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Abstract

We compare the effect of joint modeling
of phonological features to independent
feature detectors in a Conditional Random
Fields framework. Joint modeling of fea-
tures is achieved by deriving phonological
feature posteriors from the posterior prob-
abilities of the phonemes. We find that
joint modeling provides superior perfor-
mance to the independent models on the
TIMIT phone recognition task. We ex-
plore the effects of varying relationships
between phonological features, and sug-
gest that in an ASR system, phonological
features should be handled as correlated,
rather than independent.

1 Introduction

Phonological features have received attention as a
linguistically-based representation for sub-word in-
formation in automatic speech recognition. These
sub-phonetic features allow for a more refined repre-
sentation of speech by allowing for temporal desyn-
chronization between articulators, and help account
for some phonological changes common in sponta-
neous speech, such as devoicing (Kirchhoff, 1999;
Livescu, 2005). A number of methods have been de-
veloped for detecting acoustic phonological features
and related acoustic landmarks directly from data
using Multi-Layer Perceptrons (Kirchhoff, 1999),
Support Vector Machines (Hasegawa-Johnson et al.,
2005; Sharenborg et al., 2006), or Hidden Markov
Models (Li and Lee, 2005). These techniques
typically assume that acoustic phonological feature
events are independent for ease of modeling.

In one study that broke the independence assump-
tion (Chang et al., 2001), the investigators devel-
opedconditional detectors: MLP detectors of acous-
tic phonological features that are hierarchically de-
pendent on a different phonological class. In (Ra-
jamanohar and Fosler-Lussier, 2005) it was shown
that such a conditional training of detectors tended
to have correlated frame errors, and that improve-
ments in detection could be obtained by training
joint detectors. For many features, the best detector
can be obtained by collapsing MLP phone posteriors
into feature classes by marginalizing across phones
within a class. This was shown only for frame-level
classification rather than phone recognition.

Posterior estimates of phonological feature
classes, as in Table 1, particularly those derived
from MLPs, have been used as input to HMMs
(Launay et al., 2002), Dynamic Bayesian Networks
(DBNs) (Frankel et al., 2004; Livescu, 2005),
and Conditional Random Fields (CRFs) (Morris
and Fosler-Lussier, 2006). Here we evaluate
phonological feature detectors created from MLP
phone posterior estimators (joint feature models)
rather than the independently trained MLP feature
detectors used in previous work.

2 Conditional Random Fields

CRFs (Lafferty et al., 2001) are a joint model of
a label sequence conditioned on a set of inputs.
No independence is assumed among the input; the
CRF model discriminates between hypothesized la-
bel sequences according to an exponential function
of weighted feature functions:

P (y|x) ∝ exp
∑

i

(S(x,y, i) + T(x,y, i)) (1)
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Class Feature Values
SONORITY Vowel, Obstruent, Sonorant, Syllabic, Silence
VOICE Voiced, Unvoiced, N/A
MANNER Fricative, Stop, Stop-Closure, Flap, Nasal, Approximant, Nasalflap, N/A
PLACE Labial, Dental, Alveolar, Palatal, Velar, Glottal, Lateral, Rhotic, N/A
HEIGHT High, Mid, Low, Lowhigh, Midhigh, N/A
FRONT Front, Back, Central, Backfront, N/A
ROUND Round, Nonround, Roundnonround, Nonroundround, N/A
TENSE Tense, Lax N/A

Table 1: Phonetic feature classes and associated values

whereP (y|x) is the probability of label sequence
y given an input frame sequencex, i is the frame
index, and S and T are a set of state feature functions
and a set of transition feature functions, defined as:

S(x, y, i) =
∑

j

λjsj(y, x, i), and (2)

T (x, y, i) =
∑

k

µktk(yi−1, yi, x, i) (3)

whereλ andµ are weights determined by the learn-
ing algorithm. In NLP applications, the component
feature functionssj andtk are typically realized as
binary indicator functions indicating the presence or
absence of a feature, but in ASR applications it is
more typical to utilize real-valued functions, such as
those derived from the sufficient statistics of Gaus-
sians (e.g., (Gunawardana et al., 2005)).

We can use posterior estimates of phone classes or
phonological feature classes from MLPs as feature
functions (inputs) within the CRF model. A more
detailed description of this CRF paradigm can be
found in (Morris and Fosler-Lussier, 2006), which
shows that the results of phone recognition using
CRFs is comparable to that of HMMs or Tandem
systems, with fewer constraints being imposed on
the model. State feature functions in our system are
defined such that

sφ,f (yi,x, i) =
{

NNf (xi), ifyi = φ
0, otherwise

(4)

where the MLP output for featuref at time i is
NNf (xi). This allows for an association between
a phoneφ and a featuref (even iff is traditionally
not associated withφ).

In this study, we experiment with different meth-
ods of generating these feature functions. In various

experiments, they are generated by training MLP
phone detectors, by evaluating the feature informa-
tion inherent in the MLP phone posteriors, and by
training independent MLPs to detect the various fea-
tures within the classes described. The use of CRFs
allows us to explore the dependencies among feature
classes, as well as the usefulness of phone posteriors
versus feature classes as inputs.

3 Experimental Setup

We use the TIMIT speech corpus for all training and
testing (Garofolo et al., 1993). The acoustic data
is manually labeled at the phonetic level, and we
propagate this phonetic label information to every
frame of data. For the feature analyses, we employ
a lookup table that defines each phone in terms of
8 feature classes, as shown in Table 1. We extract
acoustic features in the form of 12th order PLP fea-
tures plus delta coefficients. We then use these as
inputs to several sets of neural networks using the
ICSI QuickNet MLP neural network software (John-
son, 2004), with the 39 acoustic features as input, a
varying number of phone or feature class posteriors
as output, and 1000 hidden nodes.

