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Abstract

This paper explores what kind of user sim-
ulation model is suitable for developing
a training corpus for using Markov Deci-
sion Processes (MDPs) to automatically
learn dialog strategies. Our results sug-
gest that with sparse training data, a model
that aims to randomly explore more dialog
state spaces with certain constraints actu-
ally performs at the same or better than a
more complex model that simulates real-
istic user behaviors in a statistical way.

1 Introduction

Recently, user simulation has been used in the de-
velopment of spoken dialog systems. In contrast to
experiments with human subjects, which are usually
expensive and time consuming, user simulation gen-
erates a large corpus of user behaviors in a low-cost
and time-efficient manner. For example, user sim-
ulation has been used in evaluation of spoken dia-
log systems (López-Cózar et al., 2003) and to learn
dialog strategies (Scheffler, 2002). However, these
studies do not systematically evaluate how helpful a
user simulation is. (Schatzmann et al., 2005) pro-
pose a set of evaluation measures to assess the re-
alness of the simulated corpora (i.e. how similar
are the simulated behaviors and human behaviors).
Nevertheless, how realistic a simulated corpus needs
to be for different tasks is still an open question.

We hypothesize that for tasks like system eval-
uation, a more realistic simulated corpus is prefer-
able. Since the system strategies are evaluated and

adapted based on the analysis of these simulated dia-
log behaviors, we would expect that these behaviors
are what we are going to see in the test phase when
the systems interact with human users. However,
for automatically learning dialog strategies, it is not
clear how realistic versus how exploratory (Singh et
al., 2002) the training corpus should be. A train-
ing corpus needs to be exploratory with respect to
the chosen dialog system actions because if a cer-
tain action is never tried at certain states, we will
not know the value of taking that action in that state.
In (Singh et al., 2002), their system is designed to
randomly choose one from the allowed actions with
uniform probability in the training phase in order to
explore possible dialog state spaces. In contrast,we
use user simulation to generate exploratory training
data because in the tutoring system we work with,
reasonable tutor actions are largely restricted by stu-
dent performance. If certain student actions do not
appear, this system would not be able to explore a
state space randomly .

This paper investigates what kind of user simula-
tion is good for using Markov Decision Processes
(MDPs) to learn dialog strategies. In this study,
we compare three simulation models which differ in
their efforts on modeling the dialog behaviors in a
training corpus versus exploring a potentially larger
dialog space. In addition, we look into the impact of
different state space representations and different re-
ward functions on the choice of simulation models.

2 System and Corpus

Our system is a speech-enabled Intelligent Tutor-
ing System that helps students understand qualita-
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tive physics questions. The dialog policy was deter-
ministic and hand-crafted in a finite state paradigm
(Ai et al., 2006). We collected 130 dialogs (1019
student utterances) with 26 human subjects. Cor-
rectness (correct(c), incorrect(ic)) is automatically
judged by the system1 and kept in the system’s logs.
Percent incorrectness (ic%) is also automatically
calculated and logged. Each student utterance was
manually annotated for certainty (certain, uncer-
tain, neutral, mixed) in a previous study2 based on
both lexical and prosodic information. In this study,
we use a two-way classification (certain(cert), not-
certain(ncert)), where we collapse uncertain, neu-
tral, and mixed to be ncert to balance our data. An
example of coded dialog between the tutor (T) and a
student (S) is given in Table 1.

3 Experimental Setup

3.1 Learning Task

Our current system can only respond to the cor-
rectness of a student’s utterances; the system thus
ignores other underlying information, for exam-
ple, certainty which is believed to provide use-
ful information for the tutor. In our corpus, the
strength of the tutor’s minimal feedback (defined be-
low) is in fact strongly correlated with the percent-
age of student certainty (chi-square test, p<0.01).
Strong Feedback (SF) is when the tutor clearly states
whether the student’s answer is correct or incor-
rect (i.e., “This is great!”); Weak Feedback (WF)
is when the tutor does not comment on the correct-
ness of a student’s answer or gives slightly negative
feedback such as “well”. Our goal is to learn how
to manipulate the strength of the tutor minimal feed-
back in order to maximize student’s overall certainty
in the entire dialog. We keep the other parts of the
tutor feedback (e.g. explanations, questions) so the
system’s original design of maximizing the percent-
age of student correct answers is utilized.

3.2 Simulation Models

All three models we describe below are trained from
the real corpus we collected. We simulate on the
word level because generating student’s dialog acts
alone does not provide sufficient information for

1Kappa of 0.79 is gained comparing to human judgements.
2Kappa of 0.68 is gained in a preliminary agreement study.

T1: Which law of motion would you use?
S1: Newton’s second law? [ic, ic%=1, ncert]
T2: Well... The best law to use is Newton’s

third law. Do you recall what it says?
S2: For every action there is an equal and

opposite reaction? [c, ic%=50%, ncert]

Table 1: Sample coded dialog excerpt.

our tutoring system to decide the next system’s ac-
tion. Thus, the output of the three models is a stu-
dent utterance along with the student certainty (cert,
ncert). Since it is hard to generate a natural lan-
guage utterance for each tutor’s question, we use the
student answers in the real corpus as the candidate
answers for the simulated students (Ai et al., 2006).
In addition, we simulate student certainty in a very
simple way: the simulation models output the cer-
tainty originally associated with that utterance.

Probabilistic Model (PM) is meant to capture re-
alistic student behavior in a probabilistic way. Given
a certain tutor question along with a tutor feedback,
it will first compute the probabilities of the four
types of student answers from the training corpus: c
and cert, c and ncert, ic and cert, and ic and ncert.
Then, following this distribution, the model selects
the type of student answers to output, and then it
picks an utterance that satisfies the correctness and
certainty constraints of the chosen answer type from
the candidate answer set and outputs that utterance.
We implement a back-off mechanism to count pos-
sible answers that do not appear in the real corpus.

Total Random Model (TRM) ignores what the
current question is or what feedback is given. It ran-
domly picks one utterance from all the utterances in
the entire candidate answer set. This model tries to
explore all the possible dialog states.

Restricted Random Model (RRM) differs from
the PM in that given a certain tutor question and a
tutor feedback, it chooses to give a c and cert, c and
ncert, ic and cert, or ic and ncert answer with equal
probability. This model is a compromise between
the exploration of the dialog state space and the re-
alness of generated user behaviors.

3.3 MDP Configuration

A MDP has four main components: states, actions,
a policy, and a reward function. In this study, the ac-
tions allowed in each dialog state are SF and WF;
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the policy we are trying to learn is in every state
whether the tutor should give SF and WF in order
to maximize the percent certainty in the dialog.

Since different state space representations and re-
ward functions have a strong impact on the MDP
policy learning, we investigate different configura-
tions to avoid possible bias introduced by certain
configurations. We use two state space representa-
tions: SSR1 uses the correctness of current student
turn and percent incorrectness so far; and SSR2 adds
in the certainty of the current student turn on top of
SSR1. Two reward functions are investigated: in
RF1, we assign +100 to every dialog that has a per-
cent certainty higher than the median from the train-
ing corpus, and -100 to every dialog that has a per-
cent certainty below the median; in RF2, we assign
different rewards to every different dialog by multi-
plying the percent certainty in that dialog with 100.
Other MDP parameter settings are the same as de-
scribed in (Tetreault et al., 2006).

3.4 Methodology

We first let the three simulation models interact with
the original system to generate different training cor-
pora. Then, we learn three MDP policies in a fixed
configuration from the three training corpora sep-
arately. For each configuration, we run the sim-
ulation models until we get enough training data
such that the learned policies on that corpus do not
change anymore (40,000 dialogs are generated by
each model). After that, the learned new policies are
implemented into the original system respectively 3.
Finally, we use our most realistic model, the PM,
to interact with each new system 500 times to eval-
uate the new systems’ performances. We use two
evaluation measures. EM1 is the number of dialogs
that would be assigned +100 using the old median
split. EM2 is the average of percent certainty in ev-
ery single dialog from the newly generated corpus.
A policy is considered better if it can improve the
percentage of certainty more than other policies, or
has more dialogs that will be assigned +100. The
baseline for EM1 is 250, since half of the 500 di-
alogs would be assigned +100 using the old median

3For example, the policy learned from the training corpus
generated by the RRM with SSR1 and RF1 is: give SF when
the current student answer is ic and ic%>50%, otherwise give
WF.

split. The baseline for EM2 is 35.21%, which is
obtained by calculating the percent certainty in the
corpus generated by the 40,000 interactions between
the PM and the original system.

4 Results and Discussion

Table 2 summarizes our results. There are two
columns under each “state representation+reward
function” configuration, presenting the results using
the two evaluation approaches. EM1 measures ex-
actly what RF1 tries to optimize; while EM2 mea-
sures exactly what RF2 tries to optimize. However,
we show the results evaluated by both EM1 and
EM2 for all configurations since the two evaluation
measures have their own practical values and can
be deployed under different design requirements.
All results that significantly4 outperform the corre-
sponding baselines are marked with ∗.

When evaluating using EM1, the RRM signifi-
cantly4 outperforms the other two models in all con-
figurations (in bold in Table 2). Also, the PM per-
forms better (but not statistically significantly) than
the TRM. When evaluating on EM2, the RRM sig-
nificantly4 outperforms the other two when using
SSR1 and RF1 (in bold in Table 2). In all other
configurations, the three models do not differ signif-
icantly. It is not surprising that the RRM outper-
forms the PM in most of the cases even when we
test on the PM. (Schatzmann et al., 2005) also ob-
serve that a good model can still perform well when
tested on a poor model.

We suspect that the performance of the PM is
harmed by the data sparsity issue in the real cor-
pus that we trained the model on. Consider the case
of SSR1: 25.8% of the potentially possible dialog
states do not exist in the real corpus. Although we
implement a back-off mechanism, the PM will still
have much less chance to transition to the states that
are not observed in the real corpus. Thus, when we
learn the MDP policy from the corpus generated by
this model, the actions to take in these less-likely
states are not fully learned. In contrast, the RRM
transitions from one state to each of the next possible
states with equal probability, which compensates for
the data sparsity problem. We further examine the
results obtained using SSR1 and RF1 and evaluated

4Using 2-sided t-test with Bonferroni correction, p<0.05.
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Model Name SSR1+RF1 SSR2+RF1 SSR1+RF2 SSR2+RF2
EM1 EM2 EM1 EM2 EM1 EM2 EM1 EM2

Probabilistic Model 222 36.30% 217 37.63% 197 40.78%∗ 197 40.01%∗
Total Random Model 192 36.30% 211 38.57% 188 40.21%∗ 179 40.21%∗

Restricted Random Model 390∗ 46.11%∗ 368∗ 37.27% 309 40.21%∗ 301 40.21%∗

Table 2: Evaluation of the new policies trained with the three simulation models

by EM1 to confirm our hypothesis. When looking
into the frequent states5, 70.1% of them are seen fre-
quently in the training corpus generated by the PM,
while 76.3% are seen frequently in the training cor-
pus generated by the RRM. A higher percentage in-
dicates the policy might be better trained with more
training instances. This explains why the RRM out-
performs the PM in this case.

While the TRM also tries to explore dialog state
space, only 65.2% of the frequent states in testing
phase are observed frequently in the training phase.
This is because the Total Random Model answers
90% of the questions incorrectly and often goes
deeply down the error-correction paths. It does ex-
plore some states that are at the end of the paths,
but since these are the infrequent states in the test
phase, exploring these states does not actually im-
prove the model’s performance much. On the other
hand, while the student correctness rate in the real
corpus is 60%, the RRM prevents itself from being
trapped in the less-likely states on incorrect answer
paths by keeping its correctness rate to be 50%.

Our results are preliminary but suggest interest-
ing points in building simulation models: 1. When
trained from a sparse data set, it may be better to
use a RRM than a more realistic PM or a more ex-
ploratory TRM; 2. State space representation may
not impact evaluation results as much as reward
functions and evaluation measures, since when us-
ing RF2 and evaluating with EM2, the differences
we see using RF1 or EM1 become less significant.

In our future work, we are going to further investi-
gate whether the trends shown in this paper general-
ize to on-line MDP policy learning. We also want to
explore other user simulations that are designed for
sparse training data (Henderson et al., 2005). More

5We define frequent states to be those that comprise at least
1% of the entire corpus. These frequent states add up to more
than 80% of the training/testing corpus. However, deciding the
threshold of the frequent states in training/testing is an open
question.

importantly, we are going to test the new policies
with the other simulations and human subjects to
validate the learning process.
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Abstract 

The work1 we present here is concerned 
with the acquisition of deep grammati-
cal information for nouns in Spanish. 
The aim is to build a learner that can 
handle noise, but, more interestingly, 
that is able to overcome the problem of 
sparse data, especially important in the 
case of nouns. We have based our work 
on two main points. Firstly, we have 
used distributional evidences as fea-
tures. Secondly, we made the learner 
deal with all occurrences of a word as a 
single complex unit. The obtained re-
sults show that grammatical features of 
nouns is a level of generalization that 
can be successfully approached with a 
Decision Tree learner. 

1 Introduction 

Our work aims to the acquisition of deep gram-
matical information for nouns, because having in-
formation such as countability and complementa-
tion is necessary for different applications, espe-
cially for deep analysis grammars, but also for 
question answering, topic detection and tracking, 
etc.  

Most successful systems of deep lexical acquisi-
tion are based on the idea that distributional fea-
tures (i.e. the contexts where words occur) are as-
sociated to concrete lexical  types. The difficulties 
                                                           
1 This research was supported by the Spanish Ministerio de Educación y Cien-
cia: project AAILE, HUM2004-05111-C02-01/FILO, Ramón y Cajal, Juan de la 
Cierva Programs and PTA-CTE/1370/2003 with Fondo Social Europeo,. 

are, on the one hand, that some filtering must be 
applied to get rid of noise, that is, contexts wrongly 
assessed as cues of a given type and, on the other 
hand, that for a pretty large number of words, their  
occurrences in a corpus of any length are very few, 
making statistical treatment very difficult. 

The phenomenon of noise is related to the fact 
that one particular context can be a cue of different 
lexical types. The problem of sparse data is pre-
dicted by the Zipfian distribution of words in texts: 
there is a large number of words likely to occur a 
very reduced number of times in any corpus. Both 
of these typical problems are maximized in the 
case of nouns.  

The aim of the work we present here is to build 
a learner that can handle noise, but, more interest-
ingly, that is able to overcome the problem of 
sparse data. The learner must predict the correct 
type both when there is a large number of occur-
rences as well as when there are only few occur-
rences, by learning on features that maximize gen-
eralization capacities of the learner while control-
ling overfitting phenomena.  

We have based our work on two main points. 
Firstly, we have used morphosyntactic information 
as features. Secondly, we made the learner deal 
with all occurrences of a word as a complex unit. 
In our system, linguistic cues of every occurrence 
are collected in the signature of the word (more 
technically a pair lema + part of speech) in a par-
ticular corpus. In the next sections we give further 
details about the features used, as well as about the 
use of signatures. 

The rest of the paper is as follows. Section 2 
presents an overview of the state of the art in deep 
lexical acquisition. In section 3, we introduce de-
tails about our selection of linguistically motivated 
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cues to be used as features for training a Decision 
Tree (DT). Section 4 shortly introduces the meth-
odology and data used in the experiments whose 
results are presented in section 5. And in section 6 
we conclude by comparing with the published re-
sults for similar tasks and we sketch future re-
search.  

2 State of the art 

Most of the work on deep lexical information 
acquisition has been devoted to verbs. The existing 
acquisition systems learn very specialized linguis-
tic information such as verb subcategorization 
frame2. The results for verb subcategorization are 
mostly around the 0.8 of precision. Briscoe & Car-
roll (1997) reported a type precision of 0,76 and a 
type recall of 0.43. Their results were improved by 
the work of Korhonen (2002) with a type precision 
of 0.87 and a recall of 0.68 using external re-
sources to filter noise. Shulte im Walde (2002) re-
ports a precision of 0.65 and a recall of 0.58. 
Chesley & Salmon-Alt (2006) report a precision of 
0.86 and a recall of 0.54 for verb subcategorization 
acquisition for French.  

