
Proceedings of NAACL HLT 2007, Companion Volume, pages 17–20,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

K-Best Suffix Arrays

Kenneth Church

Bo Thiesson

Robert Ragno

Microsoft Microsoft Microsoft

One Microsoft Way One Microsoft Way One Microsoft Way

Redmond, WA 98052 Redmond, WA 98052 Redmond, WA 98052
church@microsoft.com thiesson@microsoft.com rragno@microsoft.com

Abstract

Suppose we have a large dictionary of
strings. Each entry starts with a figure of
merit (popularity). We wish to find the k-
best matches for a substring, s, in a dicti-
noary, dict. That is, grep s dict | sort –n |
head –k, but we would like to do this in
sublinear time. Example applications: (1)
web queries with popularities, (2) prod-
ucts with prices and (3) ads with click
through rates. This paper proposes a
novel index, k-best suffix arrays, based on
ideas borrowed from suffix arrays and kd-
trees. A standard suffix array sorts the
suffixes by a single order (lexicographic)
whereas k-best suffix arrays are sorted by
two orders (lexicographic and popularity).
Lookup time is between log N and sqrt N.

1 Standard Suffix Arrays

This paper will introduce k-best suffix arrays,
which are similar to standard suffix arrays (Manber
and Myers, 1990), an index that makes it conven-
ient to compute the frequency and location of a
substring, s, in a long sequence, corpus. A suffix
array, suf, is an array of all N suffixes, sorted al-
phabetically. A suffix, suf[i], also known as a
semi-infinite string, is a string that starts at position
j in the corpus and continues to the end of the cor-
pus. In practical implementations, a suffix is a 4-
byte integer, j. In this way, an int (constant space)
denotes a long string (N bytes).

The make_standard_suf program below creates
a standard suffix array. The program starts with a
corpus, a global variable containing a long string

of N characters. The program allocates the suffix
array suf and initializes it to a vector of N ints (suf-
fixes) ranging from 0 to N−1. The suffix array is
sorted by lexicographic order and returned.

int* make_standard_suf () {
 int N = strlen(corpus);
 int* suf = (int*)malloc(N * sizeof(int));
 for (int i=0; i<N; i++) suf[i] = i;
 qsort(suf, N, sizeof(int), lexcomp);
 return suf;}

int lexcomp(int* a, int* b)
{ return strcmp(corpus + *a, corpus + *b);}

This program is simple to describe (but inefficient,
at least in theory) because strcmp can take O(N)
time in the worst case (where the corpus contains
two copies of an arbitrarily long string). See
http://cm.bell-labs.com/cm/cs/who/doug/ssort.c for
an implementation of the O(N log N) Manber and
Myers algorithm. However, in practice, when the
corpus is a dictionary of relatively short entries
(such as web queries), the worst case is unlikely to
come up. In which case, the simple make_suf pro-
gram above is good enough, and maybe even better
than the O(N log N) solution.

1.1 Standard Suffix Array Lookup

To compute the frequency and locations of a sub-
string s, use a pair of binary searches to find i and
j, the locations of the first and last suffix in the suf-
fix array that start with s. Each suffix between i
and j point to a location of s in the corpus. The
frequency is simply: j − i + 1.

Here is some simple code. We show how to
find the first suffix. The last suffix is left as an
exercise. As above, we ignore the unlikely worst

17

case (two copies of a long string). See references
mentioned above for worst case solutions.

void standard_lookup(char* s, int* suf, int N){
 int* i = find_first_suf(s, suf, N);
 int* j = find_last_suf(s, suf, N);
 for (int* k=i; k<=j; k++) output(*k);}

int* find_first_suf(char* s, int* suf, int N) {
 int len = strlen(s);
 int* high = suf + N;
 while (suf + 2 < high) {
 int* mid = suf + (high−suf)/2;
 int c = strncmp(s, corpus + *mid, len);
 if (c == 0) high = mid+1;
 else if (c < 0) high = mid;
 else suf = mid;}
 for (; suf < high; suf++)
 if (strncmp(s, corpus + *suf, len) == 0)
 return suf;
 return NULL;} // not found

2 K-Best Suffix Arrays

K-best suffix arrays are like standard suffix arrays,
except there are two orders instead of one. In addi-
tion to lexicographic order, we assume a figure of
merit, which we will refer to as popularity. For
example, the popularity of a string could be its fre-
quency in a search log. The code below assumes
that the corpus is a sequence of strings that comes
pre-sorted by popularity, and then the popularities
have been stripped off. These assumptions make
it very easy to compare two strings by popularity.
All popcomp has to do is to compare the two posi-
tions in the corpus.1

