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Abstract

We present a method for utilizing unan-

notated sentences to improve a semantic

parser which maps natural language (NL)

sentences into their formal meaning rep-

resentations (MRs). Given NL sentences

annotated with their MRs, the initial su-

pervised semantic parser learns the map-

ping by training Support Vector Machine

(SVM) classifiers for every production in

the MR grammar. Our new method ap-

plies the learned semantic parser to the

unannotated sentences and collects unla-

beled examples which are then used to

retrain the classifiers using a variant of

transductive SVMs. Experimental results

show the improvements obtained over

the purely supervised parser, particularly

when the annotated training set is small.

1 Introduction

Semantic parsing is the task of mapping a natu-

ral language (NL) sentence into a complete, for-

mal meaning representation (MR) which a computer

program can execute to perform some task, like

answering database queries or controlling a robot.

These MRs are expressed in domain-specific unam-

biguous formal meaning representation languages

(MRLs). Given a training corpus of NL sentences

annotated with their correct MRs, the goal of a learn-

ing system for semantic parsing is to induce an ef-

ficient and accurate semantic parser that can map

novel sentences into their correct MRs.

Several learning systems have been developed for

semantic parsing, many of them recently (Zelle and

Mooney, 1996; Zettlemoyer and Collins, 2005; Ge

and Mooney, 2005; Kate and Mooney, 2006). These

systems use supervised learning methods which

only utilize annotated NL sentences. However, it

requires considerable human effort to annotate sen-

tences. In contrast, unannotated NL sentences are

usually easily available. Semi-supervised learning

methods utilize cheaply available unannotated data

during training along with annotated data and of-

ten perform better than purely supervised learning

methods trained on the same amount of annotated

data (Chapelle et al., 2006). In this paper we present,

to our knowledge, the first semi-supervised learning

system for semantic parsing.

We modify KRISP, a supervised learning sys-

tem for semantic parsing presented in (Kate and

Mooney, 2006), to make a semi-supervised system

we call SEMISUP-KRISP. Experiments on a real-

world dataset show the improvements SEMISUP-

KRISP obtains over KRISP by utilizing unannotated

sentences.

2 Background

This section briefly provides background needed for

describing our approach to semi-supervised seman-

tic parsing.

2.1 KRISP: The Supervised Semantic Parsing

Learning System

KRISP (Kernel-based Robust Interpretation for Se-

mantic Parsing) (Kate and Mooney, 2006) is a su-

pervised learning system for semantic parsing which
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takes NL sentences paired with their MRs as train-

ing data. The productions of the formal MRL

grammar are treated like semantic concepts. For

each of these productions, a Support-Vector Ma-

chine (SVM) (Cristianini and Shawe-Taylor, 2000)

classifier is trained using string similarity as the ker-

nel (Lodhi et al., 2002). Each classifier can then

estimate the probability of any NL substring rep-

resenting the semantic concept for its production.

During semantic parsing, the classifiers are called to

estimate probabilities on different substrings of the

sentence to compositionally build the most probable

meaning representation (MR) of the sentence.

KRISP trains the classifiers used in semantic pars-

ing iteratively. In each iteration, for every produc-

tion � in the MRL grammar, KRISP collects pos-

itive and negative examples. In the first iteration,

the set of positive examples for production � con-

tains all sentences whose corresponding MRs use

the production � in their parse trees. The set of neg-

ative examples includes all of the other training sen-

tences. Using these positive and negative examples,

an SVM classifier is trained for each production �
using a string kernel. In subsequent iterations, the

parser learned from the previous iteration is applied

to the training examples and more refined positive

and negative examples, which are more specific sub-

strings within the sentences, are collected for train-

ing. Iterations are continued until the classifiers con-

verge, analogous to iterations in EM (Dempster et

al., 1977). Experimentally, KRISP compares favor-

ably to other existing semantic parsing systems and

is particularly robust to noisy training data (Kate and

Mooney, 2006).

2.2 Transductive SVMs

SVMs (Cristianini and Shawe-Taylor, 2000) are

state-of-the-art machine learning methods for clas-

sification. Given positive and negative training ex-

amples in some vector space, an SVM finds the

maximum-margin hyperplane which separates them.

Maximizing the margin prevents over-fitting in very

high-dimensional data which is typical in natural

language processing and thus leads to better general-

ization performance on test examples. When the un-

labeled test examples are also available during train-

ing, a transductive framework for learning (Vapnik,

1998) can further improve the performance on the

test examples.

Transductive SVMs were introduced in

(Joachims, 1999). The key idea is to find the

labeling of the test examples that results in the

maximum-margin hyperplane that separates the

positive and negative examples of both the training

and the test data. This is achieved by including

variables in the SVM’s objective function repre-

senting labels of the test examples. Finding the

exact solution to the resulting optimization problem

is intractable, however Joachims (1999) gives an

approximation algorithm for it. One drawback of

his algorithm is that it requires the proportion of

positive and negative examples in the test data be

close to the proportion in the training data, which

may not always hold, particularly when the training

data is small. Chen et al. (2003) present another

approximation algorithm which we use in our

system because it does not require this assumption.

More recently, new optimization methods have been

used to scale-up transductive SVMs to large data

sets (Collobert et al., 2006), however we did not

face scaling problems in our current experiments.

Although transductive SVMs were originally de-

signed to improve performance on the test data by

utilizing its availability during training, they can also

be directly used in a semi-supervised setting (Ben-

nett and Demiriz, 1999) where unlabeled data is

available during training that comes from the same

distribution as the test data but is not the actual data

on which the classifier is eventually to be tested.