Lexical acquisition for nouns has been con-
cerned mainly with ontological classes and has 
mainly worked on measuring semantic similarity 
on the basis of occurrence contexts. As for gram-
matical information, the work of Baldwin and 
Bond (2003) in acquisition of countability features 
for English nouns also tackles the very important 
problem of feature selection. Other work like Car-
roll and Fang’s (2004) and Baldwin’s (2005) have 
focused on grammatical information acquisition 
for HPSG based computational grammars. The 
latter is the most similar exercises to our work. 
Baldwin (2005) reports his better results in terms 
of type accuracy has been obtained by using syn-
tactic information in a chunked and parsed corpus. 
The type F-scores for the different tested catego-
ries for English were: for verbs 0.47, for nouns 0.6  
and for adjectives 0.832.  

3 Feature selection  

One of the most important tasks in developing 
machine learning applications is the selection of 

                                                           
2 Given the argument-adjunct distinction, subcategorization 
concerns the specification for a predicate of the number and 
type of arguments which it requires for well-formedness. 

the features that leads to the smallest classification 
error. For our system, we have looked at distribu-
tional motivated features that can help in discrimi-
nating the different types that we ultimately use to 
classify words.  

The lexical types used in deep analysis gram-
mars are linguistic generalizations drawn from the 
distributional characteristics of particular sets of 
words. For the research we present here, we have 
taken the lexicon of a HPSG-based grammars de-
veloped in the LKB platform (Copestake, 2002) for 
Spanish, similarly to the work of Baldwin (2005). 
In the LKB grammatical framework, lexical types 
are defined as a combination of features. Lexical 
typology of nouns for Spanish, for instance, can be 
seen as a cross-classification of noun countability 
vs. mass distinctions, and subcategorization frame 
or valence, including prepositional selection.  For 
example nouns as “temor” (‘fear’) and “adicción” 
(‘adiction) belong to the type 
n_ppde_pcomp_a_count as they take two com-
plements: one with de and the other with a bound 
preposition a, as in “El temor de la niña a los fan-
tasmas” (‘The girl’s fear to ghosts’) vs. “La adic-
ción a la cocaína” (‘The addiction to cocaine’).  

We decided to carry out the classification for 
each of the grammatical features that conform the 
cross-classified types as a better level of generali-
zation than the type: mass and countable, on the 
one hand and, on the other hand, for subcategoriza-
tion information three further basic features: trans, 
for nouns with thematic complements introduced 
by the preposition de, intrans, when the noun can 
appear with no complements and pcomp for nouns 
having complements introduced by a bound prepo-
sition. The complete type can be recomposed with 
the assigned features. “Temor” and “adicción” will 
be examples of trans and pcomp_a. They both 
have also to be assigned the feature countable. The 
combination of features assigned corresponds to 
the final type which is a definition of the complete 
behaviour of the noun with respect, for instance, 
optional complements.  

We have used 23 linguistic cues, that is, the pat-
terns of contexts that can be indicative of a particu-
lar feature. The most frequent cue that can be re-
lated to countable is for the noun to be found with 
plural morphology. A singular noun without de-
terminer after a verb or a preposition is a cue of the 
noun being mass: “hay barro en el salón” (‘there is 
mud in the living room”) vs. “hay hombres en el 
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salón” (“there are men in the living room”). A fur-
ther cue for mass is the presence of particular 
quantifiers, such as “más” (‘more’), “menos” 
(‘less’), etc. But these cues, based on a collection 
of lexical items, are less productive than other 
characteristics such as morphological number or 
presence of determiners, as they appear very 
scarcely in texts. Nevertheless, we should mention 
that most of mass nouns in Spanish can also appear 
in the contexts of countables, as in the case of 
“beer” when in constructions such as “three beers, 
please”.   

More difficult was to find cues for identifying 
the transitive nature of a noun. After some empiri-
cal work, we found a tendency of argumental com-
plements to have a definite article: “temor de la 
niña” (‘fear of the girl’), while modifiers tend to 
appear without determiners: “mesa de juegos” (‘ta-
ble of games’). Besides, we have taken as a cue the 
morphological characteristics of deverbal nouns. 
Suffixes such as “-ción”, “-sión”, and “-miento”, 
are very much indicative of transitive nouns. Fi-
nally, to find the bound preposition of comple-
ments, we used a pattern for each possible preposi-
tion found after the noun in question. 

We used Regular Expressions to implement the 
linguistic motivated patterns that check for the in-
formation just mentioned in a part of speech tagged 
corpus. The various patterns determine whether the 
linguistic cues that we have related to syntactic 
features are found in each occurrence of a particu-
lar word in a corpus. The positive or negative re-
sults of the n pattern checking are stored as binary 
values of a n dimensional vector, one for each oc-
currence. All vectors produced, one per occurrence 
of the word in question, are stored then in a kind of 
vector of vectors that we have called its signature.  
The term signature wants to capture the notion that 
the data it embodies is truly representative of a par-
ticular item, and that shows the details of its typical 
behavior. Particularly, we wanted linguistic cues 
appearing in different occurrences of the same 
word to be observed as related information. We 
have not dealt with ambiguity at all, however. One 
of the reasons was our focus on low frequency 
nouns. 

4 Methodology and data 

We have worked with the Corpus Tècnic de 
l’IULA, a multilingual part of speech tagged corpus 

which consists of domain specific texts. The sec-
tion used for our evaluation was the Spanish with 
1,091,314 words in the domain of economy and 
4,301,096 for medicine. A dataset of 289 nouns, 
present in both subcorpora, was selected. It was 
important to compare the behavior of the same 
nouns in both corpus to check whether the learner 
was subject to unwanted overfitting.  

We used the data for building a C4.5 DT clas-
sifier3. DT’s are one well known and successful 
technique for this class of tasks when there is 
enough pre-annotated data available. DT’s have 
the additional benefit that the results can be in-
spected. The signatures of the words in the Gold-
Standard lists were extracted from the corpus of 
medicine and of the economy one. There was a 
further test set of 50 nouns with a single occur-
rence in the corpus of economy for testing pur-
poses. The DT was trained with the signatures of 
the economy corpus, and the medicine ones as well 
as the singles set were used for testing.  

5 Evaluation 

The purpose of the evaluation was to validate our 
system with respect to the two problems men-
tioned: noise filtering and generalization capacity 
by measuring type precision and type recall. We 
understand type precision as a measure of the noise 
filtering success, and recall as a measure of the 
generalization capacity.  

In the following tables we present the results of 
the different experiments. In Table 1, there is a 
view of the results of the experiment after training 
and testing with the signatures got in the smaller 
corpus. The results are for the assignment of the 
grammatical feature for the two values, yes and no. 
And the column named global refers to the total 
percentage of correctly classified instances. 

 
  yes no 

lt global prec. rec.  F prec. rec. F 

MASS 0.67 0.4 0.26 0.31 0.73 0.83 0.78

COUNT 0.96 0.97 0.99 0.98 0 0 0 

TRANS 0.85 0.73 0.45 0.55 0.86 0.95 0.91

INT 0.81 0.84 0.94 0.89 0.64 0.32 0.48

PCOMP 0.9 0.4 0.08 0.13 0.91 0.98 0.95
Table 1. DT results of economy signatures for 
training and test 

                                                           
3 We have used WEKA J48 decision tree classifier (Witten and Frank, 2005). 
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The most difficult task for the learner is to iden-

tify nouns with bound prepositions. Note that there 
are only 20 nouns with prepositional complements 
of the 289 test nouns, and that the occurrence of 
the preposition is not mandatory, and hence the 
signatures are presented to the learner with very 
little information.  

Table 2 shows the results for 50 nouns with only 
one occurrence in the corpus. The performance 
does not change significantly, showing that the 
generalization capacity of the learner can cope 
with low frequency words, and that noise in larger 
signatures has been adequately filtered. 
 

  yes no 

lt global prec. rec.  F prec. rec. F 

MASS 0.71 0.5 0.16 0.25 0.73 0.93 0.82

COUNT 0.97 0.97 1 0.98 0 0 0 

TRANS 0.85 0.75 0.46 0.57 0.87 0.96 0.91

INT 0.83 0.85 0.95 0.89 0.70 0.41 0.52

PCOMP 0.91 0 0 0 0.91 1 0.95
Table 2. DT results for training with signatures of 
the economy corpus and testing 50 unseen nouns 
with a single occurrence as test 

 
Table 3 shows that there is little variation in the 

results of training with signatures of the economy 
corpus and testing with ones of the medicine cor-
pus. As expected, no variation due to domain is 
relevant as the information learnt should be valid 
in all domains.  
 

  yes no 

lt global prec. rec. F prec. rec. F 

MASS 0.65 0.44 0.53 0.48 0.77 0.70 0.73

COUNT 0.97 0.97 1 0.98 0 0 0 

TRANS 0.82 0.62 0.47 0.54 0.86 0.92 0.89

INT 0.78 0.82 0.92 0.86 0.58 0.35 0.43

PCOMP 0.81 0.31 0.28 0.29 0.92 0.93 0.93
Table 3. DT results for training with economy sig-
natures and testing with medicine signatures 

6  Conclusions 

The obtained results show that the learning of 
grammatical features of nouns are learned success-
fully when using distributional linguistic informa-
tion as learning features that allow the learner to 

generalize so as to maintain the performance in 
cases of nouns with just one occurrence.  

There are however issues that should be further 
investigated. Grammatical features with low preci-
sion and recall results (mass and pcomp) show that 
some more research should be carried out for find-
ing relevant linguistic cues to be used as learning 
features. In that respect, the local cues based on 
morphosyntactic tagging have proved to be useful, 
minimizing the text preprocessing requirements for 
getting usable results. 
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Abstract 

We describe ConQuest, an open-source, 
reusable spoken dialog system that pro-
vides technical program information dur-
ing conferences. The system uses a 
transparent, modular and open infrastruc-
ture, and aims to enable applied research 
in spoken language interfaces. The con-
ference domain is a good platform for ap-
plied research since it permits periodical 
redeployments and evaluations with a real 
user-base. In this paper, we describe the 
system’s functionality, overall architec-
ture, and we discuss two initial deploy-
ments.  

1 Introduction  

Conducting applied spoken language interface re-
search is generally a costly endeavor. Developing, 
deploying and maintaining real-world spoken lan-
guage interfaces requires an existing infrastructure, 
a significant amount of engineering effort, and can 
greatly benefit from the availability of certain re-
sources such as transcribed in-domain data.  

In an effort to enable applied research and to 
lower this high cost of entry, we have developed 
ConQuest (Conference Questions) an open-source 
spoken dialog system that provides access to 
schedule and technical program information during 
conferences. We believe the conference domain 
has a number of good properties for applied re-
search: it includes a number of tasks of different 
complexities, it provides regular access to a real-
world user population; it permits periodical rede-

ployments and evaluations and therefore can pro-
vide a natural common evaluation task for the 
spoken language interfaces community.  

The ConQuest system is constructed on top of 
the open, transparent and modular Olympus dialog 
system framework (2007), and can be easily reused 
across different conferences. To date, the system 
has been deployed in two conferences: InterSpeech 
2006 and IJCAI 2007. Together with corpora col-
lected from these deployments, the system is freely 
available for download (Conquest, 2007).  

We begin by describing the ConQuest function-
ality in the next section. Then, in section 3 we pro-
vide an overview of the system architecture and 
discuss the development process. In section 4 we 
briefly discuss the two deployment efforts. Finally, 
in section 5 we discuss related work and draw a 
number of conclusions.   

2 Functionality 

As Figure 1 illustrates, ConQuest is a mixed-
initiative spoken dialog system that provides ac-
cess to schedule and technical program information 
during conferences.  

Users can browse the schedule and find details 
about various papers or sessions of interest by pro-
viding identifying information, such as topics, ses-
sion names, special events, paper titles, author 
names, specific dates and times, specific locations, 
or a combination thereof (e.g. turns 2, 4, 14). Addi-
tionally, the system also allows uses to listen to 
current announcements and to cast their votes for a 
Best Paper Award (e.g. turns 10-17).  

The interaction is mixed-initiative; at any point, 
the user may switch the current focus of the con-
versation (e.g. turn 8). ConQuest employs an adap-
tive information presentation strategy that allows 
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users to easily navigate the schedule (see turns 3, 5 
and 15). The system uses a rich repertoire of error 
recovery strategies to handle potential errors, in-
cluding several fall-back strategies (e.g. turn 13).  

3 System Architecture  

The ConQuest system was built using RavenClaw/ 
Olympus (2007), an open-source framework that 
facilitates research and development in task ori-
ented conversational spoken language interfaces. 
Olympus consists of a collection of components 
for recognition, language understanding, dialog 
management, language generation, speech synthe-
sis, etc., and the corresponding communication 
infrastructure. To date, Olympus has been used to 
develop and deploy a number of other systems 
spanning different domains and interaction types 
(Bohus and Rudnicky, 2003).  

A key characteristic of the Olympus framework 
is a clear separation between the domain independ-
ent programs (or components) and domain specific 
resources. This decoupling promotes reusability 
and significantly lessens the system development 
effort. In ConQuest, the authoring effort was fo-

cused on developing resources such as the lexicon, 
language model, grammar, dialog task specifica-
tion, etc. Some interesting, unanticipated engineer-
ing challenges we faced during development were 
dealing with foreign names and accented charac-
ters and performing text normalization on various 
fields (e.g. Alex Smith and Alexander Smith are 
the same author), while at the same time ensuring 
consistency between these various resources. Be-
low, we briefly comment of each component and 
the corresponding resources. Figure 2 provides a 
top-level architectural view. 

Speech Recognition. ConQuest uses a recogni-
tion server coupled to a set of parallel recognition 
engines: two SPHINX-II decoders (Huang et al., 
1992) that use gender-specific acoustic models, 
and a DTMF (touch-tone decoder). Each recogni-
tion engine uses class-based (e.g. paper titles, au-
thor names, etc.), state-specific trigram-language 
models. We started with an initial language model 
built using data collected with an early text-only 
prototype. We then internally deployed a speech 
based system, collected more data, transcribed it, 
and used it to retrain the language models. The 

Figure 1. A sample interaction with ConQuest 

1 S: Welcome to ConQuest […] I can give you information about papers, sessions, special events and announcements at Inter-
Speech 2006. You can also cast a vote for the best paper award. How can I help you? 

2 U: are there any papers on spoken dialog systems today 
3 S:  There are 23 papers on spoken dialog systems today. These papers are being presented in 3 sessions: Dialog and Discourse, 

Language Modeling for Spoken Dialog Systems and Spoken Dialog Systems I. To browse this list of papers, please tell me the 
author name, the paper title, the time or the venue you’re looking for. If you’re not interested in any of these papers say ‘quit’. 

4 U: which ones are in the afternoon 
5 S:  There will be 11 papers on spoken dialog systems this afternoon. Would you like to hear information about all these papers? 
6 U: yes 
7 S:  The list of papers on spoken dialog systems this afternoon is: Paper 1 - “Dynamic Extension of a Grammar-based Dialogue 

System: Constructing an All-Recipes Knowing Robot”, Paper 2 –  […] Would you like more information about any of these? 
8 U: tell me more about the third one 
9 S:  Paper 3 is titled “System- versus user-initiative dialog strategy for driver information systems”, and was presented yesterday at 2 

pm in the poster session in Allegheny Ballroom Foyer. This paper was written by Chantal Ackermann, and Marion Libossek. 
Would you like more information about any of these? 

8 U: no when is the banquet 
9 S:  The Banquet will be held Wednesday from 7pm to 9:30 pm in the Heintz History Center. The Heinz History Center is located on 

Smallman street between 12th and 13th streets. The History Center is a museum that relates and interprets 250 years of history 
in the Western Pennsylvania area. Is there anything else I can do for you? 