4 Joint Phone Posteriors vs. Independent
Feature Posteriors

The first experiment contrasts joint versus indepen-
dent feature modeling within the CRF system. We
compare a set of phonological feature probabilities
derived from the phone posteriors (a joint model)
with MLP phone posteriors and with independently
trained MLP phonological feature posteriors.

The inputs to the first CRF are sets of 61 state fea-
ture functions from the phonemic MLP posteriors,
each function is an estimate of the posterior proba-
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Input Type. Phn. Accuracy Phn. Correct
Phones 67.27 68.77
Features 65.25 66.65

Phn.→ Feat. 66.45 67.94

Table 2: Results for Exp. 1: Phone and feature pos-
teriors as input to the CRF phone recognition

bility of one phone. The inputs to the second CRF
model are sets of 44 functions corresponding to the
phonological features listed in Table 1. The CRF
models are trained to associate these feature func-
tions with phoneme labels, incorporating the pat-
terns of variation seen in the MLPs.

The results show that phone-based posteri-
ors produce better phone recognition results than
independently-trained phonological features. This
could be due in part to the larger number of param-
eters in the system, but it could also be due to the
joint modeling that occurs in the phone classifier.

In order to equalize the feature spaces, we use the
output of the phoneme classifier to derive phonolog-
ical feature posteriors. In each frame we sum the
MLP phone posteriors of all phones that contain a
given feature. For instance, in the first frame, for
the feature LOW, we sum the posterior estimates at-
tributed to the phonesaa, aeandao. This is repeated
for each feature in each frame. The CRF model is
trained on these data and tested accordingly. The re-
sults are significantly better (p≤.001) than the previ-
ous features model, but are significantly worse than
the phone posteriors (p≤.005).

The results of Experiment 1 confirm the hypoth-
esis of (Rajamanohar and Fosler-Lussier, 2005) that
joint modeling using several types of feature infor-
mation is superior to individual modeling in phone
recognition, where only phoneme information is
used. The difference between the phone posteriors
and individual feature posteriors seems to be related
both to the larger CRF parameter space with larger
input, and the joint modeling provided by phone
posteriors.

5 Phonological Feature Class Analysis

In the second experiment, we examine the influence
of each feature class on the accuracy of the recog-
nizer. We iteratively remove the set of state fea-
ture functions corresponding to each feature class

Class Removed Feats. Phn. Acc. Phn. Corr.
None 44 65.25 66.65

Sonority 39 65.15 66.58
Voice 41 63.60* 65.03*

Manner 36 58.92* 60.60*
Place 35 53.22* 55.13*

Height 38 62.58* 64.07*
Front 39 64.51* 65.95*
Round 39 65.19 66.64
Tense 41 64.20* 65.65*

* p≤.05, different from no features removed

Table 3: Results of Exp. 2: Removing feature
classes from the input

from the input to the CRF. The original functions
are the output of the independently-trained feature
class MLPs. The phone recognition accuracy for the
CRF having removed each class is shown in Table 3.
In Table 4 we show how removing each feature class
affects the labeling of vowels and consonants.

Manner provides an example of the influence of a
single feature class. Both the Accuracy and Correct-
ness scores decrease significantly when features as-
sociated with Manner are removed. Manner features
distinguish consonants but not vowels, so the effect
is concentrated on the recognition of consonants.

The results of Experiment 2 show that certain fea-
ture classes are redundant from the point of view of
phone recognition. In English, Round is correlated
with Front. When we remove Round, the phonemes
remain uniquely identified by the other classes. The
same is true for the Sonority class. The results show
that the inclusion of these redundant features is not
detrimental to the recognition accuracy. Accuracy
and Correctness improve non-significantly when the
redundant features are included.

Clearly, the “independent” phonological feature
streams are not truly independent. Otherwise, per-
formance would decrease overall as we removed
each feature class, assuming predictiveness.

Removal of Place causes a slight worsening of
recognition of vowels. This is surprising, because
Place does not characterize vowels. An analysis of
the MLP activations showed that the detector for
Place=N/A is a stronger indicator for vowels than
is the Sonority=Vowel detector. This is especially
true for the vowelax, which is frequent in the data,
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Class Removed Percent Correct:
Vowels Consonants

None 62.68 68.91
Sonority 62.18 69.08
Voice 62.39 66.53*
Manner 61.84 59.89*
Place 60.77* 51.94*
Height 55.92* 68.69
Frontness 60.80* 68.87
Roundness 62.25 69.13
Tenseness 60.15* 68.76
* p≤.05, different from no features removed

Table 4: Effect of removing each feature class on
recognition accuracy of vowels and consonants

thus greatly influences the vowel recognition statis-
tic. Removing the Place detectors leads to a loss in
vowel vs. consonant information. This results in an
increased number of consonant for vowel substitu-
tions (from 560 to 976), thus a decrease in vowel
recognition accuracy.

Besides extending the findings in (Rajamanohar
and Fosler-Lussier, 2005), this provides a cautionary
tale for incorporating redundant phonological fea-
ture estimators into ASR: these systems need to be
able to handle correlated input, either by design (as
in a CRF), through full or semi-tied covariance ma-
trices in HMMs, or by including the appropriate sta-
tistical dependencies in DBNs.

6 Summary

We have shown the effect of using joint model-
ing of phonetic feature information in conjunction
with the use of CRFs as a discriminative classifier.
Phonetic posteriors, as joint models of phonological
features, provide superior phone recognition perfor-
mance over independently-trained phonological fea-
ture models. We also find that redundant features are
often modeled well within the CRF framework.
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