
Proceedings of NAACL HLT 2007, Companion Volume, pages 85–88,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Discriminative Alignment Training without Annotated Data
for Machine Translation

Patrik Lambert, Rafael E. Banchs and Josep M. Crego
TALP Research Center

Jordi Girona Salgado 1–3
08034 Barcelona, Spain

{lambert, rbanchs, jmcrego }@gps.tsc.upc.edu

Abstract

In present Statistical Machine Translation
(SMT) systems, alignment is trained in a
previous stage as the translation model.
Consequently, alignment model parame-
ters are not tuned in function of the trans-
lation task, but only indirectly. In this
paper, we propose a novel framework for
discriminative training of alignment mod-
els with automated translation metrics as
maximization criterion. In this approach,
alignments are optimized for the transla-
tion task. In addition, no link labels at the
word level are needed. This framework
is evaluated in terms of automatic trans-
lation evaluation metrics, and an improve-
ment of translation quality is observed.

1 Introduction

In the first SMT systems (Brown et al., 1993), word
alignment was introduced as a hidden variable of
the translation model. When word-based translation
models have been replaced by phrase-based mod-
els (Zens et al., 2002), alignment1 and translation
model training have become two separated tasks.

The system of Brownet al. was based on the
noisy channel approach. Present SMT systems use a
more general maximum entropy approach in which a
log-linear combination of multiple feature functions
is implemented (Och and Ney, 2002). Within this

1Hereinafter, alignment will refer to word alignment, unless
otherwise stated.

new framework translation quality can be tuned by
adjusting the weight of each feature function in the
log-linear combination. In order to improve transla-
tion quality, this tuning can be effectively performed
by minimizing translation error over a development
corpus for which manually translated references are
available (Och, 2003). As a separate first stage of the
process, alignment is not in practice directly tuned in
function of the machine translation task.

Tuning alignment for an MT system is subject to
practical difficulties. Unsupervised systems (Och
and Ney, 2003; Liang et al., 2006) are based on gen-
erative models trained with the EM algorithm. They
require large computational resources, and incorpo-
rating new features is difficult. In contrast, adding
new features to some supervised systems (Liu et al.,
2005; Moore, 2005; Ittycheriah and Roukos, 2005)
is easy, but the need of annotated data is a problem.

A more general difficulty, however, is that of find-
ing an alignment evaluation metric favoring align-
ments which benefit Machine Translation. The fact
that the required alignment characteristics depend
on each particular system makes it even more dif-
ficult. It seems that high precision alignments are
better for phrase-based SMT (Chen and Federico,
2006; Ayan and Dorr, 2006), whereas high recall
alignments are more suited to N-gram SMT (Mariño
et al., 2006). In this context, alignment quality im-
provements does not necessarily imply translation
quality improvements. This is in agreement with
the observation of a poor correlation between word
alignment error rate (AER (Och and Ney, 2000)) and
automatic translation evaluation metrics (Ittycheriah
and Roukos, 2005; Vilar et al., 2006).
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Recently some alignment evaluation metrics have
been proposed which are more informative when
the alignments are used to extract translation
units (Fraser and Marcu, 2006; Ayan and Dorr,
2006). However, these metrics assess translation
quality very indirectly.

In this paper, we propose a novel framework for
discriminative training of alignment models with au-
tomated translation metrics as maximization crite-
rion. Thus we just need a reference aligned at the
sentence level instead of link labels at the word level.

The paper is structured as follows. Section 2 ex-
plains the models used in our word aligner, focusing
on the features designed to account for the specifici-
ties of the SMT system. In section 3, our minimum
error training procedure is described and experimen-
tal results are shown. Finally, some concluding re-
marks and lines of further research are given.

2 Bilingual Word Aligner

For versatility and efficiency requirements, we im-
plemented BIA, a BIlingual word Aligner similar
to that of Moore (2005). BIA consists in a beam-
search decoder searching, for each sentence pair, the
alignment which minimizes the cost of a linear com-
bination of various models. The differences with
the system of Moore lie in the features, which we
specially designed to suit our translation system (N-
gram SMT (Marĩno et al., 2006)). Its particularity
is the translation model, which is based on a4-gram
language model of bilingual units referred to as tu-
ples. Two issues regarding this translation model can
be dealt with at the alignment stage.

Firstly, in order to estimate the bilingual n-gram
model, only one monotonic segmentation of each
sentence pair is performed. Thus long reorderings
cause long and sparse tuples to be extracted. For ex-
ample, if the first source word is linked to the last
target word, only one tuple can be extracted, which
contains the whole sentence pair. This kind of tuple
is not reusable, and the data between its two extreme
words are lost.

Secondly, it occurs very often that unlinked words
(i.e. linked to NULL) end up producing tuples with
NULL source sides. This cannot be allowed since
no NULL is expected to occur in a translation input.
This problem is solved by preprocessing alignments

before tuple extraction such that any unlinked target
word is attached to either its precedent or its follow-
ing word.

Taking theses issues into account, we imple-
mented the following features:
• distinct source and target unlinked word penal-

ties: since unlinked words have a different im-
pact whether they appear in the source or target
language, we introduced an unlinked word fea-
ture for each side of the sentence pair.

• link bonus: in order to accommodate the N-
gram model preference for higher recall align-
ment, we introduced a feature which adds a
bonus for each link in the alignment.