10 U: yes I’d like to cast a vote 
11 S:  Please tell me the title of the paper you’d like to vote for.. 
12 U: I don’t really know the title but I think it had Diane as one of the main authors  [non-understanding] 
13 S:  Sorry, I didn’t catch that. Please dial the first six letters from the title of the paper you would like to vote for.  
14 U: I don’t know it it’s a paper by Diane Litman 
15 S:  There are 3 papers by Diane Litman. Paper 1 – “Discourse Structure and Speech Recognition Problems”, Paper 2 – […], Paper 

3 – […] Would you like to vote for any of these? 
16 U: Discourse Structure and Speech Recognition Problems 
17 S:  Okay, I’ve recorded your vote for the paper entitled “Discourse Structure and Speech Recognition Problems” What else can I do 

for you?  
18 U: […] 
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final language models used during the InterSpeech 
deployment were trained from on a corpus of 6350 
utterances. The system operated with a lexicon of 
4795 words, which included 659 lexicalized (con-
catenated) paper titles, and 1492 lexicalized author 
names, and 78 lexicalized session names. The pro-
nunciations were generated using CMU Dictionary 
and later manually corrected.  

Language understanding. The system uses the 
Phoenix (Ward and Issar, 1994) robust parser to 
extract concepts from the recognition results. A 
domain-specific shallow semantic grammar was 
developed and concatenated with a domain-
independent grammar for generic expressions like 
[Yes], [No], [Date], [Time], etc.  

Dialog management. ConQuest uses a Raven-
Claw-based dialog manager (Bohus and Rudnicky, 
2003). We developed a dialog task specification 
for the conference schedule domain, expressed as a 
hierarchical plan for the interaction, which the 
RavenClaw engine uses to drive the dialog. In the 
process, the RavenClaw engine automatically pro-
vides additional generic conversational skills such 
as error recovery strategies and support for various 
universal dialog mechanisms (e.g. repeat, start-
over, what-can-I-say, etc.)  

Backend/Database. A backend agent looks up 
schedule information from the database (stored as 
a flat text file). The backend agent also performs 
domain specific pre-lookup normalization (e.g. 
mapping author names to their canonical forms), 
and post-lookup processing of the returned records 
(e.g. clustering papers by sessions). The database 
file serves as starting point for constructing a 

number of other system resources (e.g. language 
model classes, lexicon, etc.)  

Figure 2. The Olympus dialog system reference architecture (a typical system) 

Temporal reference resolution agent. Apart 
from the database agent, the dialog manager also 
communicates with an agent that resolves temporal 
expressions (e.g. tomorrow at four p.m.) into ca-
nonical forms.  

Language generation. ConQuest uses Rosetta, 
a template-based language generation component. 
The authoring effort at this level consisted of writ-
ing various templates for the different system ques-
tions and information presentation prompts.  

Speech synthesis. ConQuest uses the Cepstral 
(2005) speech synthesis engine, configured with an 
open-domain unit selection voice. We manually 
checked and corrected pronunciations for author 
names, various technical terms and abbreviations.  

4 Development and Deployment 

The first development of ConQuest system was 
done for the Interspeech 2006 conference held in 
Pittsburgh, PA. The iterative development process 
involved regular interaction with potential users 
i.e. researchers who regularly attend conferences. 
Seven developers working half time participated in 
this development for about three months. An esti-
mated one man-year of effort was spent. This esti-
mate does not include the effort involved in 
transcribing the data collected after the conference. 

Two systems were deployed at the Interspeech 
2006 conference: a desktop system using a close-
talking microphone placed by the registration desk, 
and a telephone-based system. Throughout the 
conference we collected a corpus of 174 sessions. 
We have orthographically transcribed the user ut-

11



terances and are currently analyzing the data; we 
plan to soon release it to the community, together 
with detailed statistics, the full system logs as well 
as the full system source code (Conquest, 2007). 

Following Interspeech 2006, ConQuest was re-
deployed at IJCAI 2007 conference held in Hy-
derabad, India. The second deployment took an 
estimated two man-months: three developers work-
ing half-time for over a month. The significant 
parts of the second deployment involved incorpo-
rating scheduling data for the IJCAI 2007 and im-
plementing two new requirements i.e. support for 
workshops and Indian English speech recognition. 
The IJCAI development had fewer iterations than 
the first effort. The two desktop systems set up at 
the conference venue collected 129 sessions of 
data. This data is currently being transcribed and 
will soon be released to the community through the 
Conquest website (Conquest, 2007). 

Through these two deployments of ConQuest 
the system specifications have been refined and we 
expect the development time to asymptote to less 
than a month after a few more deployments. 

5 Discussion and Conclusion  

Our primary goal in developing ConQuest was to 
enable research by constructing and releasing an 
open-source, full-fledged dialog system, as well as 
an initial corpus collected with this system. The 
system is built on top of an open, transparent and 
modular infrastructure that facilitates research in 
spoken language interfaces (Olympus, 2007).  

There have been a number of other efforts to 
collect and publish dialog corpora, for instance 
within the DARPA Communicator project. A more 
recent project, that operates in a domain similar to 
ConQuest is DiSCoH, a Dialog System for Confer-
ence Help developed by researchers at AT&T, 
ICSI and Edinburgh University, and deployed dur-
ing the SLT-2006 workshop (Adreani et al., 2006). 
While their goals are similar, i.e. to enable re-
search, DiSCoH and ConQuest differ in a number 
of dimensions. Functionality-wise, DiSCoH offers 
general conference information about the venue, 
accommodation options and costs, paper submis-
sion, etc., while ConQuest provides access to the 
technical schedule and allows participants to vote 
for a best paper award. DiSCoH is built using 
AT&T technology and a call-routing approach; 
ConQuest relies on a plan-based dialog manage-

ment framework (RavenClaw) and an open-source 
infrastructure (Olympus). Finally, the DiSCoH ef-
fort aims to develop a richly annotated dialog cor-
pus to be used for research; ConQuest’s aim is to 
provide both the full system and an initial tran-
scribed and annotated corpus to the community. 

The conference domain is interesting in that it 
allows for frequent redeployment and in theory 
provides regular access to a certain user-base. It 
should therefore facilitate research and periodical 
evaluations. Unfortunately, the dialog corpora col-
lected so far using DiSCoH and ConQuest have 
been somewhat smaller than our initial expecta-
tions. We believe this is largely due to the fact that 
the systems provide information that is already 
accessible to users by other means (paper confer-
ence program, web-sites, etc.). Perhaps combining 
the functionalities of these two systems, and ex-
panding into directions where the system provides 
otherwise hard-to-access information (e.g. local 
restaurants, transportation, etc.) would lead to in-
creased traffic.  
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Abstract

We compare the effect of joint modeling
of phonological features to independent
feature detectors in a Conditional Random
Fields framework. Joint modeling of fea-
tures is achieved by deriving phonological
feature posteriors from the posterior prob-
abilities of the phonemes. We find that
joint modeling provides superior perfor-
mance to the independent models on the
TIMIT phone recognition task. We ex-
plore the effects of varying relationships
between phonological features, and sug-
gest that in an ASR system, phonological
features should be handled as correlated,
rather than independent.

1 Introduction

Phonological features have received attention as a
linguistically-based representation for sub-word in-
formation in automatic speech recognition. These
sub-phonetic features allow for a more refined repre-
sentation of speech by allowing for temporal desyn-
chronization between articulators, and help account
for some phonological changes common in sponta-
neous speech, such as devoicing (Kirchhoff, 1999;
Livescu, 2005). A number of methods have been de-
veloped for detecting acoustic phonological features
and related acoustic landmarks directly from data
using Multi-Layer Perceptrons (Kirchhoff, 1999),
Support Vector Machines (Hasegawa-Johnson et al.,
2005; Sharenborg et al., 2006), or Hidden Markov
Models (Li and Lee, 2005). These techniques
typically assume that acoustic phonological feature
events are independent for ease of modeling.

In one study that broke the independence assump-
tion (Chang et al., 2001), the investigators devel-
opedconditional detectors: MLP detectors of acous-
tic phonological features that are hierarchically de-
pendent on a different phonological class. In (Ra-
jamanohar and Fosler-Lussier, 2005) it was shown
that such a conditional training of detectors tended
to have correlated frame errors, and that improve-
ments in detection could be obtained by training
joint detectors. For many features, the best detector
can be obtained by collapsing MLP phone posteriors
into feature classes by marginalizing across phones
within a class. This was shown only for frame-level
classification rather than phone recognition.

Posterior estimates of phonological feature
classes, as in Table 1, particularly those derived
from MLPs, have been used as input to HMMs
(Launay et al., 2002), Dynamic Bayesian Networks
(DBNs) (Frankel et al., 2004; Livescu, 2005),
and Conditional Random Fields (CRFs) (Morris
and Fosler-Lussier, 2006). Here we evaluate
phonological feature detectors created from MLP
phone posterior estimators (joint feature models)
rather than the independently trained MLP feature
detectors used in previous work.

2 Conditional Random Fields

CRFs (Lafferty et al., 2001) are a joint model of
a label sequence conditioned on a set of inputs.
No independence is assumed among the input; the
CRF model discriminates between hypothesized la-
bel sequences according to an exponential function
of weighted feature functions:

P (y|x) ∝ exp
∑

i

(S(x,y, i) + T(x,y, i)) (1)
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Class Feature Values
SONORITY Vowel, Obstruent, Sonorant, Syllabic, Silence
VOICE Voiced, Unvoiced, N/A
MANNER Fricative, Stop, Stop-Closure, Flap, Nasal, Approximant, Nasalflap, N/A
PLACE Labial, Dental, Alveolar, Palatal, Velar, Glottal, Lateral, Rhotic, N/A
HEIGHT High, Mid, Low, Lowhigh, Midhigh, N/A
FRONT Front, Back, Central, Backfront, N/A
ROUND Round, Nonround, Roundnonround, Nonroundround, N/A
TENSE Tense, Lax N/A

Table 1: Phonetic feature classes and associated values

whereP (y|x) is the probability of label sequence
y given an input frame sequencex, i is the frame
index, and S and T are a set of state feature functions
and a set of transition feature functions, defined as:

S(x, y, i) =
∑
j

λjsj(y, x, i), and (2)

T (x, y, i) =
∑
k

µktk(yi−1, yi, x, i) (3)

whereλ andµ are weights determined by the learn-
ing algorithm. In NLP applications, the component
feature functionssj andtk are typically realized as
binary indicator functions indicating the presence or
absence of a feature, but in ASR applications it is
more typical to utilize real-valued functions, such as
those derived from the sufficient statistics of Gaus-
sians (e.g., (Gunawardana et al., 2005)).

We can use posterior estimates of phone classes or
phonological feature classes from MLPs as feature
functions (inputs) within the CRF model. A more
detailed description of this CRF paradigm can be
found in (Morris and Fosler-Lussier, 2006), which
shows that the results of phone recognition using
CRFs is comparable to that of HMMs or Tandem
systems, with fewer constraints being imposed on
the model. State feature functions in our system are
defined such that

sφ,f (yi,x, i) =
{
NNf (xi), ifyi = φ
0, otherwise

(4)

where the MLP output for featuref at time i is
NNf (xi). This allows for an association between
a phoneφ and a featuref (even iff is traditionally
not associated withφ).

In this study, we experiment with different meth-
ods of generating these feature functions. In various

experiments, they are generated by training MLP
phone detectors, by evaluating the feature informa-
tion inherent in the MLP phone posteriors, and by
training independent MLPs to detect the various fea-
tures within the classes described. The use of CRFs
allows us to explore the dependencies among feature
classes, as well as the usefulness of phone posteriors
versus feature classes as inputs.

3 Experimental Setup

We use the TIMIT speech corpus for all training and
testing (Garofolo et al., 1993). The acoustic data
is manually labeled at the phonetic level, and we
propagate this phonetic label information to every
frame of data. For the feature analyses, we employ
a lookup table that defines each phone in terms of
8 feature classes, as shown in Table 1. We extract
acoustic features in the form of 12th order PLP fea-
tures plus delta coefficients. We then use these as
inputs to several sets of neural networks using the
ICSI QuickNet MLP neural network software (John-
son, 2004), with the 39 acoustic features as input, a
varying number of phone or feature class posteriors
as output, and 1000 hidden nodes.

4 Joint Phone Posteriors vs. Independent
Feature Posteriors

The first experiment contrasts joint versus indepen-
dent feature modeling within the CRF system. We
compare a set of phonological feature probabilities
derived from the phone posteriors (a joint model)
with MLP phone posteriors and with independently
trained MLP phonological feature posteriors.

The inputs to the first CRF are sets of 61 state fea-
ture functions from the phonemic MLP posteriors,
each function is an estimate of the posterior proba-
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Input Type. Phn. Accuracy Phn. Correct
Phones 67.27 68.77
Features 65.25 66.65

Phn.→ Feat. 66.45 67.94

Table 2: Results for Exp. 1: Phone and feature pos-
teriors as input to the CRF phone recognition

bility of one phone. The inputs to the second CRF
model are sets of 44 functions corresponding to the
phonological features listed in Table 1. The CRF
models are trained to associate these feature func-
tions with phoneme labels, incorporating the pat-
terns of variation seen in the MLPs.

The results show that phone-based posteri-
ors produce better phone recognition results than
independently-trained phonological features. This
could be due in part to the larger number of param-
eters in the system, but it could also be due to the
joint modeling that occurs in the phone classifier.

In order to equalize the feature spaces, we use the
output of the phoneme classifier to derive phonolog-
ical feature posteriors. In each frame we sum the
MLP phone posteriors of all phones that contain a
given feature. For instance, in the first frame, for
the feature LOW, we sum the posterior estimates at-
tributed to the phonesaa, aeandao. This is repeated
for each feature in each frame. The CRF model is
trained on these data and tested accordingly. The re-
sults are significantly better (p≤.001) than the previ-
ous features model, but are significantly worse than
the phone posteriors (p≤.005).

The results of Experiment 1 confirm the hypoth-
esis of (Rajamanohar and Fosler-Lussier, 2005) that
joint modeling using several types of feature infor-
mation is superior to individual modeling in phone
recognition, where only phoneme information is
used. The difference between the phone posteriors
and individual feature posteriors seems to be related
both to the larger CRF parameter space with larger
input, and the joint modeling provided by phone
posteriors.

5 Phonological Feature Class Analysis

In the second experiment, we examine the influence
of each feature class on the accuracy of the recog-
nizer. We iteratively remove the set of state fea-
ture functions corresponding to each feature class

Class Removed Feats. Phn. Acc. Phn. Corr.
None 44 65.25 66.65

Sonority 39 65.15 66.58
Voice 41 63.60* 65.03*

Manner 36 58.92* 60.60*
Place 35 53.22* 55.13*

Height 38 62.58* 64.07*
Front 39 64.51* 65.95*
Round 39 65.19 66.64
Tense 41 64.20* 65.65*

* p≤.05, different from no features removed

Table 3: Results of Exp. 2: Removing feature
classes from the input

from the input to the CRF. The original functions
are the output of the independently-trained feature
class MLPs. The phone recognition accuracy for the
CRF having removed each class is shown in Table 3.
In Table 4 we show how removing each feature class
affects the labeling of vowels and consonants.

Manner provides an example of the influence of a
single feature class. Both the Accuracy and Correct-
ness scores decrease significantly when features as-
sociated with Manner are removed. Manner features
distinguish consonants but not vowels, so the effect
is concentrated on the recognition of consonants.

The results of Experiment 2 show that certain fea-
ture classes are redundant from the point of view of
phone recognition. In English, Round is correlated
with Front. When we remove Round, the phonemes
remain uniquely identified by the other classes. The
same is true for the Sonority class. The results show
that the inclusion of these redundant features is not
detrimental to the recognition accuracy. Accuracy
and Correctness improve non-significantly when the
redundant features are included.

Clearly, the “independent” phonological feature
streams are not truly independent. Otherwise, per-
formance would decrease overall as we removed
each feature class, assuming predictiveness.

Removal of Place causes a slight worsening of
recognition of vowels. This is surprising, because
Place does not characterize vowels. An analysis of
the MLP activations showed that the detector for
Place=N/A is a stronger indicator for vowels than
is the Sonority=Vowel detector. This is especially
true for the vowelax, which is frequent in the data,
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Class Removed Percent Correct:
Vowels Consonants

None 62.68 68.91
Sonority 62.18 69.08
Voice 62.39 66.53*
Manner 61.84 59.89*
Place 60.77* 51.94*
Height 55.92* 68.69
Frontness 60.80* 68.87
Roundness 62.25 69.13
Tenseness 60.15* 68.76
* p≤.05, different from no features removed

Table 4: Effect of removing each feature class on
recognition accuracy of vowels and consonants

thus greatly influences the vowel recognition statis-
tic. Removing the Place detectors leads to a loss in
vowel vs. consonant information. This results in an
increased number of consonant for vowel substitu-
tions (from 560 to 976), thus a decrease in vowel
recognition accuracy.