The make_kbest_suf program below is similar to
the make_standard_suf program above except we
now sort by the two orders at alternating depths in
the tree. First we sort lexicographically and then
we sort by popularity and so on, using a construc-
tion similar to KD-Trees (Bentley, 1975). The
code below is simple to describe (though there are
more efficient implementations that avoid unnec-
essary qsorts).

int* make_kbest_suf () {
 int N = strlen(corpus);
 int* suf = (int*)malloc(N * sizeof(int));

1 With a little extra book keeping, one can keep a table on the
side that makes it possible to map back and forth between
popularity rank and the actual popularity. This turns out to be
useful for some applications.

 for (int i=0; i<N; i++) suf[i]=i;
 process(suf, suf+N, 0);
 return suf;}

void process(int* start, int* end, int depth) {
 int* mid = start + (end − start)/2;
 if (end <= start+1) return;
 qsort(start, end-start, sizeof(int),
 (depth & 1) ? popcomp : lexcomp);
 process(start, mid, depth+1);
 process(mid+1, end, depth+1);}

int popcomp(int* a, int* b) {
 if (*a > *b) return 1;
 if (*a < *b) return −1;
 return 0;}

2.1 K-Best Suffix Array Lookup

To find the k-best matches for a particular sub-
string s, we do what we would normally do for
standard suffix arrays on lexicographic splits.
However, on popularity splits, we search the more
popular half first and then we search the less popu-
lar half, if necessary.

An implementation of kbest-lookup is given be-
low. D denotes the depth of the search thus far.
Kbest-lookup is initially called with D of 0. Pro-
pose maintains a heap of the k-best matches found
thus far. Done returns true if its argument is less
popular than the kth best match found thus far.

void kbest_lookup(char* s, int* suf, int N, int D){
 int* mid = suf + N/2;
 int len = strlen(s);

 if (N==1 && strncmp(s, corpus+*suf, len)==0)
 propose(*suf);
 if (N <= 1) return;

 if (D&1) { // popularity split
 kbest_lookup(s, suf, mid−suf, D+1);
 if (done(*mid)) return;
 if (strncmp(s, corpus + *mid, len) == 0)
 propose(*mid);
 kbest_lookup(s, mid+1, (suf+N)−mid−1,
 D+1);}
 else { // lexicographic split
 int c = strncmp(s, corpus + *mid, len);
 int n = (suf+N)−mid−1;
 if (c < 0) kbest_lookup(s, suf, mid-suf, D+1);
 else if (c > 0) kbest_lookup(s, mid+1, n, D+1);
 else { kbest_lookup(s, suf, mid-suf, depth+1);
 propose(*mid);
 kbest_lookup(s, mid+1, n, D+1); }}}

18

2.2 A Short Example: To be or not to be

Suppose we were given the text, “to be or not to
be.” We could then generate the following dic-
tionary with frequencies (popularities).

Popularity Word

2 to
2 be
1 or
1 not

The dictionary is sorted by popularity. We treat
the second column as an N=13 byte corpus (with
underscores at record boundaries): to_be_or_not_

Standard K-Best
suf corpus + suf[i] suf corpus + suf[i]
12 _ 2 _be_or_not_

2 _be_or_not_ 3 be_or_not_

8 _not_ 4 e_or_not_

5 _or_not_ 5 _or_not_

3 be_or_not_ 8 _not_

4 e_or_not_ 12 _

9 not_ 9 not_

1 o_be_or_not_ 1 o_be_or_not_

6 or_not_ 6 or_not_

10 ot_ 0 to_be_or_not_

7 r_not_ 7 r_not_

11 t_ 10 ot_

0 to_be_or_not_ 11 t_

The standard suffix array is the 1st column of the

table above. For illustrative convenience, we show
the corresponding strings in the 2nd column. Note
that the 2nd column is sorted lexicographically.

The k-best suffix array is the 3rd column with the
corresponding strings in the 4th column. The first
split is a lexicographic split at 9 (“not_”). On both
sides of that split we have a popularity split at 5
(“_or_not_”) and 7 (“r_not_”). (Recall that relative
popularity depends on corpus position.) Following
there are 4 lexicographic splits, and so on.

If k-best lookup were given the query string s =
“o,” then it would find 1 (o_be_or_not_), 6
(or_not_) and 10 (ot_) as the best choices (in that
order). The first split is a lexicographic split. All

the matches are below 9 (not_). The next split is
on popularity. The matches above this split (1&6)
are as popular as the matches below this split (10).

