interpolation (Beyerlein,
2000) can be derived as a framework to integrat-
ing several independent acoustic models given as
Gaussian Mixture Models (GMMs) into the speech
recognition process: given a “weight” vector A =
{Ao, A1, -, A}, a word sequence W, and an
acoustic observation o, the posterior probability
p(Wo) one wants to optimize is written as:

M
p(Wlo) = C'exp {Z Ai Ingi(W|0)}

=0

C' is a normalization constant, which can be ne-
glected in practice, as long as normalization 3;\; =
const is observed. It is now possible to set
p(Wlo) x p(o|W) (Beyerlein, 2000) and write a
speech recognizer’s acoustic model p(o|WW) in this
form, which in logarithmic representation reduces
to a simple weighted sum of so-called “scores” for
each individual stream. The \; represent the “im-
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portance” of the contribution of each individual in-
formation source.

Extending Kirchhoff’s (Kirchhoff, 1999) ap-
proach, the log-likelihood score combination
method to AF-based ASR can be used to combine
information from M different articulatory features
while at the same time retaining the “standard”
acoustic models as stream 0. As an example
using M = 2, the acoustic score for /z/ would
be computed as a weighted sum of the scores for
a (context-dependent sub-)phonetic model z, the
score for FRICATIVE and the score for VOICED,
while the score for /s/ would be computed as a
weighted sum of the scores for a (context-dependent
sub-) phonetic model s, the score for FRICA-
TIVE and the score for NON_VOICED. The free
parameters A; can be global (G), or they can be
made state-dependent (SD) during the optimization
process, thus changing the importance of a feature
given a specific phonetic context, as long as overall
normalization is observed. (Metze, 2005) discusses
this stream setup in more detail.

2 Experiments

To investigate the performance of the proposed AF-
based model, we built acoustic models for 68 ar-
ticulatory features on 32h of English Spontaneous
Scheduling Task ESST data from the Verbmobil
project (Wahlster, 2000), and integrated them with
matching phone-based acoustic models.

For training robust baseline phone models, 32h
from the ESST corpus were merged with 66h Broad-
cast News '96 data, for which manually annotated
speaker labels are available. The system is trained
using 6 iterations of ML training and uses 4000 con-
text dependent (CD) acoustic models (HMM states),
32 Gaussians per model with diagonal covariance
matrices and a global semi-tied covariance matrix
(STC) in a 40-dimensional MFCC-based feature
space after LDA. The characteristics of the training
and test sets used in the following experiments are
summarized in Table 1.

The ESST test vocabulary contains 9400 words
including pronunciation variants (7100 base forms)
while the language model perplexity is 43.5 with an
out of vocabulary (OOV) rate of 1%. The language
model is a tri-gram model trained on ESST data
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Data Set Train Test

1825 ds2 xv2
Duration 98h 2h25 1h26 O0Oh59
Utterances 39100 1825 1150 675
Recordings 8681 58 32 26
Speakers 423 16 9 7

Table 1: Data sets used in this work: The ESST test
set 1825 is the union of the development set ds2
and the evaluation set xv2.

containing manually annotated semantic classes for
most proper names (persons, locations, numbers).
Generally, systems run in less than 4 times real-time
on Pentium 4-class machines. The baseline Word
Error Rate is reported as adaptation “None” in Ta-
ble 2; the system parameters were optimized on the
ds2 data set. As the stream weight estimation pro-
cess can introduce a scaling factor for the acoustic
model, we verified that the baseline system can not
be improved by widening the beam or by readjust-
ing the weight of the language model vs. the acous-
tic model. The baseline system can also not be im-
proved significantly by varying the number of pa-
rameters, either by increasing the number of Gaus-
sians per codebook or by increasing the number of
codebooks.

2.1 MMI Training of Stream Weights

To arrive at an optimal set of stream weights, we
used the iterative update rules presented in (Metze,
2005) to generate stream weights \; using the Max-
imum Mutual Information (MMI) criterion (Bahl et
al., 1986).

Results after one iteration of stream weight esti-
mation on the 1825 and ds2 data sets using step
size ¢ = 4 - 1078, initial stream weight /\? 20 =
3 - 1073, and lattice density d = 10 are shown in
Table 2 in rows “AF (G) on 1825” and “AF (G) on
ds2”: As there are only 68 stream weights to es-
timate, adaptation works only slightly better when
adapting and testing on the same corpus (“cheat-
ing experiment”: 22.6% vs. 22.8% word error rate
(WER) on ds2). There is no loss in WER (24.9%)
on xv2 when adapting the weights on ds2 instead
of 1825, which has no overlap with xv2, so gen-
eralization on unseen test data is good for global



stream weights, i.e. weights which do not depend
on state or context.

2.2 Speaker-specific Stream Weights

The ESST test 1825 set is suitable to test speaker-
specific properties of articulatory features, because it
contains 16 speakers in 58 different recordings. As
1825 provides between 2 and 8 dialogs per speaker,
it is possible to adapt the system to individual speak-
ers in a “round-robin” or “leave-one-out” experi-
ment, i.e. to decode every test dialog with weights
adapted on all remaining dialogs from that speaker
in the 1825 test set. Using speaker-specific, but
global (G), weights computed with the above set-
tings, the resulting WER is 21.5% (row “AF (G) on
speaker” in Table 2).