Besides extending the findings in (Rajamanohar
and Fosler-Lussier, 2005), this provides a cautionary
tale for incorporating redundant phonological fea-
ture estimators into ASR: these systems need to be
able to handle correlated input, either by design (as
in a CRF), through full or semi-tied covariance ma-
trices in HMMs, or by including the appropriate sta-
tistical dependencies in DBNs.

6 Summary

We have shown the effect of using joint model-
ing of phonetic feature information in conjunction
with the use of CRFs as a discriminative classifier.
Phonetic posteriors, as joint models of phonological
features, provide superior phone recognition perfor-
mance over independently-trained phonological fea-
ture models. We also find that redundant features are
often modeled well within the CRF framework.
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Abstract 

Suppose we have a large dictionary of 
strings.  Each entry starts with a figure of 
merit (popularity).  We wish to find the k-
best matches for a substring, s, in a dicti-
noary, dict.  That is,  grep s dict | sort –n | 
head –k, but we would like to do this in 
sublinear time.  Example applications: (1) 
web queries with popularities, (2) prod-
ucts with prices and (3) ads with click 
through rates.  This paper proposes a 
novel index, k-best suffix arrays, based on 
ideas borrowed from suffix arrays and kd-
trees.  A standard suffix array sorts the 
suffixes by a single order (lexicographic) 
whereas k-best suffix arrays are sorted by 
two orders (lexicographic and popularity). 
Lookup time is between log N and sqrt N. 

1 Standard Suffix Arrays 

This paper will introduce k-best suffix arrays, 
which are similar to standard suffix arrays (Manber 
and Myers, 1990),  an index that makes it conven-
ient to compute the frequency and location of a 
substring, s, in a long sequence, corpus.  A suffix 
array, suf, is an array of all N suffixes, sorted al-
phabetically.  A suffix, suf[i], also known as a 
semi-infinite string, is a string that starts at position 
j in the corpus and continues to the end of the cor-
pus.  In practical implementations, a suffix is a 4-
byte integer, j.  In this way, an int (constant space) 
denotes a long string (N bytes). 

The make_standard_suf program below creates 
a standard suffix array.  The program starts with a 
corpus, a global variable containing a long string 

of N characters.  The program allocates the suffix 
array suf and initializes it to a vector of N ints (suf-
fixes) ranging from 0 to N−1.  The suffix array is 
sorted by lexicographic order and returned. 
 

int* make_standard_suf () { 
  int N = strlen(corpus); 
  int* suf = (int*)malloc(N * sizeof(int)); 
  for (int i=0; i<N; i++) suf[i] = i; 
  qsort(suf, N, sizeof(int), lexcomp); 
  return suf;} 
 

int lexcomp(int* a, int* b) 
{ return strcmp(corpus + *a, corpus + *b);} 

 
This program is simple to describe (but inefficient, 
at least in theory) because strcmp can take O(N) 
time in the worst case (where the corpus contains 
two copies of an arbitrarily long string).  See 
http://cm.bell-labs.com/cm/cs/who/doug/ssort.c for 
an implementation of the O(N log N) Manber and 
Myers algorithm.  However, in practice, when the 
corpus is a dictionary of relatively short entries 
(such as web queries), the worst case is unlikely to 
come up.  In which case, the simple make_suf pro-
gram above is good enough, and maybe even better 
than the O(N log N) solution. 

1.1 Standard Suffix Array Lookup 

To compute the frequency and locations of a sub-
string s, use a pair of binary searches to find i and 
j, the locations of the first and last suffix in the suf-
fix array that start with s.  Each suffix between i 
and j point to a location of s in the corpus.  The 
frequency is simply: j − i + 1.   

Here is some simple code.  We show how to 
find the first suffix.  The last suffix is left as an 
exercise.  As above, we ignore the unlikely worst 
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case (two copies of a long string).  See references 
mentioned above for worst case solutions. 

 
void standard_lookup(char* s, int* suf, int N){ 
  int* i = find_first_suf(s, suf, N); 
  int* j = find_last_suf(s, suf, N); 
  for (int* k=i; k<=j; k++) output(*k);} 

 

int* find_first_suf(char* s, int* suf, int N) { 
  int len = strlen(s); 
  int* high = suf + N; 
  while (suf + 2 < high) { 
    int* mid = suf + (high−suf)/2; 
    int c = strncmp(s, corpus + *mid, len); 
    if (c == 0) high = mid+1; 
    else if (c < 0) high = mid; 
    else suf = mid;}   
  for ( ; suf < high; suf++) 
    if (strncmp(s, corpus + *suf, len) == 0) 
      return suf; 
  return NULL;} // not found 

2 K-Best Suffix Arrays 

K-best suffix arrays are like standard suffix arrays, 
except there are two orders instead of one.  In addi-
tion to lexicographic order, we assume a figure of 
merit, which we will refer to as popularity.  For 
example, the popularity of a string could be its fre-
quency in a search log.  The code below assumes 
that the corpus is a sequence of strings that comes 
pre-sorted by popularity, and then the popularities 
have been stripped off.   These assumptions make 
it very easy to compare two strings by popularity.  
All popcomp has to do is to compare the two posi-
tions in the corpus.1 

The make_kbest_suf program below is similar to 
the make_standard_suf program above except we 
now sort by the two orders at alternating depths in 
the tree.  First we sort lexicographically and then 
we sort by popularity and so on, using a construc-
tion similar to KD-Trees (Bentley, 1975).  The 
code below is simple to describe (though there are 
more efficient implementations that avoid unnec-
essary qsorts). 
 

int* make_kbest_suf () { 
  int N = strlen(corpus); 
  int* suf = (int*)malloc(N * sizeof(int)); 

                                                           
1 With a little extra book keeping, one can keep a table on the 
side that makes it possible to map back and forth between 
popularity rank and the actual popularity.  This turns out to be 
useful for some applications. 

  for (int i=0; i<N; i++) suf[i]=i; 
  process(suf, suf+N, 0); 
  return suf;} 
 
void process(int* start, int* end, int depth) { 
  int* mid = start + (end − start)/2; 
  if (end <= start+1) return; 
  qsort(start, end-start, sizeof(int),  
            (depth & 1) ? popcomp : lexcomp); 
  process(start, mid, depth+1); 
  process(mid+1, end, depth+1);} 
 

int popcomp(int* a, int* b) {   
  if (*a > *b) return 1; 
  if (*a < *b) return −1; 
  return 0;} 

 

2.1 K-Best Suffix Array Lookup 

To find the k-best matches for a particular sub-
string s, we do what we would normally do for 
standard suffix arrays on lexicographic splits.  
However, on popularity splits, we search the more 
popular half first and then we search the less popu-
lar half, if necessary. 

An implementation of kbest-lookup is given be-
low.  D denotes the depth of the search thus far.  
Kbest-lookup is initially called with D of 0.  Pro-
pose maintains a heap of the k-best matches found 
thus far.  Done returns true if its argument is less 
popular than the kth best match found thus far. 

 
void kbest_lookup(char* s, int* suf, int N, int D){ 
  int* mid = suf + N/2; 
  int len = strlen(s); 
 

  if (N==1 && strncmp(s, corpus+*suf, len)==0) 
 propose(*suf);  
  if (N <= 1) return; 
 

  if (D&1) {   // popularity split 
    kbest_lookup(s, suf, mid−suf, D+1); 
    if (done(*mid)) return; 
    if (strncmp(s, corpus + *mid, len) == 0)  
 propose(*mid); 
    kbest_lookup(s, mid+1, (suf+N)−mid−1,  
   D+1);} 
  else {   // lexicographic split 
    int c = strncmp(s, corpus + *mid, len); 
    int n = (suf+N)−mid−1; 
    if (c < 0) kbest_lookup(s, suf, mid-suf, D+1); 
    else if (c > 0) kbest_lookup(s, mid+1, n, D+1); 
    else { kbest_lookup(s, suf, mid-suf, depth+1); 
              propose(*mid); 
              kbest_lookup(s, mid+1, n, D+1); }}} 
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2.2 A Short Example: To be or not to be 

Suppose we were given the text, “to be or not to 
be.”  We could then generate the following dic-
tionary with frequencies (popularities). 

 
Popularity Word 

2 to 
2 be 
1 or 
1 not 

 
The dictionary is sorted by popularity.  We treat 
the second column as an N=13 byte corpus (with 
underscores at record boundaries): to_be_or_not_ 
 

Standard  K-Best  
suf corpus + suf[i] suf corpus + suf[i] 
12 _ 2 _be_or_not_ 

2 _be_or_not_ 3 be_or_not_ 

8 _not_ 4 e_or_not_ 

5 _or_not_ 5 _or_not_ 

3 be_or_not_ 8 _not_ 

4 e_or_not_ 12 _ 

9 not_ 9 not_ 

1 o_be_or_not_ 1 o_be_or_not_ 

6 or_not_ 6 or_not_ 

10 ot_ 0 to_be_or_not_ 

7 r_not_ 7 r_not_ 

11 t_ 10 ot_ 

0 to_be_or_not_ 11 t_ 

 
The standard suffix array is the 1st column of the 

table above.  For illustrative convenience, we show 
the corresponding strings in the 2nd column.  Note 
that the 2nd column is sorted lexicographically. 

The k-best suffix array is the 3rd column with the 
corresponding strings in the 4th column.  The first 
split is a lexicographic split at 9 (“not_”).  On both 
sides of that split we have a popularity split at 5 
(“_or_not_”) and 7 (“r_not_”). (Recall that relative 
popularity depends on corpus position.)  Following 
there are 4 lexicographic splits, and so on. 

If k-best lookup were given the query string s = 
“o,” then it would find 1 (o_be_or_not_), 6 
(or_not_) and 10 (ot_) as the best choices (in that 
order).   The first split is a lexicographic split.  All 

the matches are below 9 (not_).  The next split is 
on popularity.  The matches above this split (1&6) 
are as popular as the matches below this split (10).   

It is often desirable to output matching records 
(rather than suffixes).  Records are output in popu-
larity order.  The actual popularity can be output, 
using the side table mentioned in footnote 1: 
 

Popularity Record 
2 to 
1 or 
1 not 

2.3 Time and Space Complexity 

The space requirements are the same for both stan-
dard and k-best suffix arrays.  Both indexes are 
permutations of the same suffixes. 

The time requirements are quite different.  Stan-
dard suffix arrays were designed to find all 
matches, not the k-best.  Standard suffix arrays can 
find all matches in O(log N) time.  However, if we 
attempt to use standard suffix arrays to find the k-
best, something they were not designed to do, then 
it could take a long time to sort through the worst 
case (an embarrassment of riches with lots of 
matches).  When the query matches every string in 
the dictionary, standard suffix arrays do not help us 
find the best matches. K-best suffix arrays were 
designed to handle an embarrassment of riches, 
which is quite common, especially when the sub-
string s is short.  Each popularity split cuts the 
search space in half when there are lots of lexico-
graphic matches. 

The best case for k-best suffix arrays is when the 
popularity splits always work in our favor and we 
never have to search the less popular half.  The 
worst case is when the popularity splits always fail, 
such as when the query string s is not in the corpus. 
In this case, we must always check both the popu-
lar half and the unpopular half at each split, since 
the failure to find a lexicographic match in the first 
tells us nothing about the existence of matches in 
the second. 

Asymptotically, k-best lookup takes between log 
N and sqrt N time.  To see this complexity result, 
let P(N) be the work to process N items starting 
with a popularity splits and let L(N) be the work to 
process N items starting with a lexicographic 
splits.  

Thus, 
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P(N) = αL(N/2) + C1 
L(N) = P(N/2) + C2 

 

where α = 2−p, when p is the probability that the 
popular half contains sufficient matches.  α lies 
between 1 (best case) and 2 (worst case).  C1 and 
C2 are constants.  Thus, 

 

P(N) = α P(N/4) + C                                       (1) 
 

where C = C1 + αC2.   Using the master method 
(Cormen et al, 2001), P(N) = O(log2N) in the best 
case (α=1). In the worst case (α=2), P(N) = O(sqrt 
N).  In general, for α > 1, P(N) = O(N(log2 α)/2). 

In practical applications, we expect popularity 
splits to work more often than not, and therefore 
we expect the typical case to be closer to the best 
case than the worst case.   

3 Empirical Study 

The plot below shows the k-best lookup time as 
a function of square root of corpus size.  We ex-
tracted sub-corpora from a 150 MB collection of 
8M queries, sorted by popularity, according to the 
logs from Microsoft www.live.com. All experi-
ments were performed on a Pentium 4, 3.2GHz 
dual processor machine with enough memory to 
avoid paging. 

The line of diamonds shows the worst case, 
where we the query string is not in the index.  Note 
that the diamonds fit the regression line quite well, 
confirming the theory in the previous section:  The 
worst case lookup is O(sqrt N). 
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To simulate a more typical scenario, we con-
structed random samples of queries by popularity, 
represented by squares in the figure.  Note that the 
squares are well below the line, demonstrating that 
these queries are considerably easier than the worst 
case. 

K-best suffix arrays have been used in auto-
complete applications (Church and Thiesson, 
2005).  The triangles with the fastest lookup times 
demonstrate the effectiveness of the index for this 
application.  We started with the random sample 
above, but replaced each query q in the sample 
with a substring of q (of random size). 

4 Conclusion 

A new data structure, k-best suffix arrays, was pro-
posed.  K-best suffix arrays are sorted by two or-
ders, lexicographic and popularity, which make it 
convenient to find the most popular matches, espe-
cially when there are lots of matches.  In many ap-
plications, such as the web, there are often 
embarrassments of riches (lots of matches).  

Lookup time varies from log N to sqrt N, de-
pending on the effectiveness of the popularity 
splits.  In the best case (e.g., very short query 
strings that match nearly everything), the popular-
ity splits work nearly every time and we rarely 
have to search the less popular side of a popularity 
split.  In this case, the time is close to log N.  On 
the other hand, in the worst case (e.g., query 
strings that match nothing), the popularity splits 
never work, and we always have to search both 
sides of a popularity split.  In this case, lookup 
time is sqrt N.  In many cases, popularity splits 
work more often than not, and therefore, perform-
ance is closer to log N than sqrt N. 
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Abstract 

We describe a new pruning approach to 
remove phrase pairs from translation mod-
els of statistical machine translation sys-
tems. The approach applies the original 
translation system to a large amount of text 
and calculates usage statistics for the 
phrase pairs. Using these statistics the rele-
vance of each phrase pair can be estimated. 
The approach is tested against a strong 
baseline based on previous work and shows 
significant improvements.  

1 Introduction 

A relatively new device for translation systems are 
small portable devices like cell phones, PDAs and 
handheld game consoles. The idea here is to have a 
lightweight and convenient translation device e.g. 
for tourists that can be easily carried. Other appli-
cations include medical, relief, and military scenar-
ios.  

Preferably such a device will offer speech-to-
speech translation for both (or multiple) translation 
directions. These devices have been researched and 
are starting to become commercially available (e.g. 
Isotani et al., 2003). The main challenges here are 
the severe restrictions regarding both memory and 
computing power on such a small portable device. 

1.1 Statistical Machine Translation  

Generally statistical machine translation systems 
have recently outperformed other translation ap-
proaches so it seems natural to also apply them in 
these scenarios.  

A main component of every statistical machine 
translation system is the translation model. The 
translation model assigns translation probabilities 
to phrase1 pairs of source and target phrases ex-
tracted from a parallel bilingual text. These phrase 
pairs are applied during the decoding process and 
their target sides are combined to form the final 
translation. A variety of algorithms to extract 
phrase pairs has been proposed. (e.g. Och and Ney, 
2000 and Vogel, 2005). 

Our proposed approach now tries to remove 
phrase pairs, which have little influence on the fi-
nal translation performance, from a translation sys-
tem (pruning of the translation model2). The goal 
is to reduce the number of phrase pairs and in turn 
the memory requirement of the whole translation 
system, while not impacting the translation per-
formance too heavily.  