This framework is more realistic in the context of se-

mantic parsing where sentences must be processed

in real-time and it is not practical to re-train the

parser transductively for every new test sentence. In-

stead of using an alternative semi-supervised SVM

algorithm, we preferred to use a transductive SVM

algorithm (Chen et al., 2003) in a semi-supervised

manner, since it is easily implemented on top of an

existing SVM system.

3 Semi-Supervised Semantic Parsing

We modified the existing supervised system KRISP,

described in section 2.1, to incorporate semi-

supervised learning. Supervised learning in KRISP

involves training SVM classifiers on positive and

negative examples that are substrings of the anno-
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function TRAIN SEMISUP KRISP(Annotated corpus A = f(si;mi)ji = 1::Ng, MRL grammar G,
Unannotated sentences T = ftiji = 1::Mg)C � fC�j� 2 Gg = TRAIN KRISP(A,G) // classifiers obtained by training KRISP

LetP = fp� = Set of positive examples used in training C�j� 2 GgN = fn� = Set of negative examples used in training C�j� 2 GgU = fu� = �j� 2 Gg // set of unlabeled examples for each production, initially all empty
for i = 1 to M dofui� j� 2 Gg =COLLECT CLASSIFIER CALLS(PARSE(ti; C))U = fu� = u� [ ui�j� 2 Gg
for each � 2 G doC� =TRANSDUCTIVE SVM TRAIN(p�; n�; u�) // retrain classifiers utilizing unlabeled examples
return classifiers C = fC� j� 2 Gg

Figure 1: SEMISUP-KRISP’s training algorithm

tated sentences. In order to perform semi-supervised

learning, these classifiers need to be given appropri-

ate unlabeled examples. The key question is: Which

substrings of the unannotated sentences should be

given as unlabeled examples to which productions’

classifiers? Giving all substrings of the unannotated

sentences as unlabeled examples to all of the clas-

sifiers would lead to a huge number of unlabeled

examples that would not conform to the underly-

ing distribution of classes each classifier is trying to

separate. SEMISUP-KRISP’s training algorithm, de-

scribed below and shown in Figure 1, addresses this

issue.

The training algorithm first runs KRISP’s exist-

ing training algorithm and obtains SVM classifiers

for every production in the MRL grammar. Sets of

positive and negative examples that were used for

training the classifiers in the last iteration are col-

lected for each production. Next, the learned parser

is applied to the unannotated sentences. During the

parsing of each sentence, whenever a classifier is

called to estimate the probability of a substring rep-

resenting the semantic concept for its production,

that substring is saved as an unlabeled example for

that classifier. These substrings are representative of

the examples that the classifier will actually need to

handle during testing. Note that the MRs obtained

from parsing the unannotated sentences do not play

a role during training since it is unknown whether

or not they are correct. These sets of unlabeled ex-

amples for each production, along with the sets of

positive and negative examples collected earlier, are

then used to retrain the classifiers using transductive

SVMs. The retrained classifiers are finally returned

and used in the final semantic parser.

4 Experiments

We compared the performance of SEMISUP-KRISP

and KRISP in the GEOQUERY domain for semantic

parsing in which the MRL is a functional language

used to query a U.S. geography database (Kate et

al., 2005). This domain has been used in most of

the previous work. The original corpus contains 250
NL queries collected from undergraduate students

and annotated with their correct MRs (Zelle and

Mooney, 1996). Later, 630 additional NL queries

were collected from real users of a web-based inter-

face and annotated (Tang and Mooney, 2001). We

used this data as unannotated sentences in our cur-

rent experiments. We also collected an additional407 queries from the same interface, making a total

of 1; 037 unannotated sentences.

The systems were evaluated using standard 10-

fold cross validation. All the unannotated sentences

were used for training in each fold. Performance

was measured in terms of precision (the percent-

age of generated MRs that were correct) and recall

(the percentage of all sentences for which correct

MRs were obtained). An output MR is considered

correct if and only if the resulting query retrieves

the same answer as the correct MR when submit-

ted to the database. Since the systems assign confi-

dences to the MRs they generate, the entire range of

the precision-recall trade-off can be obtained for a

system by measuring precision and recall at various

confidence levels. We present learning curves for the

best F-measure (harmonic mean of precision and re-
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Figure 2: Learning curves for the best F-measures

on the GEOQUERY corpus.

call) obtained across the precision-recall trade-off as

the amount of annotated training data is increased.

Figure 2 shows the results for both systems.

The results clearly show the improvement

SEMISUP-KRISP obtains over KRISP by utilizing

unannotated sentences, particularly when the num-

ber of annotated sentences is small. We also show

the performance of a hand-built semantic parser

GEOBASE (Borland International, 1988) for com-

parison. From the figure, it can be seen that, on

average, KRISP achieves the same performance as

GEOBASE when it is given 126 annotated examples,

while SEMISUP-KRISP reaches this level given only94 annotated examples, a 25:4% savings in human-

annotation effort.

5 Conclusions

This paper has presented a semi-supervised ap-

proach to semantic parsing. Our method utilizes

unannotated sentences during training by extracting

unlabeled examples for the SVM classifiers it uses to

perform semantic parsing. These classifiers are then

retrained using transductive SVMs. Experimental

results demonstrated that this exploitation of unla-

beled data significantly improved the accuracy of the

resulting parsers when only limited supervised data

was provided.
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