It is often desirable to output matching records
(rather than suffixes). Records are output in popu-
larity order. The actual popularity can be output,
using the side table mentioned in footnote 1:

Popularity Record
2 to
1 or
1 not

2.3 Time and Space Complexity

The space requirements are the same for both stan-
dard and k-best suffix arrays. Both indexes are
permutations of the same suffixes.

The time requirements are quite different. Stan-
dard suffix arrays were designed to find all
matches, not the k-best. Standard suffix arrays can
find all matches in O(log N) time. However, if we
attempt to use standard suffix arrays to find the k-
best, something they were not designed to do, then
it could take a long time to sort through the worst
case (an embarrassment of riches with lots of
matches). When the query matches every string in
the dictionary, standard suffix arrays do not help us
find the best matches. K-best suffix arrays were
designed to handle an embarrassment of riches,
which is quite common, especially when the sub-
string s is short. Each popularity split cuts the
search space in half when there are lots of lexico-
graphic matches.

The best case for k-best suffix arrays is when the
popularity splits always work in our favor and we
never have to search the less popular half. The
worst case is when the popularity splits always fail,
such as when the query string s is not in the corpus.
In this case, we must always check both the popu-
lar half and the unpopular half at each split, since
the failure to find a lexicographic match in the first
tells us nothing about the existence of matches in
the second.

Asymptotically, k-best lookup takes between log
N and sqrt N time. To see this complexity result,
let P(N) be the work to process N items starting
with a popularity splits and let L(N) be the work to
process N items starting with a lexicographic
splits.

Thus,

19

P(N) = αL(N/2) + C1
L(N) = P(N/2) + C2

where α = 2−p, when p is the probability that the
popular half contains sufficient matches. α lies
between 1 (best case) and 2 (worst case). C1 and
C2 are constants. Thus,

P(N) = α P(N/4) + C (1)

where C = C1 + αC2. Using the master method
(Cormen et al, 2001), P(N) = O(log2N) in the best
case (α=1). In the worst case (α=2), P(N) = O(sqrt
N). In general, for α > 1, P(N) = O(N(log2 α)/2).

In practical applications, we expect popularity
splits to work more often than not, and therefore
we expect the typical case to be closer to the best
case than the worst case.

3 Empirical Study

The plot below shows the k-best lookup time as
a function of square root of corpus size. We ex-
tracted sub-corpora from a 150 MB collection of
8M queries, sorted by popularity, according to the
logs from Microsoft www.live.com. All experi-
ments were performed on a Pentium 4, 3.2GHz
dual processor machine with enough memory to
avoid paging.

The line of diamonds shows the worst case,
where we the query string is not in the index. Note
that the diamonds fit the regression line quite well,
confirming the theory in the previous section: The
worst case lookup is O(sqrt N).

0

10

20

30

40

50

0 1000 2000 3000
Sqrt(Corpus size)

T
im

e
(s

ec
)

fo
r

10
k

lo
o

ku
p

s

To simulate a more typical scenario, we con-
structed random samples of queries by popularity,
represented by squares in the figure. Note that the
squares are well below the line, demonstrating that
these queries are considerably easier than the worst
case.

K-best suffix arrays have been used in auto-
complete applications (Church and Thiesson,
2005). The triangles with the fastest lookup times
demonstrate the effectiveness of the index for this
application. We started with the random sample
above, but replaced each query q in the sample
with a substring of q (of random size).

4 Conclusion

A new data structure, k-best suffix arrays, was pro-
posed. K-best suffix arrays are sorted by two or-
ders, lexicographic and popularity, which make it
convenient to find the most popular matches, espe-
cially when there are lots of matches. In many ap-
plications, such as the web, there are often
embarrassments of riches (lots of matches).

Lookup time varies from log N to sqrt N, de-
pending on the effectiveness of the popularity
splits. In the best case (e.g., very short query
strings that match nearly everything), the popular-
ity splits work nearly every time and we rarely
have to search the less popular side of a popularity
split. In this case, the time is close to log N. On
the other hand, in the worst case (e.g., query
strings that match nothing), the popularity splits
never work, and we always have to search both
sides of a popularity split. In this case, lookup
time is sqrt N. In many cases, popularity splits
work more often than not, and therefore, perform-
ance is closer to log N than sqrt N.

References

Jon Louis Bentley. 1975. Multidimensional Binary
Search Trees Used for Associative Searching, Com-
munications of the ACM, 18:9, pp. 509-517.

Kenneth Church and Bo Thiesson. 2005. The Wild
Thing, ACL, pp. 93-96.

Udi Manber and Gene Myers. 1990. Suffix Arrays: A

New Method for On-line String Searches, SODA, pp.
319-327.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. 2001. Introduction to Al-
gorithms, Second Edition. MIT Press and McGraw-
Hill, pp.73–90.

20