The approach does not depend on the actual al-
gorithm used to extract the phrase pairs and can be 
applied to every imaginable method that assigns 
probabilities to phrase pairs. We assume that the 
phrase pairs were pre-extracted before decoding. 
(in contrast to the proposed approaches to “online 
phrase extraction” (Zhang and Vogel, 2005; Calli-
son-Burch et al., 2005)). 

The task now is to remove enough pre-extracted 
phrase pairs in order to accommodate the possibly 
strict memory limitations of a portable device 
while restricting performance degradation as much 
as possible.  

We will not specifically address the computing 
power limitations of the portable devices in this 
paper.  

                                                           
1 A “phrase” here can also refer to a single word. 
2 Small language models are also desirable and the approaches 
could be applied as well but this was not investigated yet. 
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2 Previous work 

Previous work mainly introduced two natural ideas 
to prune phrase pairs. Both are for example di-
rectly available in the Pharaoh decoder (Koehn, 
2004). 

Probability threshold 
A very simple way to prune phrase pairs from a 
translation model is to use a probability threshold 
and remove all pairs for which the translation 
probability is below the threshold. The reasoning 
for this is that it is very unlikely that a translation 
with a very low probability will be chosen (over 
another translation candidate with a higher prob-
ability).  

Translation variety threshold 
Another way to prune phrase pairs is to impose a 
limit on the number of translation candidates for a 
certain phrase. That means the pruned translation 
model can only have equal or fewer possible trans-
lations for a given source phrase than the thresh-
old. This is accomplished by sorting the phrase 
pairs for each source phrase according to their 
probability and eliminating low probability ones 
until the threshold is reached. 

3 Pruning via Usage Statistics  

The approach presented here uses a different idea 
inspired by the Optimal Brain Damage algorithm 
for neural networks (Le Cun et al., 1990). 

The Optimal Brain Damage algorithm for neural 
networks computes a saliency for each network 
element. The saliency is the relevance for the per-
formance of the network. In each pruning step the 
element with the smallest saliency is removed, and 
the network is re-trained and all saliencies are re-
calculated etc. 

We can analogously view each phrase pair in the 
translation system as such a network element. The 
question is of course how to calculate the relevance 
for the performance for each phrase pair.  

A simple approximation was already done in the 
previous work using a probability or variety 
threshold. Here the relevance is estimated using the 
phrase pair probability or the phrase pair rank as 
relevance indicators.  

But these are not the only factors that influence 
the final selection of a phrase pair and most of 
these factors are not established during the training 

and phrase extraction process. Especially the fol-
lowing two additional factors play a major role in 
the importance of a phrase pair. 

Frequency of the source phrase  
We can clearly say that a phrase pair with a very 
common source phrase will be much more impor-
tant than a phrase pair where the source phrase oc-
curs only very rarely. 

Actual use of the phrase-pair 
But even phrase-pairs with very common source 
phrases might not be used for the final translation 
hypothesis. It is for example possible that it is part 
of a longer phrase pair that gets a higher probabil-
ity so that the shorter phrase pair is not used.  
 
Generally there are a lot of different factors influ-
encing the estimated importance of a phrase pair 
and it seems hard to consider every influence sepa-
rately. Hence the proposed idea does not use a 
combination of features to estimate the phrase pair 
importance. Instead the idea is to just apply the 
translation system to a large amount of text and see 
how often a phrase pair is actually used (i.e. influ-
ences the translation performance). If the translated 
text is large enough this will give a good statistics 
of the relevance of this respective phrase pair. This 
leads to the following algorithm: 

Algorithm 
Translate a large amount of (in-domain) data with 
the translation system (tuned on a development set) 
and collect the following two statistics for each 
phrase pair in the translation model. 
• c(phrase pair) = Count how often a phrase pair 

was considered during decoding (i.e. was 
added to the translation lattice) 

• u(phrase pair) = Count how often a phrase pair 
was used in the final translation (i.e. in the 
chosen path through the lattice). 

The overall score for a phrase pair with simple 
smoothing (+1) is calculated as:  
 

[ ] [ ]1)(*)1)(log(

)(

pair phrasepair phrase

pair phrase

++
=

uc

score
 

 
We use the logarithm function to limit the influ-
ence of the c value. The u value is more important 
as this measures how often a phrase was actually 
used in a translation hypothesis. This scoring func-
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tion was empirically found after experimenting 
with a variety of possible scoring terms. 

The phrase pairs can then be sorted according to 
this score and the top n phrase pairs can be selected 
for a smaller phrase translation model. 

4 Data and Experiments 

4.1 Experimental Setup & Baseline 

Translation system 
The translation system that was used for the ex-
periments is a state-of-the-art statistical machine 
translation system (Eck et al. 2006). The system 
uses a phrase extraction method described in Vogel 
(2005) and a 6-gram language model.  

Training and testing data 
The training data for all experiments consisted of 
the BTEC corpus (Takezawa et al., 2002) with 
162,318 lines of parallel Japanese-English text. All 
translations were done from Japanese to English. 
The language model was trained on the English 
part of the training data.   

The test set from the evaluation campaign of 
IWSLT 2004 (Akiba et al., 2004) was used as test-
ing data. This data consists of 500 lines of tourism 
data. 16 reference translations to English were 
available.  

Extracted phrases 
Phrase pairs for n-grams up to length 10 were ex-
tracted (with low frequency thresholds for higher 
n-grams). This gave 4,684,044 phrase pairs 
(273,459 distinct source phrases). The baseline 
score using all phrase pairs was 59.11 (BLEU, 
Papineni et al., 2002) with a 95% confidence inter-
val of [57.13, 61.09].  

Baseline pruning 
The approaches presented in previous work served 
as a baseline. The probability threshold was tested 
for 8 values (0 (no pruning), 0.0001, 0.0005, 0.001, 
0.005, 0.01, 0.05, 0.1) while the variety threshold 
tested for 14 values (1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 
50, 100, 200, 500 (no pruning in this case)) and all 
combinations thereof. The final translation scores 
for different settings are very fluctuating. For that 
reason we defined the baseline score for each pos-
sible size as the best score that was reached with 
equal or less phrase pairs than the given size in any 
of the tested combinations.  

4.2 Results for  
Pruning via Usage Statistics 

For the proposed approach “Pruning via Usage 
Statistics”, the translation system was applied to 
the 162,318 lines of Japanese training data. 

As explained in section 3 it was now counted for 
each phrase pair how often it occurred in a transla-
tion lattice and how often it was used for the final 
translation. The phrase pairs were then sorted ac-
cording to their relevance estimation and the top n 
phrase pairs were chosen for different values of n. 
The pruned phrase table was then used to translate 
the IWSLT 2004 test set. Table 1 shows the results 
comparing the baseline scores with the results us-
ing the described pruning. Figure 1 illustrates the 
scores. The plateaus in the baseline graph are due 
to the baseline definition as stated above. 
 

 BLEU scores  

# of Phrase  
Pairs (n) 

Baseline 
 

Pruning 
 

Relative score  
improvement 

100,000 - 0.4735 - 

200,000 0.3162 0.5008 58.38% 

300,000 0.4235 0.5154 21.70% 

400,000 0.4743 0.5241 10.50% 

500,000 0.4743 0.5269 11.09% 

600,000 0.4890 0.5359 9.59% 

800,000 0.5194 0.5394 3.85% 

1,000,000 0.5355 0.5442 1.62% 

1,500,000 0.5413 0.5523 2.03% 

2,000,000 0.5630 0.5749 2.11% 

3,000,000 0.5778 0.5798 0.35% 

4,000,000 0.5855 0.5865 0.17% 

4,684,044 0.5911 0.5911 0.00% 

Table 1: BLEU scores at different levels of pruning 
(Baseline: Best score with equal or less phrase 
pairs) 
 
For more than 1 million phrase pairs the differ-
ences are not very pronounced. However the trans-
lation score for the proposed pruning algorithm is 
still not significantly lower than the 59.11 score at 
2 million phrase pairs while the baseline drops 
slightly faster. For less than 1 million phrase pairs 
the differences become much more pronounced 
with relative improvements of up to 58% at 
200,000 phrase pairs. It is interesting to note that 
the improved pruning removes infrequent source 
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phrases and to a lesser extent source vocabulary 
even for larger numbers of phrase pairs. 
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Figure 1: Pruning and baseline comparison 

5 Conclusions and Future Work 

The proposed pruning algorithm is able to outper-
form a strong baseline based on previously intro-
duced threshold pruning ideas. Over 50% of phrase 
pairs can be pruned without a significant loss of 
performance. Even for very low memory situations 
the improved pruning remains a viable option 
while the baseline pruning performance drops 
heavily.  

One idea to improve this new pruning approach 
is to exchange the used count with the count of the 
phrase occurring in the best path of the lattice ac-
cording to a scoring metric. This would require 
having a reference translation available to be able 
to tell which path is the actual best one (metric-
best path). It would be interesting to compare the 
performance if the statistics is done using the met-
ric-best path on a smaller amount of data to the 
performance if the statistics is done using the 
model-best path on a larger amount (as there is no 
reference translation necessary). 

The Optimal Brain Damage algorithm recalcu-
lates the saliency after removing each network 
element. It could also be beneficial to sequentially 
prune the phrase pairs and always re-calculate the 
statistics after removing a certain number of phrase 
pairs. 

6 Acknowledgements 

This work was partly supported by the US DARPA 
under the programs GALE and TRANSTAC. 

7 References  

Yasuhiro Akiba, Marcello Federico, Noriko Kando, 
Hiromi Nakaiwa, Michael Paul, and Jun'ichi Tsujii}. 
2004. Overview of the IWSLT04 Evaluation Cam-
paign. Proceedings of IWSLT 2004, Kyoto, Japan. 

Chris Callison-Burch, Colin Bannard, and Josh Schroe-
der. 2005. Scaling Phrase-Based Statistical Machine 
Translation to Larger Corpora and Longer Phrases. 
Proceedings of ACL 2005, Ann Arbor, MI, USA. 

Yann Le Cun, John S. Denker, and Sara A. Solla. 1990. 
Optimal brain damage. In Advances in Neural In-
formation Processing Systems 2, pages 598-605. 
Morgan Kaufmann, 1990. 

Matthias Eck, Ian Lane, Nguyen Bach, Sanjika He-
wavitharana, Muntsin Kolss, Bing Zhao, Almut Silja 
Hildebrand, Stephan Vogel, and Alex Waibel. 2006. 
The UKA/CMU Statistical Machine Translation Sys-
tem for IWSLT 2006. Proceedings of IWSLT 2006, 
Kyoto, Japan.  

Ryosuke Isotani, Kyoshi Yamabana, Shinichi Ando, 
Ken Hanazawa, Shin-ya Ishikawa and Ken.ichi Iso. 
2003. Speech-to-speech translation software on 
PDAs for travel conversation. NEC research & de-
velopment, Tokyo, Japan. 

Philipp Koehn. 2004. A Beam Search Decoder for Sta-
tistical Machine Translation Models. Proceedings of 
AMTA 2004, Baltimore, MD, USA. 

Franz Josef Och and Hermann Ney, 2000. Improved 
statistical alignment models, Proceedings of ACL 
2000, Hongkong, China. 

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic 
Evaluation of Machine Translation. Proceedings of 
ACL 2002, Philadelphia, PA, USA. 

Toshiyuki Takezawa, Eiichiro Sumita, Fumiaki Sugaya, 
Hirofumi Yamamoto, and Seiichi Yamamoto. 2002. 
Toward a Broad-coverage Bilingual Corpus for 
Speech Translation of Travel Conversation in the 
Real World. Proceedings of LREC 2002, Las Palmas, 
Spain. 

Stephan Vogel. 2005. PESA: Phrase Pair Extraction as 
Sentence Splitting. Proceedings of MTSummit X, 
Phuket, Thailand. 

Ying Zhang and Stephan Vogel. 2005. An Efficient 
Phrase-to-Phrase Alignment Model for Arbitrarily 
Long Phrases and Large Corpora. Proceedings of 
EAMT 2005, Budapest, Hungary. 

 

24



Proceedings of NAACL HLT 2007, Companion Volume, pages 25–28,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Combination of Statistical Word Alignments
Based on Multiple Preprocessing Schemes

Jakob Elming
Center for Comp. Modeling of Language

Copenhagen Business School
je.id@cbs.dk

Nizar Habash
Center for Comp. Learning Systems

Columbia University
habash@cs.columbia.edu

Abstract

We present an approach to using multiple
preprocessing schemes to improve statis-
tical word alignments. We show a relative
reduction of alignment error rate of about
38%.

1 Introduction

Word alignments over parallel corpora have be-
come an essential supporting technology to a va-
riety of natural language processing (NLP) appli-
cations most prominent among which is statisti-
cal machine translation (SMT).1 Although phrase-
based approaches to SMT tend to be robust to word-
alignment errors (Lopez and Resnik, 2006), improv-
ing word-alignment is still useful for other NLP re-
search that is more sensitive to alignment quality,
e.g., projection of information across parallel cor-
pora (Yarowsky et al., 2001).

In this paper, we present a novel approach to
using and combining multiple preprocessing (tok-
enization) schemes to improve word alignment. The
intuition here is similar to the combination of dif-
ferent preprocessing schemes for a morphologically
rich language as part of SMT (Sadat and Habash,
2006) except that the focus is on improving the
alignment quality. The language pair we work with
is Arabic-English.

In the following two sections, we present related
work and Arabic preprocessing schemes. Section 4
and 5 present our approach to alignment preprocess-
ing and combination, respectively. Results are pre-
sented in Section 6.

1The second author was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract No.
HR0011-06-C-0023. Any opinions, findings and conclusions or
recommendations expressed in this paper are those of the au-
thors and do not necessarily reflect the views of DARPA. We
thank Necip Ayan, Mona Diab, Bonnie Dorr, Abe Ittycheriah,
Martin Jansche and Owen Rambow for helpful discussions.

2 Related Work

Recently, several successful attempts have been
made at using supervised machine learning for word
alignment (Liu et al., 2005; Taskar et al., 2005; Itty-
cheriah and Roukos, 2005; Fraser and Marcu, 2006).
In contrast to generative models, this framework is
easier to extend with new features. With the ex-
ception of Fraser and Marcu (2006), these previous
publications do not entirely discard the generative
models in that they integrate IBM model predictions
as features. We extend on this approach by includ-
ing alignment information based on multiple prepro-
cessing schemes in the alignment process.

In other related work, Tillmann et al. (1997) use
several preprocessing strategies on both source and
target language to make them more alike with re-
gards to sentence length and word order. Lee (2004)
only changes the word segmentation of the morpho-
logically complex language (Arabic) to induce mor-
phological and syntactic symmetry between the par-
allel sentences. We differ from these two in that we
do not decide on a certain scheme to make source
and target sentences more symmetrical. Instead, it
is left to the alignment algorithm to decide under
which circumstances alignment information based
on a specific scheme is more likely to be correct than
information based on other schemes.

3 Arabic Preprocessing Schemes

Arabic is a morphologically complex language
with a large set of morphological features. As
such, the set of possible preprocessing schemes
is rather large (Habash and Sadat, 2006). We
focus here on a subset of schemes pertaining to
Arabic attachable clitics. There are three de-
grees of cliticization that apply to a word BASE:
([CONJ+ [PART+ [Al+ BASE +PRON]]]).
At the deepest level, the BASE can have a def-
inite article +

���
(Al+ the)2 or a member of the

2Arabic is transliterated in Buckwalter’s transliteration
scheme.
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Table 1: Arabic preprocessing scheme variants for� ���
� ����	�
���
 ’and he will write it’

Preprocessing Scheme Example
AR simple � ��� � ������ � ��� wsyktbhA

D1 split CONJ � ��� � ������ � � +� w+ syktbhA

D2 split CONJ, PART � ��� � ������ � +� +� w+ s+ yktbhA

TB Arabic Treebank �  + ! � ������ � � +� w+ syktb +hA

D3 split all clitics �  + ! � ������ � +� +� w+ s+ yktb +hA

class of pronominal clitics, +PRON, (e.g.,
� "

+
+hA her/it/its). Next comes the class of particles
(PART+), (e.g., +� s+ will [future]). Most shallow

is the class of conjunctions (CONJ+), (e.g., +
 w+
and). We use the following five schemes: AR,
D1, D2, D3 and TB. Definitions and contrastive
examples of these schemes are presented in Ta-
ble 1. To create these schemes, we use MADA,
an off-the-shelf resource for Arabic morphological
disambiguation (Habash and Rambow, 2005), and
TOKAN, a general Arabic tokenizer (Habash and
Sadat, 2006).