• embedded word position penalty: this feature
penalizes situations like the one depicted in fig-
ure 1. In this example, the bilingual units s2-t2
and s3-t3 cannot be extracted because word po-
sitions s2 and s3 are embedded between links
s1-t1 and s4-t1. Thus the link s4-t1 may intro-
duces data sparseness in the translation model,
although it may be a correct link. So we want
to have a feature which counts the number of
embedded word positions in an alignment.

Figure 1: Word positions embedded in a tuple.

In addition to the embedded word position feature,
we used the same two distortion features as Moore
to penalize reorderings in the alignment (one sums
the number of crossing links, and the other one sums
the amplitude of crossing links). We also used theφ2

score (Gale and Church, 1991) as a word association
model, and as a POS-tags association model.

3 Experimental Work

For these experiments we used the Chinese-
English data provided for IWSLT’06 evaluation
campaign (Paul, 2006). The training set contains
46000 sentences (of 6.7 and 7.0 average length). Pa-
rameters were tuned over the development set (dev4)
provided, consisting of 489 sentences of 11.2 words
in average, with 7 references. Our test set was a se-
lection of 500 sentences (of 6 words in average, with
16 references) among dev1, dev2 and dev3 sets.
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3.1 Optimization Procedure

Once the alignment models were computed, a set of
optimal log-linear coefficients was estimated via the
optimization procedure depicted in Figure 2.

Figure 2: Optimization loop.

The training corpus was aligned with a set of ini-
tial parametersλ1, . . . , λ7. This alignment was used
to extract tuples and build a bilingual N-gram trans-
lation model (TM). A baseline SMT system, consist-
ing of MARIE decoder and this translation model as
unique feature2, was used to produce a translation
(OUT) of the development source set. Then, trans-
lation quality over the development set is maximized
by iteratively varying the set of coefficients.

The optimization procedure was performed by us-
ing the SPSA algorithm (Spall, 1992). SPSA is a
stochastic implementation of the conjugate gradient
method which requires only two evaluations of the
objective function. It was observed to be more ro-
bust than the Downhill Simplex method when tuning
SMT coefficients (Lambert and Banchs, 2006).

Each function evaluation required to align the
training corpus and build a new translation model.
The algorithm converged after about 80 evaluations,
lasting each 17 minutes with a 3 GHz processor.
Alignment decoding was performed with a beam of
10 (it took 50 seconds and required 8 MB memory).

Finally, the corpus was aligned with the opti-
mum set of coefficients, and a full SMT system was
build, with a target language model (trained on the
provided training data), a word bonus model and
two lexical models. SMT models weights were op-
timized with a standard Minimum Error Training
(MET) strategy3 and the test corpus was translated

2An N-gram SMT system can produce good translations
without additional target language model since the target lan-
guage is modeled inside the bilingual N-gram model.

3SMT parameters are not optimized together with alignment

with the full system. To contrast the results, full
translation systems were also build extracting tuples
from various combinations of GIZA++ alignments
(trained with 50 classes and respectively 4,5 and 4
iterations of models 1,HMM and 4). In order to limit
the error introduced by MET, we translated the test
corpus with three sets of SMT model weights, and
took the average and standard deviation.

3.2 Results

Table 1 shows results obtained with the full SMT
system on the test corpus, with GIZA++ alignments,
and BIA alignments optimized in function of three
metrics: BLEU, NIST, and BLEU+4*NIST. The
standard deviation is indicated in parentheses. Al-
though results for systems trained with different BIA
alignments present more variability than systems
trained with GIZA++ alignments, they achieve bet-
ter average scores, and one of them obtains much
higher scores. Unexpectedly, BIA alignments tuned
with NIST yield the system with worse NIST score.

4 Conclusions and further work

We proposed a novel framework for discriminative
training of alignment models with automated trans-
lation metrics as maximization criterion. Accord-
ing to this type of metrics, the translation systems
trained from the optimized alignments clearly per-
formed better than the ones trained from Giza++
alignment combinations.

In addition, this first version of the alignment
system has very basic models and could be im-
proved. We could certainly improve the association
score model, for example adding discount factors or
adding more association score types, or dictionaries.

During the alignment coefficient optimization de-
picted in Figure 2, only the baseline SMT system
is used. In future work, we could consider using
various SMT features (as would be required for a
phrase-based SMT system).

Our approach, as it is, cannot be applied to a large
corpus, since it requires to align the whole training
corpus at each iteration. Thus an interesting further
research would consist in determining whether the

parameters for two main reasons. Firstly, translation is more
sensitive to variations of SMT parameters. Secondly, alignment
is optimized over the full training set, whereas SMT is tuned
over the development set.
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System BLEU NIST PER WER
GIZA++ union 42.7 (1.1) 8.82 (0.07) 34.7 (0.2) 43.7 (0.4)
GIZA++ intersection 42.4 (0.9) 8.53 (0.07) 37.0 (0.9) 45.0 (1.3)
GIZA++ Zh→En 43.7 (0.9) 8.90 (0.2) 37.2 (1.4) 45.5 (2.0)
BIA (BLEU) 44.8 (0.4) 9.00 (0.04) 35.7 (0.07) 43.8 (0.09)
BIA (BLEU+4*NIST) 47.0 (1.5) 8.83 (0.4) 32.9 (0.8) 40.9 (0.5)
BIA (NIST) 44.8 (0.1) 8.55 (0.14) 33.0 (0.2) 41.4 (0.5)

Table 1:Automatic translation evaluation results.

alignment parameters trained on a part of the corpus
are valid for the whole corpus.

Finally, some Giza++ parameters may also be
tuned, in the same way as for BIA parameters.
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