Training parameters were chosen to display im-
provements after the first iteration of training with-
out convergence in further iterations. Consequently,
training a second iteration of global (i.e. context
independent) weights does not improve the perfor-
mance of the speaker adapted system. In our ex-
periments we reached best results when comput-
ing state-dependent (SD) feature weights on top of
global weights using the experimentally determined
smaller learning rate of egp = 0.2 - €. In this case,
speaker and state dependent AF stream weights fur-
ther reduce the word error rate to 19.8% (see bottom
row of Table 2).

2.3 ML Model Adaptation

When training speaker-dependent articulatory fea-
ture weights in Section 2.2, we were effectively per-
forming supervised speaker adaptation (on separate
adaptation data) with articulatory feature weights.
To compare the performance of AFs to other ap-
proaches to speaker adaptation, we adapted the
baseline acoustic models to the test data using
supervised maximum likelihood linear regression
(MLLR) (Leggetter and Woodland, 1994) and con-
strained MLLR, which is also known as “feature-
space adaptation” (FSA) (Gales, 1997).

The ESST data has very little channel variation
so that the performance of models that were trained
on both ESST and BN data can be improved slightly
on ESST test dialogs by using FSA, while MLLR
already leads to over-specialization (Table 2, rows
“FSA/ MLLR on ds2). The results in Table 2
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Adaptation Test corpus
type and corpus 1825 ds?2 XV2
None 25.0% 24.1% 26.1%
FSA on ds2 22.5% 25.4%
FSA on speaker 22.8% 21.6% 24.3%
MLLR on ds?2 16.3% 26.4%
MLLR on speaker 209% 19.8% 22.4%
MMI-MAP on ds2 144% 26.2%
MMI-MAP on speaker 20.5% 19.5% 21.7%
AF (G)on 1825 23.7% 22.8% 24.9%
AF (G) on ds?2 22.6% 24.9%
AF (SD) on ds2 22.5% 26.5%
AF (G) on speaker 21.5% 20.1% 23.6%
AF (SD) on speaker 19.8% 18.6% 21.7%

Table 2: Word error rates on the ESST test sets us-
ing different kinds of adaptation. See Table 1 for a
description of data sets.

show that AF adaptation performs as well as FSA in
the case of supervised adaptation on the ds2 data
and better by about 1.3% absolute in the speaker
adaptation case, despite using significantly less pa-
rameters (69 for the AF case vs. 40*%40=1.6k for
the FSA case). While supervised FSA is equiva-
lent to AF adaptation when adapting and decoding
on the ds2 data in a “cheating experiment” for di-
agnostic purposes (22.5% vs 22.6%, rows “FSA/
AF (G) on ds2” of Table 2), supervised FSA only
reaches a WER of 22.8% on 1825 when decod-
ing every ESST dialog with acoustic models adapted
to the other dialogs available for this speaker (row
“FSA on speaker”). AF-based adaptation reaches
21.5% for the global (G) case and 19.8% for the
state dependent (SD) case (last two rows). The AF
(SD) case has 68*%4000=276k free parameters, but
decision-tree based tying using a minimum count re-
duces these to 4.3k per speaker. Per-speaker MLLR
uses 4.7k parameters in the transformation matrices
on average per speaker, but performs worse than AF-
based adaptation by about 1% absolute.

2.4 MMI Model Adaptation

In a non-stream setup, discriminative speaker adap-
tation approaches have been published using condi-
tional maximum likelihood linear regression (CM-
LLR) (Gunawardana and Byrne, 2001) and MMI-



MAP (Povey et al., 2003). In supervised adapta-
tion experiments on the Switchboard corpus, which
are similar to the experiments presented in the pre-
vious section, CMLLR reduced word error rate
over the baseline, but failed to outperform conven-
tional MLLR adaptation (Gunawardana and Byrne,
2001), which was already tested in Section 2.3. We
therefore compared AF-based speaker adaptation to
MMI-MAP as described in (Povey et al., 2003).
The results are given in Table 2: using a com-
parable number of parameters for adaptation as in
the previous section, AF-based adaptation performs
slightly better than MMI-MAP (19.8% WER vs.
20.5%; rows “MMI-MAP/ AF (SD) on speaker”).
When testing on the adaptation data ds2 as a di-
agnostic experiment, MMI-MAP as well as MLLR
outperform AF based adaptation, but the gains do
not carry over to the validation set xv2, which we
attribute to over-specialization of the acoustic mod-
els (rows “MLLR/ MMI-MAP/ AF (SD) on ds2).

3 Summary and Conclusion

This paper presented a comparison between two
approaches to discriminative speaker adaptation:
speaker adaptation using articulatory features (AFs)
in the multi-stream setup presented in (Metze, 2005)
slightly outperformed model-based discriminative
approaches to speaker adaptation (Gunawardana and
Byrne, 2001; Povey et al., 2003), however at the
cost of having to evaluate additional codebooks in
the articulatory feature streams during decoding. In
our experiments, we used 68 AFs, which requires
the evaluation of 68 models for “feature present”
and 68 models for “feature absent” for each frame
during decoding, plus the computation necessary for
stream combination. In this setup however, the adap-
tation parameters, which are given by the stream
combination weights, have an intuitive meaning, as
they model the importance of phonological features
such as VOICED or ROUNDED for word discrimina-
tion for this particular speaker and phonetic context.
Context-dependent stream weights can also model
feature asynchrony to some extent, so that this ap-
proach not only improves automatic speech recogni-
tion, but might also be an interesting starting point
for future work in speaker clustering, speaker iden-
tification, or other applications in speech analysis.
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