4 Preprocessing Schemes for Alignment

Using a preprocessing scheme for word alignment
breaks the process of applying Giza++ (Och and
Ney, 2003) on some parallel text into three steps:
preprocessing, alignment and remapping. In prepro-
cessing, the words are tokenized into smaller units.
Then, they are passed along to Giza++ for alignment
(default settings). Finally, the Giza++ alignments
are mapped back (remapped) to the original word
form which is AR tokens in this work. For instance,
take the first word in Table 1, wsyktbhA; if the D3

preprocesssing scheme is applied to it before align-
ment, it is turned into four tokens (w+ s+ yktb +hA).
Giza++ will link these tokens to different words on
the English side. In the remapping step, the union
of these links is assigned to the original word wsyk-
tbhA. We refer to such alignments as remappings.

5 Alignment Combination

After creating the multiple remappings, we pass
them as features into an alignment combiner. The
combiner is also given a variety of additional fea-
tures, which we discuss later in this section. The
combiner is simply a binary classifier that deter-
mines for each source-target pair whether they are
linked or not. Given the large size of the data used,
we use a simplifying heuristic that allows us to mini-

mize the number of source-target pairs used in train-
ing. Only links evidenced by at least one of the ini-
tial alignments and their immediate neighbors are in-
cluded. All other links are considered non-existent.
The combiner we use here is implemented using a
rule-based classifier, Ripper (Cohen, 1996). The
reasons we use Ripper as opposed other machine
learning approaches are: (a) Ripper produces human
readable rules that allow better understanding of the
kind of decisions being made; and (b) Ripper is rel-
atively fast compared to other machine learning ap-
proaches we examined given the very large nature of
the training data we use. The combiner is trained us-
ing supervised data (human annotated alignments),
which we discuss in Section 6.1.

In the rest of this section we describe the differ-
ent machine learning features given to the combiner.
We break the combination features in two types:
word/sentence level and remapping features.

Word/Sentence Features:
• Word Form: The source and target word forms.
• POS: The source and target part-of-speech tags.
• Location: The source and target relative sentence
position (the ratio of absolute position to sentence
length). We also use the difference between these
values for both source and target.
• Frequency: The source and target word frequency
computed as the number of occurrences of the word
form in training data. We also use the ratio of source
to target frequency.
Similarity: This feature is motivated by the fact that
proper nouns in different languages often resemble
each other, e.g. #$�% 
'&)(+* �-,/. ’SdAm Hsyn’ and ’sad-
dam hussein’. We use the equivalence classes pro-
posed by Freeman et al. (2006) to normalize Ara-
bic and English word forms. Then, we employ the
longest common substring as a similarity measure.

Remapping Features:
• Link: for each source-target link, we include (a) a
binary value indicating whether the link exists ac-
cording to each remapping; (b) a cumulative sum
of the different remappings supporting this link; and
(c) co-occurrence information for this link. This last
value is calculated for each source-target word pair
as a weighted average of the product of the rela-
tive frequency of co-occurrence in both directions
for each remapping. The weight assigned to each
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remapping is computed empirically.3

• Neighbor: The same information as Link, but for
each of the immediate neighbors of the current link.
• Cross: These include (a) the number of source
words linked to the current target word, the same for
target to source, and the number of words linked to
either of the current words; and (b) the ratio of the
co-occurrence mass placed in this link to the total
mass assigned to the source word, the same for the
target word and the union of both.

6 Evaluation

6.1 Experimental Data and Metrics

The gold standard alignments we use here are part of
the IBM Arabic-English aligned corpus (IBMAC)4

(Ittycheriah and Roukos, 2005). We only use 8.8K
sentences from IBMAC because the rest (smaller
portion) of the corpus uses different normalizations
for numerals that make the two sets incompatible.
We break this data into 6.6K sentences for training
and 2.2K sentences for development. As for test
data, we use the IBMAC’s test set: NIST MTEval
2003 (663 Arabic sentences each human aligned to
four English references).

To get initial Giza++ alignments, we use a larger
parallel corpus together with the annotated set. The
Arabic-English parallel corpus has about 5 million
words.5 The Arabic text in IBMAC is preprocessed
in the AR preprocessing scheme with some ad-
ditional character normalizations. We match the
preprocessing and normalizations on our additional
data to that of IBMAC’s Arabic and English prepro-
cessing (Ittycheriah and Roukos, 2005).

The standard evaluation metric within word align-
ment is the Alignment Error Rate (AER) (Och and
Ney, 2000), which requires gold alignments that are
marked as ’sure’ or ’probable’. Since the IBMAC
gold alignments we use are not marked as such,
AER reduces to 1 - F-score (Ittycheriah and Roukos,
2005):

Pr =
|A∩S|
|A| Rc =

|A∩S|
|S| AER = 1−

2PrRc
Pr+Rc

where A links are proposed and S links are gold.
3We use the AER on the development data normalized so all

weights sum to one. See Section 6.2.
4We thank IBM for making their hand aligned data available

to the research community.
5All of the training data we use is available from the Lin-

guistic Data Consortium (LDC). The parallel text includes Ara-
bic News, eTIRR, English translation of Arabic Treebank, and
Ummah.

NULL links are not included in the evaluation
(Ayan, 2005; Ittycheriah and Roukos, 2005).

6.2 Results

We conducted three experiments on our develop-
ment data: (a) to assess the contribution of align-
ment remapping, (b) to assess the contribution of
combination features for a single alignment (i.e., in-
dependent of the combination task) and (c) to deter-
mine the best performing combination of alignment
remappings. Experiments (b) and (c) used only 2.2K
of the gold alignment training data to minimize com-
putation time. As for our test data experiment, we
use our best system with all of the available data. We
also present an error analysis of our best system. The
baseline we measure against in all of these exper-
iments is the state-of-the-art grow-diag-final (gdf )
alignment refinement heuristic commonly used in
phrase-based SMT (Koehn et al., 2003). This heuris-
tic adds links to the intersection of two asymmetrical
statistical alignments in an attempt to assign every
word a link. The AER of this baseline is 24.77%.

The Contribution of Alignment Remapping We
experimented with five alignment remappings in two
directions: dir (Ar-En) and inv (En-Ar). We also
constructed their corresponding gdf alignment. The
more verbose a preprocessing scheme, the lower the
AER for either direction and for gdf of the corre-
sponding remapping. The order of the schemes from
worst to best is AR, D1, D2, TB and D3. The
best result we obtained through remapping is that of
D3gdf which had a 20.45% AER (17.4% relative de-
crease from the baseline).

The Contribution of Combination Features For
each of the basic ten (non gdf) alignment remap-
pings, we trained a version of the combiner that uses
all the relevant features but has access to one align-
ment at a time. We saw a substantial improvement
for all alignment remappings averaging 29.9% rel-
ative decrease in AER against the basic remapped
version. The range of AER values is from 14.5%
(D3dir) to 20.79% (ARinv).

Alignment Combination Experiments To deter-
mine the best subset of alignment remappings to
combine, we ordered the alignments given their
AER performance in the last experiment described
(using combination features). Starting with the best
performer (D3dir), we continued adding alignments
in the order of their performance so long the com-
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Table 2: Combining the Alignment Remappings

Alignment Remapping combination AER
D3dir 14.50
D3dirD2dir 14.12
D3dirD2dirD3inv 12.81
D3dirD2dirD3invD1dir 12.75
D3dirD2dirD3invD1dirARinv 12.69

bination’s AER score is decreased. Our best com-
bination results are listed in Table 2. All additional
alignments not listed in this table caused an increase
in AER. The best alignment combination used align-
ments from four different schemes which confirms
our intuition that such combination is useful.

Test Set Evaluation We ran our best system
trained on all of the IBMAC data (training & devel-
opment), on all the unseen IBMAC test set. On this
data we achieve a substantial relative improvement
of 38.3% from an AER of 22.99 to 14.19.

Ittycheriah and Roukos (2005) used only the top
50 sentences in IBMAC test data. Our best AER re-
sult on their test set is 14.02% (baseline is 22.48%)
which is higher than their reported result (12.2%
with 20.5% baseline (unrefined GIZA++)). The two
results are not comparable because: (a) Ittycheriah
and Roukos (2005) used additional gold aligned data
that was not released and (b) they use an additional
500K sentences from the LDC UN corpus for Giza
training that was created by adapting to the source
side of the test set – the details of such adaptation
were not provided and thus it is not clear how to
replicate them to compare fairly. Clearly this ad-
ditional data is helpful since even their baseline is
higher than ours.6

Error Analysis We conducted error analysis on
50 sentences from our development set. The ma-
jority of the errors involved high frequency closed-
class words (54%) and complex phrases (non-
compositional or divergent translations) (23%).
Both kinds of errors could be partly addressed by
introducing phrasal constraints which are currently
lacking in our system. Orthogonally, about 18% of
all errors involved gold-standard inconsistencies and
errors. These gold errors are split equally between
closed-class and complex-phrase errors.

6Abraham Ittycheriah, personal communication.

7 Conclusion and Future Plans

We have presented an approach for using and com-
bining multiple alignments created using different
preprocessing schemes. We have shown a relative
reduction of AER of about 38% on a blind test set.
In the future, we plan to extend our system with ad-
ditional models at the phrase and multi-word levels
for both alignment and alignment combination im-
provement. We plan to use more sophisticated ma-
chine learning models such as support vector ma-
chines for combination and make use of more avail-
able parallel data. We also plan to evaluate the influ-
ence of our alignment improvement on MT quality.
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Abstract

We present a fast method to identify
homogeneous parallel documents. The
method is based on collecting counts of
identical low-frequency words between
possibly parallel documents. The candi-
date with the most shared low-frequency
words is selected as the parallel document.
The method achieved 99.96% accuracy
when tested on the EUROPARL corpus
of parliamentary proceedings, failing only
in anomalous cases of truncated or oth-
erwise distorted documents. While other
work has shown similar performance on
this type of dataset, our approach pre-
sented here is faster and does not require
training. Apart from proposing an effi-
cient method for parallel document iden-
tification in a restricted domain, this pa-
per furnishes evidence that parliamentary
proceedings may be inappropriate for test-
ing parallel document identification sys-
tems in general.

1 Introduction

Parallel documents are documents that are mutual
translations. There are a number of reasons one
might want to either identify parallel documents, or
confirm that a pair of documents are in fact parallel.
Most prominently, one could use pairs of automat-
ically detected parallel documents to build parallel
corpora. Parallel corpora have many uses in natural
language processing, and their dearth has been iden-
tified as a major bottleneck (Diab, 2004). They have
been employed in word sense disambiguation (Diab

and Resnik, 2002), automatic construction of bilin-
gual dictionaries (McEwan et al., 2002), and induc-
ing statistical machine translation models (Koehn et
al., 2003). In addition to building parallel corpora,
one can envision other uses for parallel document
identification, such as cross-language information
retrieval (Chen and Nie, 2000).

Much work on identifying pairs of parallel doc-
uments focuses on the use of external features of
the documents, rather than content. Chen and Nie
(2000) describe PTMiner, a cross-language informa-
tion retrieval system. They consider a number of
factors in determining if a pair of documents are par-
allel, including document size, date, URL, and lan-
guage flag. For example, if a document is available
in both French and English, it is common for the
French document’s URL to contain.fr and the En-
glish to contain.en In addition to these measures,
they consider website structure.

McEwan et al. (2002) find parallel documents
which they then use to automatically build a bilin-
gual dictionary. In their system, they first gener-
ate a set of candidate pairs based on manual selec-
tion, or advanced search engine use. They then filter
the pairs to remove non-parallel pairs. First, they
confirm that one of each pair is in each of the de-
sired languages using tuned lists of stop-words, then
they compare the documents based on length in to-
kens, and HTML markup. Resnik and Smith (2003)
use a similar idea of candidates and filters in their
STRAND system. STRAND filters the documents
based on aligning them by length in tokens and lo-
cation of HTML markup in the documents.

Apart form the work done on external metrics,
Patry and Langlais (2005) investigated a number of
content-based metrics. They consider several docu-
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ment features, including the numbers, proper names
and punctuation contained within, as well as docu-
ment length, and alignment scores between candi-
date pairs. The features are then used to train an
Ada-Boost classifier, which makes decisions based
on edit-distance and cosine scores. They experi-
mented with several combinations of features, one
of which achieved 100% correctness when tested on
487 out of 488 parallel documents that constitute the
English-Spanish portion of the EUROPARL corpus.
They conclude that a bag-of-words approach is infe-
rior to one that considers feature order.

In this work, we demonstrate that a much sim-
pler approach can achieve equally good results. Our
method does not depend on hand-coded linguistic
knowledge and requires no training data, which may
be unavailable for some language pairs. In addition,
thanks to its simplicity, our method is very fast.

2 Parallel document identification

One can consider the parallel document identifica-
tion problem to be as follows:

Given one documentdA in languageA,
and a set of documentsDB in languageB,
identify exactly one documentdB ∈ DB

that is the parallel, or translation, ofdA.

We initially designed a cognate-based approach to
the problem, which employed a combination of or-
thographic word similarity measures to identify cog-
nates such as Frenchnombresand Englishnumbers
between documents. In order to make the method
computationally feasible, potential cognates were
filtered based on word order, location in the docu-
ment, frequency, and length. However, we found
that a faster and simpler procedure, which is de-
scribed below, performed extremely well, eliminat-
ing the need for a more sophisticated approach.

We propose to identify parallel documents by
counting the number of unique words that appear in
both documents. The documents are treated as bags
of words, that is, their word order is not considered.
From each document, we extract a set of words that
are at least 4 characters long and have frequency 1.
Given a document in languageA, we select the doc-
ument in languageB that shares the largest number
of these words. An implementation based on hash
tables ensures speed.

Since identical words of frequency 1 are almost
certainly cognates, this method can be seen as an
extremely conservative approach to cognate detec-
tion. In practice, most of unique identical words are
proper nouns.

3 Experimental setup

We performed experiments on two different par-
liamentary corpora. The English-French Canadian
Hansards from the 36th sitting of the Canadian
Parliament (Germann, 2001) was selected as the
development dataset. In testing on the Canadian
Hansards, English was used as the Language A, and
French as the Language B. Our approach correctly
identified all parallel documents.

In order to allow for a direct comparison with the
work of Patry and Langlais (2005), we adopted the
EUROPARL corpus of parliamentary proceedings
(Koehn, 2002) as our test dataset. However, rather
than focusing on a single language pair, we per-
formed tests on all 110 language pairs involving the
following 11 languages: German, English, Greek,
Finnish, Swedish, Dutch, French, Danish, Italian,
Spanish and Portuguese. Diacritics were stripped
from the documents of all languages. Since Greek
utilizes a different script from the rest of the docu-
ments. we used a straightforward context-free map-
ping to convert every Greek character to its nearest
roman equivalent.

Some of the 488 documents available in EU-
ROPARL were missing in Finnish, Swedish, Greek
and Danish. In particular, Greek had 392 docu-
ments, Danish had 487 documents, and Swedish and
Finnish had 433 each. In such cases, the parallels
of those missing documents were excluded from the
languageA for that test.

The EUROPARL documents range in size from
114 tokens (13 lines) to 138,557 tokens (11,101
lines). The mean number of tokens is 59,387 (2,826
lines). Each orientation of each language pair was
tested. For example, for the language pair English-
Dutch, tests were run twice - once with English as
languageA and Dutch as languageB, and once
the other way around. The results for a given lan-
guage pair are not necessarily symmetric. Hence-
forth when referring to a language pair, we list the
languageA as the first one.
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For each document and each language pair, an in-
dividual test was run. An individual test consisted
of finding, for a given document in languageA, its
parallel in the languageB set. Since we did not take
advantage of the pigeon-hole constraint, the individ-
ual tests were independent from each other.

No changes were made to the approach once test-
ing on the EUROPARL corpus began, in order to
avoid adapting it to work on any particular data set.

4 Results

In total, only 20 of the 49872 tests did not pro-
duce the correct result (0.04% error rate). There
was one incorrect selection in the English-Spanish
language pair, one in the English-German pair, as
well as in each of 18 language pairs involving Dan-
ish or English as a Language A. All of the incorrect
results can be traced to mistranslation, or to miss-
ing/truncated documents. In particular, one of the
documents is severely truncated in Danish and En-
glish, one of the German documents missing a por-
tion of its text, and the Spanish version of one of the
documents contains a number of phrases and sen-
tences of English, apparently belonging to the En-
glish version of the text.

Effectively, when this method fails it is because
the input does not match the problem definition. Re-
call that the problem was defined as selecting a doc-
umentdB from a set of documentsDB in language
B that is the correct parallel todA, a document in
languageA. Failure cases occurred because there
was no correct parallel to thedA in DB. In fact,
each of the “incorrect” results is a manifestation of
an editorial error in the EUROPARL corpus. One
could see this approach being used as an aid to iden-
tifying fragmentary documents and mistranslations
in parallel corpora.

Encouraged by the excellent accuracy of our
method, we decided to try an even simpler approach,
which is based on words of frequency 1 in the entire
set of documents in a given language, rather than in
a single document. For every document from a lan-
guage A, we select as its parallel the document from
language B that shares the most of those words with
it. However, the results obtained with this method
were clearly inferior, with the error rates ranging
from 2.9% for Dutch to 27.3% for Finnish.

5 Discussion

The implications of this work are two-fold. First,
it shows a simple, fast, and effective method for
identifying parallel documents. Second, it calls into
question the usefulness of parliamentary proceed-
ings for the evaluation of parallel document identifi-
cation schemes.

The method described in this paper is sufficiently
simple as to be used as a baseline for comparison
with other methods. No information is shared be-
tween trials, no word similarity measures are used,
and word order is ignored. The method does not
incorporate any language-specific linguistic knowl-
edge, and it has shown itself to be robust across lan-
guages without any alterations. The only constraint
is that the languages must share an alphabet, or can
be converted into a common alphabet. Furthermore,
it requires no training phase, which would likely
have to be repeated for every pair of languages.

Our method achieves 99.9% accuracy on the
English-Spanish language pair, which roughly
matches the best result reported by Patry and
Langlais (2005) (who apparently removed one doc-
ument pair from the collection). However, their
method requires a training phase on aligned parallel
documents, making it time consuming and inconve-
nient to adapt their approach to a new language pair,
even in cases where such document-aligned corpora
are available. In addition, their top accuracy value
corresponds to only one of several combination of
features — the results with classifiers based on other
combinations of features were lower.

We implemented our method using hash tables,
which store the words occurring in a document to-
gether with their frequencies. This makes the entire
search for a parallel document roughly linear in the
total number of words in all the documents. Average
total wall-clock time spent for one test with one lan-
guageA document and 488 languageB documents
was 59.4 seconds. on a AMD Athlon(tm) 64 Proces-
sor 3500+. Profiling showed that on average 99.7%
of the wall-clock time was spent on I/O operations,
with the remainder taken by hash table lookups and
string equality checks. Clearly, little speed improve-
ment is possible. In contrast to the speed of our
approach, the approach used by Patry and Langlais
(2005) requires not only the time to train a classifier,
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but also the time to compute edit distance between
many document pairs.

In addition to yielding a simple, accurate and fast
method for parallel document identification, our re-
sults suggest that relatively “clean” collections of
parliamentary proceedings of the EUROPARL type
may be inappropriate for testing parallel document
identification schemes in general. If a very simple
approach can achieve near perfect accuracy in such
a domain, perhaps the task is too easy. Future gen-
eral parallel document identification systems should
be tested on more challenging datasets.

6 Future Work

While the approach presented here has been very
successful thus far, there are a number of extensions
that could be made to make it more applicable in
general. More work could allow it to deal with cases
of missing parallel documents, datasets with fewer
proper names, and even yield knowledge of the dif-
ficulty of the problem in general.

First, the problem definition could be expanded to
include cases where there is no valid parallel for a
given languageA document in the languageB doc-
ument set. This could take the form of establishing
a score or significance threshold. For example, if
there were no document in the languageB set that
shared more than the minimum number of unique
words with the documentdA in languageA, then the
approach might return no parallel for that document.

Second, it might be revealing to run further tests
with this approach on other types of text than parlia-
mentary proceedings. What types of text would re-
quire a more sophisticated approach? The answer to
that question might have implications for the range
of text types that ought to be used to comprehen-
sively test parallel document identification systems.

The exact matching of words is a critical feature
of our approach, which enables it to perform quick
comparisons of documents by representing them as
sets of low-frequency words stored in hash tables.
However, it is also a limitation because many cross-
language cognates are not orthographically identi-
cal. A system relying on non-binary word similar-
ity measures rather than on total identity of words
would be more complex and slower, but also more
robust across different domains of text.

7 Conclusion

We have presented a viable, simple method for
identification of homogeneous parallel documents.
This method uses less resources and time than other
content-based methods, a valuable asset when many
languages lack linguistic resources. In addition to
showing the effectiveness of our approach, the re-
sults of the experiments suggest that parliamentary
proceedings may be inappropriate for parallel docu-
ment identification scheme testing.
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Abstract

We introduce a novel framework for the
expression, rapid-prototyping, and eval-
uation of statistical machine-translation
(MT) systems using graphical mod-
els. The framework extends dynamic
Bayesian networks with multiple con-
nected different-length streams, switching
variable existence and dependence mech-
anisms, and constraint factors. We have
implemented a new general-purpose MT
training/decoding system in this frame-
work, and have tested this on a variety of
existing MT models (including the 4 IBM
models), and some novel ones as well,
all using Europarl as a test corpus. We
describe the semantics of our representa-
tion, and present preliminary evaluations,
showing that it is possible to prototype
novel MT ideas in a short amount of time.

1 Introduction

We present a unified graphical model framework
based on (Filali and Bilmes, 2006) for statistical ma-
chine translation. Graphical models utilize graphical
descriptions of probabilistic processes, and are capa-
ble of quickly describing a wide variety of different
sets of model assumptions. In our approach, either
phrases or words can be used as the unit of transla-
tion, but as a first step, we have only implemented
word-based models since our main goal is to show

∗This material was supported by NSF under Grant No. ISS-
0326276.

the viability of our graphical model representation
and new software system.

There are several important advantages to a uni-
fied probabilistic framework for MT including:(1)
the same codebase can be used for training and de-
coding without having to implement a separate de-
coder for each model;(2) new models can be pro-
totyped quickly;(3) combining models (such as in
a speech-MT system) is easier when they are en-
coded in the same framework;(4) sharing algo-
rithms across different disciplines (e.g., the MT and
the constraint-satisfaction community) is facilitated.

2 Graphical Model Framework
A Graphical Model(GM) represents a factorization
of a family of joint probability distributions over a
set of random variables using a graph. The graph
specifies conditional independence relationships be-
tween the variables, and parameters of the model
are associated with each variable or group thereof.
There are many types of graphical models. For ex-
ample, Bayesian networks use an acyclic directed
graph and their parameters are conditional probabili-
ties of each variable given its parents. Various forms
of GM and their conditional independence proper-
ties are defined in (Lauritzen, 1996).

Our graphical representation, which we call
Multi-dynamic Bayesian Networks(MDBNs) (Filali
and Bilmes, 2006), is a generalization of dynamic
Bayesian networks (DBNs) (Dean and Kanazawa,
1988). DBNs are an appropriate representation for
sequential (for example, temporal) stochastic pro-
cesses, but can be very difficult to apply when de-
pendencies have arbitrary time-span and the exis-
tence of random variables is contingent on the val-
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ues of certain variables in the network. In (Filali
and Bilmes, 2006), we discuss inference and learn-
ing in MDBNs. Here we focus on representation
and the evaluation of our new implementation and
framework. Below, we summarize key features un-
derlying our framework. In section 3, we explain
how these features apply to a specific MT model.
• Multiple DBNs can be represented along with

rules for how they are interconnected — the rule de-
scription lengths are fixed (they do not grow with the
length of the DBNs).
• Switching dependencies(Geiger and Hecker-

man, 1996): a variableX is a switching parentof
Y if X influences what type of dependenciesY has
with respect to its other parents, e.g., analignment
variable in IBM Models 1 and 2 is switching.
• Switching existence: A variableX is “switch-

ing existence” with respect to variableY if the value
of X determines whetherY exists. An example is a
fertility variable in IBM Models 3 and above.
• Constraints and aggregation: BN semantics can

encode various types of constraints between groups
of variables (Pearl, 1988). For example, in the con-
structA → B ← C whereB is observed,B can
constrainA andC to be unequal. We extend those
semantics to support a more efficient evaluation of
constraints under some variable order conditions.

3 GM Representation of IBM MT Models
In this section we present a GM representation for
IBM model 3 (Brown et al., 1993) in fig. 1. Model 3
is intricate enough to showcase some of the features
of our graphical representation but not as complex
as, and thus is easier to describe, than model 4. Our
choice of representing IBM models is not because
we believe they are state of the art MT models—
although they are still widely used in producing
alignments and as features in log-linear models—
but because they provide a good initial testbed for
our architecture.

The topmost random variable (RV),ℓ, is a hid-
den switching existence variable corresponding to
the length of the English string. The box abutting
ℓ includes all the nodes whose existence depends on
the value ofℓ. In the figure,ℓ = 3, thus resulting
in three English wordse1, ..., e3, connected using a
second-order Markov chain. To each English word
ei corresponds a conditionally dependent fertilityφi,

which indicates how many timesei is used by words
in the French string. Eachφi in turn grants existence
to a set of RVs under it. Given the fertilities (the fig-
ure depicts the caseφ1 = 3, φ2 = 1, φ3 = 0), for
each wordei, φi French word RVs are granted exis-
tence and are denoted by thetabletτi1, τi2, . . . , τiφi

of ei. The values ofτ variables need to match the
actual observed French sequencef1, . . . , fm. This is
represented as a shared constraint between all thef ,
π, andτ variables which have incoming edges into
the observed variablev. v’s conditional probability
table is such that it is one only when the associated
constraint is satisfied. The variableπi,k is a switch-
ing dependency parent with respect to the constraint
variablev and determines whichfj participates in
an equality constraint withτi,k.

In the null word sub-model, the constraint that
successive permutation variables be ordered is im-
plemented using the observed childw of π0i and
π0(i+1). The probability ofw being unity is one only
when the constraint is satisfied and zero otherwise.

The bottom variablem is a switching existence
node (observed to be 6 in the figure) with cor-
responding French word sequence and alignment
variables. The French sequence participates in the
v constraint described above, while the alignment
variablesaj ∈ {1, . . . , ℓ}, j ∈ 1, . . . ,m constrain
the fertilities to take their unique allowable values
(for the given alignment). Alignments also restrict
the domain of permutation variables,π, using the
constraint variablex. Finally, the domain size of
eachaj has to lie in the interval[0, ℓ] and that is en-
forced by the variableu. The dashed edges connect-
ing the alignmenta variables represent an extension
to implement an M3/M-HMM hybrid.1

4 Experiments
We have developed (in C++) a new entirely self-
contained general-purpose MT training/decoding
system based on our framework, of which we pro-
vide a preliminary evaluation in this section. Al-
though the framework is perfectly capable of rep-
resenting phrase-based models, we restrict ourselves
to word-based models to show the viability of graph-
ical models for MT and will consider different trans-
lation units in future work. We perform MT ex-

1We refer to the HMM MT model in (Vogel et al., 1996) as
M-HMM to avoid any confusion.
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Figure 1: Unrolled Model 3 graphical model with fertility
assignmentφ0 = 2, φ1 = 3, φ2 = 1, φ3 = 0.

periments on a English-French subset of the Eu-
roparl corpus used for the ACL 2005 SMT evalu-
ations (Koehn and Monz, 2005). We train an En-
glish language model on the whole training set us-
ing the SRILM toolkit (Stolcke, 2002) and train
MT models mainly on a 10k sentence pair sub-
set of the ACL training set. We test on the 2000
sentence test set used for the same evaluations.
For comparison, we use the MT training program,
GIZA++ (Och and Ney, 2003), the phrase-base de-
coder, Pharaoh (Koehn et al., 2003), and the word-
based decoder, Rewrite (Germann, 2003).

For inference we use a backtracking depth-first
search inference method with memoization that ex-
tends Value Elimination (Bacchus et al., 2003). The
same inference engine is used for both training and
decoding. As an admissible heuristic for decod-
ing, we compute, for each nodeV with Conditional
Probability Tablec, the largest value ofc over all
possible configurations ofV and its parents (Filali
and Bilmes, 2006).

Decoder BLEU (%)

500 1000 1500 2000
Rewrite 25.3 22.3 21.7 22.01
Pharaoh 20.4 18.1 17.7 18.05
M-HMM 19.9 16.9 15.6 12.5

Table 1:BLEU scores on first 500, 1000, 1500, and
2000 sentences (ordered from shortest to longest) of
the ACL05 English-French 2000 sentence test set us-
ing a 700k sent train set. The last row is our MDBN
system’s simulation of a M-HMM model.

Table 1 compares MT performance between (1)
Pharaoh (which uses beam search), (2) our system,
and (3) Rewrite (hill-climbing). (1) and (2) make

use of a fixed lexical table2 learned using an M-
HMM model specified using our tool, and neither
uses minimum error rate training. (3) uses Model
4 parameters learned using GIZA++. This compari-
son is informative because Rewrite is a special pur-
pose model 4 decoder and we would expect it to
perform at least as well as decoders not written for
a specific IBM model. Pharaoh is more general in
that it only requires, as input, a lexical table from
any given model.3 Our MDBN system is not tai-
lored for the translation task. Pharaoh was able to
decode the 2000 sentences of the test set in 5000s
on a 3.2GHz machine; Rewrite took 84000s, and we
allotted 400000s for our engine (200s per sentence).
We attribute the difference in speed and BLEU score
between our system and Pharaoh to the fact Value
Elimination searches in a depth-first fashion over
the space ofpartial configurations of RVs, while
Pharaoh expandspartial translation hypothesesin a
best-first search manner. Thus, Pharaoh can take ad-
vantage of knowledge about the MT problem’s hy-
pothesis space while the GM is agnostic with respect
to the structure of the problem—something that is
desirable from our perspective since generality is
a main concern of ours. Moreover, the MDBN’s
heuristic and caching of previously explored sub-
trees have not yet proven able to defray the cost,
associated with depth-first search, of exploring sub-
trees that do not contain any “good” configurations.

Table 2 shows BLEU scores of different MT mod-
els trained using our system. We decode using
Pharaoh because the above speed difference in its
favor allowed us to run more experiments and fo-
cus on the training aspect of different models.M1,
M2, M-HMM, M3, and M4 are the standard IBM
models. M2d and M-Hd are variants in which
the distortion between the French and English po-
sitions is used instead of the absolute alignment po-
sition. M-Hdd is a second-orderM-HMM model
(with distortion). M3H (see fig 1) is a variant of
model 3 that uses first-order dependencies between
alignment variables.M-Hr is another HMM model
that uses the relative distortion between the current
alignment and the previous one. This is similar
to the model implemented by GIZA except we did

2Pharaoh’s phrases are single words only.
3It does, however, use simple hard-coded distortion and fer-

tility models.
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BLEU(%)
Giza train MDBN train

10k 700k 10k 700k

M1 15.67 18.04 14.53 17.74
M2 15.84 18.52 15.74
M2d NA NA 15.75
M-HMM NA NA 15.87
M-Hd NA NA 15.99 18.05
M-Hdd NA NA 15.55
M-Hr 16.98 19.57 16.04
M3 16.78 19.38 15.32
M3H NA NA 15.67
M4 16.81 19.51 15.00
M4H NA NA 15.20

Table 2: BLEU scores for various models trained
using GM and GIZA (when applicable). All models
are decoded using Pharaoh.

not include the English word class dependency. Fi-
nally, modelM4H is a simplified model 4, in which
only distortions within each tablet are modeled but a
Markov dependency is also used between the align-
ment variables.

Table 2 also shows BLEU scores obtained by
training equivalent IBM models using GIZA and
the standard training regimen of initializing higher
models with lower ones (we use the same sched-
ules for our GM training, but only transfer lexical ta-
bles). The main observation is that GIZA-trained M-
HMM, M3 and 4 have about 1% better BLEU scores
than their corresponding MDBN versions. We at-
tribute the difference in M3/4 scores to the fact we
use a Viterbi-like training procedure (i.e., we con-
sider a single configuration of the hidden variables
in EM training) while GIZA uses pegging (Brown et
al., 1993) to sum over a set of likely hidden variable
configurations in EM.

While these preliminary results do not show im-
proved MT performance, nor would we expect them
to since they are on simulated IBM models, we find
very promising the fact that this general-purpose
graphical model-based system produces competitive
MT results on a computationally challenging task.

5 Conclusion and Future Work

We have described a new probabilistic framework
for doing statistical machine translation. We have

focused so far on word-based translation. In fu-
ture work, we intend to implement phrase-based MT
models. We also plan to design better approximate
inference strategies for training highly connected
graphs such as IBM models 3 and 4, and some novel
extensions. We are also working on new best-first
search generalizations of our depth-first search in-
ference to improve decoding time. As there has been
increased interest in end-to-end task such as speech
translation, dialog systems, and multilingual search,
a new challenge is how best to combine the complex
components of these systems into one framework.
We believe that, in addition to the finite-state trans-
ducer approach, a graphical model framework such
as ours would be well suited for this scientific and
engineering endeavor.
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Abstract 

Situated models of meaning ground words in the 

non-linguistic context, or situation, to which they 

refer.  Applying such models to sports video re-

trieval requires learning appropriate representa-

tions for complex events.  We propose a method 

that uses data mining to discover temporal pat-

terns in video, and pair these patterns with associ-

ated closed captioning text.  This paired corpus is 

used to train a situated model of meaning that sig-

nificantly improves video retrieval performance. 

1 Introduction 

Recent advances in digital broadcasting and re-

cording allow fans access to an unprecedented 

amount of sports video.  The growing need to 

manage and search large video collections presents 

a challenge to traditional information retrieval (IR) 

technologies.  Such methods cannot be directly 

applied to video data, even when closed caption 

transcripts are available; for, unlike text docu-

ments, the occurrence of a query term in a video is 

often not enough to assume the video’s relevance 

to that query.  For example, when searching 

through video of baseball games, returning all clips 

in which the phrase “home run” occurs, results 

primarily in video of events where a home run 

does not actually occur.  This follows from the fact 

that in sports, as in life, people often talk not about 

what is currently happening, but rather, they talk 

about what did, might, or will happen in the future.   

Traditional IR techniques cannot address such 

problems because they model the meaning of a 

query term strictly by that term’s relationship to 

other terms.  To build systems that successfully 

search video, IR techniques should be extended to 

exploit not just linguistic information but also ele-

ments of the non-linguistic context, or situation, 

that surrounds language use.  This paper presents a 

method for video event retrieval from broadcast 

sports that achieves this by learning a situated 

model of meaning from an unlabeled video corpus. 

The framework for the current model is derived 

from previous work on computational models of 

verb learning (Fleischman & Roy, 2005).  In this 

earlier work, meaning is defined by a probabilistic 

mapping between words and representations of the 

non-linguistic events to which those words refer.  

In applying this framework to events in video, we 

follow recent work on video surveillance in which 

complex events are represented as temporal rela-

tions between lower level sub-events (Hongen et 

al., 2004).  While in the surveillance domain, hand 

crafted event representations have been used suc-

cessfully, the greater variability of content in 

broadcast sports demands an automatic method for 

designing event representations.   

The primary focus of this paper is to present a 

method for mining such representations from large 

video corpora, and to describe how these represen-

tations can be mapped to natural language.  We 

focus on a pilot dataset of broadcast baseball 

games.  Pilot video retrieval tests show that using a 

situated model significantly improves perform-

ances over traditional language modeling methods. 

2 Situated Models of Meaning 

Building situated models of meaning operates in 

three phases (see Figure 1): first, raw video data is 

abstracted into multiple streams of discrete fea-

tures.  Temporal data mining techniques are then 

applied to these feature streams to discover hierar-

chical temporal patterns.  These temporal patterns 

form the event representations that are then 

mapped to words from the closed caption stream. 

2.1 Feature Extraction  
The first step in representing events in video is to 

abstract the very high dimensional raw video data 

into more semantically meaningful streams of in-

formation.  Ideally, these streams would corre-

spond to basic events that occur in sports video 

(e.g., hitting, throwing, catching, kicking, etc.). 

Due to the limitations of computer vision tech-

niques, extracting such ideal features is often in-

feasible.  However, by exploiting the “language of
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Figure 1.  Video processing pipeline for learning situated models of meaning. 

 

film” that is used to produce sports video, informa-

tive features can be extracted that are also easy to 

compute.  Thus, although we cannot easily identify 

a player hitting the ball, we can easily detect fea-

tures that correlate with hitting: e.g., when a scene 

focusing on the pitching mound immediately 

jumps to one zooming in on the field (Figure 1).  

While such correlations are not perfect, pilot tests 

show that baseball events can be classified using 

such features (Fleischman et. al., in prep). 

Importantly, this is the only phase of our frame-

work that is domain specific; i.e., it is the only as-

pect of the framework designed specifically for use 

with baseball data.  Although many feature types 

can be extracted, we focus on only two feature 

types: visual context, and camera motion. 
 

Visual Context 

 

Visual context features encode general properties 

of the visual scene in a video segment.  The first 

step in extracting such features is to split the raw 

video into “shots” based on changes in the visual 

scene due to editing (e.g., jumping from a close up 

of the pitcher to a wide angle of the field).  Shot 

detection is a well studied problem in multimedia 

research; in this work, we use the method of 

Tardini et al. (2005) because of its speed and 

proven performance on sports video.   

After a game is segmented into shots, each shot 

is categorized into one of three categories: pitch-

ing-scene, field-scene, or other.  Categorization is 

based on image features (e.g., color histograms, 

edge detection, motion analysis) extracted from an 

individual key frame chosen from that shot.  A de-

cision tree is trained (with bagging and boosting) 

using the WEKA machine learning toolkit that 

achieves over 97% accuracy on a held out dataset.  

Camera Motion 
 

Whereas visual context features provide informa-

tion about the global situation that is being ob-

served, camera motion features afford more precise 

information about the actions occurring in the 

video.  The intuition here is that the camera is a 

stand in for a viewer’s focus of attention.  As ac-

tion in the video takes place, the camera moves to 

follow it, mirroring the action itself, and providing 

an informative feature for event representation.   

Detecting camera motion (i.e., pan/tilt/zoom) is a 

well-studied problem in video analysis.  We use 

the system of (Bouthemy et al., 1999) which com-

putes the pan, tilt, and zoom motions using the pa-

rameters of a two-dimensional affine model fit to 

every pair of sequential frames in a video segment.  

The output of this system is then clustered into 

characteristic camera motions (e.g. zooming in fast 

while panning slightly left) using a 1
st
 order Hid-

den Markov Model  with 15 states, implemented 

using the Graphical Modeling Toolkit (GMTK).   

2.2 Temporal Pattern Mining 
In this step, temporal patterns are mined from the 

features abstracted from the raw video data.  As 

described above, ideal semantic features (such as 

hitting and catching) cannot be extracted easily 

from video. We hypothesize that finding temporal 

patterns between scene and camera motion features 

can produce representations that are highly corre-

lated with sports events.  Importantly, such tempo-

ral patterns are not strictly sequential, but rather, 

are composed of features that can occur in complex 

and varied temporal relations to each other.  For 

example, Figure 1 shows the representation for a 

fly ball event that is composed of: a camera pan-
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ning up followed by a camera pan down, occurring 

during a field scene, and before a pitching scene. 

Following previous work in video content classi-

fication (Fleischman et al., 2006), we use tech-

niques from temporal data mining to discover 

event patterns from feature streams.  The algorithm 

we use is fully unsupervised. It processes feature 

streams by examining the relations that occur be-

tween individual features within a moving time 

window.  Following Allen (1984), any two features 

that occur within this window must be in one of 

seven temporal relations with each other (e.g. be-

fore, during, etc.).  The algorithm keeps track of 

how often each of these relations is observed, and 

after the entire video corpus is analyzed, uses chi-

square analyses to determine which relations are 

significant.  The algorithm iterates through the 

data, and relations between individual features that 

are found significant in one iteration (e.g. 

[BEFORE, camera panning up, camera panning 

down]), are themselves treated as individual fea-

tures in the next.  This allows the system to build 

up higher-order nested relations in each iteration 

(e.g. [DURING, [BEFORE, camera panning up, 

camera panning down], field scene]]).  The tempo-

ral patterns found significant in this way are then 

used as the event representations that are then 

mapped to words. 

2.3 Linguistic Mapping 
The last step in building a situated model of mean-

ing is to map words onto the representations of 

events mined from the raw video.  We equate the 

learning of this mapping to the problem of estimat-

ing the conditional probability distribution of a 

word given a video event representation.  Similar 

to work in image retrieval (Barnard et al., 2003), 

we cast the problem in terms of Machine Transla-

tion: given a paired corpus of words and a set of 

video event representations to which they refer, we 

make the IBM Model 1 assumption and use the 

expectation-maximization method to estimate the 

parameters (Brown et al., 1993):   

∏
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This paired corpus is created from a corpus of 

raw video by first abstracting each video into the 

feature streams described above.  For every shot 

classified as a pitching scene, a new instance is 

created in the paired corpus corresponding to an 

event that starts at the beginning of that shot and 

ends exactly four shots after.  This definition of an 

event follows from the fact that most events in 

baseball must start with a pitch and usually do not 

last longer than four shots (Gong et al., 2004).   

For each of these events in the paired corpus, a 

representation of the video is generated by match-

ing all patterns (and the nested sub-patterns) found 

from temporal mining to the feature streams of the 

event.  These video representations are then paired 

with all the words from the closed captioning that 

occur during that event (plus/minus 10 seconds).   

3 Experiments 

Work on video IR in the news domain often fo-

cuses on indexing video data using a set of image 

classifiers that categorize shots into pre-determined 

concepts (e.g. flag, outdoors, George Bush, etc.).  

Text queries must then be translated (sometimes 

manually) in terms of these concepts (Worring & 

Snoek, 2006).  Our work focuses on a more auto-

mated approach that is closer to traditional IR tech-

niques.  Our framework extends the language 

modeling approach of Ponte and Croft (1998) by 

incorporating a situated model of meaning.   

In Ponte and Croft (1998), documents relevant to 

a query are ranked based on the probability that 

each document generated each query term.  We 

follow this approach for video events, making the 

assumption that the relevance of an event to a 

query depends both on the words associated with 

the event (i.e. what was said while the event oc-

curred), as well as the situational context modeled 

by the video event representations: 

∏
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The p(word|caption) is estimated using the lan-

guage modeling technique described in Ponte and 

Croft (1998).  The p(word|video) is estimated as in 

equation 1 above.  α is used to weight the models.  
 

Data 

 

The system has been evaluated on a pilot set of 6 

broadcast baseball games totaling about 15 hours 

and 1200 distinct events.  The data represents 

video of 9 different teams, at 4 different stadiums, 

broadcast on 4 different stations.  Highlights (i.e., 

events which terminate with the player either out 

or safe) were hand annotated, and categorized ac-

cording to the type of the event (e.g., strikeout vs. 

homerun), the location of the event (e.g., right field 

vs. infield), and the nature of the event (e.g., fly 

ball vs. line drive).  Each of these categories was 
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used to automatically select query terms to be used 

in testing.  Similar to Berger & Lafferty (1999), the 

probability distribution of terms given a category is 

estimated using a normalized log-likelihood ratio 

(Moore, 2004), and query terms are sampled ran-

domly from this distribution.  This gives us a set of 

queries for each annotated category (e.g., strikeout: 

“miss, chasing”; flyball: “fly, streak”).  Although 

much noisier than human produced queries, this 

procedure generates a large amount of test queries 

for which relevant results can easily be determined 

(e.g., if a returned event for the query “fly, streak” 

is of the flyball category, it is marked relevant). 

 Experiments are reported using 6-fold cross 

validation during which five games are used to 

train the situated model while the sixth is held out 

for testing.  Because data is sparse, the situation 

model is trained only on the hand annotated high-

light events.  However, retrieval is always tested 

using both highlight and non-highlight events.  

Figure 2.  Effect of situated model on video IR. 
 

 Results 

 

Figure 2 shows results for 520 automatically gen-

erated queries of one to four words in length.  

Mean average precision (MAP), a common metric 

that combines elements of precision, recall, and 

ranking, is used to measure the relevance of the top 

five results returned for each query.  We show re-

sults for the system using only linguistic informa-

tion (i.e. α=1), only non-linguistic information (i.e. 

α=0), and both information together (i.e. α=0.5).   

The poor performance of the system using only 

non-linguistic information is expected given the 

limited training data and the simple features used 

to represent events.  Interestingly, using only lin-

guistic information produces similarly poor per-

formance.  This is a direct result of announcers’ 

tendency to discuss topics not currently occurring 

in the video.  By combining text and video analy-

ses, though, the system performs significantly bet-

ter (p<0.01) by determining when the observed 

language actually refers to the situation at hand.  

4 Conclusion 

We have presented a framework for video retrieval 

that significantly out-performs traditional IR meth-

ods applied to closed caption text. Our new ap-

proach incorporates the visual content of baseball 

video using automatically learned event represen-

tations to model the situated meaning of words. 

Results indicate that integration of situational con-

text dramatically improves performance over tradi-

tional methods alone.  In future work we will 

examine the effects of applying situated models of 

meaning to other tasks (e.g., machine translation).   
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Abstract

We use χ
2 to investigate the context de-

pendency of student affect in our com-
puter tutoring dialogues, targeting uncer-
tainty in student answers in 3 automati-
cally monitorable contexts. Our results
show significant dependencies between
uncertain answers and specific contexts.
Identification and analysis of these depen-
dencies is our first step in developing an
adaptive version of our dialogue system.

1 Introduction

Detecting and adapting to user affect is being ex-
plored by many researchers to improve dialogue sys-
tem quality. Detection has received much atten-
tion (e.g., (Litman and Forbes-Riley, 2004; Lee and
Narayanan, 2005)), but less work has been done on
adaptation, due to the difficulty of developing re-
sponses and applying them at the right time. Most
work on adaptation takes a context-independent ap-
proach: use the same type of response after all in-
stances of an affective state. For example, Liu and
Picard (2005)’s health assessment system responds
with empathy to all instances of user stress.

Research suggests, however, that it may be more
effective to take a context-dependent approach: de-
velop multiple responses for each affective state,
whose use depends on the state’s context. E.g., in the
tutoring domain, Pon-Barry et al. (2006) show that
human tutors use multiple responses to uncertain
student answers, depending on the answer’s correct-
ness and prior context. In the information-seeking
domain, it is commonly believed that while an apol-
ogy is a good default response to user frustration (as

in (Klein et al., 2002)), one context requires a differ-
ent response: after several frustrated user turns, the
call should be forwarded to a human operator.

A context-dependent approach to affect adapta-
tion must address 2 issues: in what contexts to adapt,
and what responses to use there. This paper ad-
dresses the first issue and targets student uncertainty
in our computer tutoring dialogues. Although our di-
alogues have a Question-Answer format, our system
contains 275 tutor questions. Treating each question
as a context is too labor-intensive for adaptation de-
velopment and creates a data sparsity issue. Instead
we treat automatically monitorable question proper-
ties as contexts. Here we examine 3 contexts: the di-
alogue act interpretation, and the discourse structure
depth and transition, of the prior tutor question. We
use χ

2 to investigate the context dependency of un-
certain student answers (correct and incorrect). Our
results show that some contexts are significantly as-
sociated with uncertain answers. Our next step will
be to use these significant dependencies to develop
system responses to uncertain answers in these con-
texts. These responses will be based both on our
hypotheses about why uncertainty is associated with
these contexts, and on analyses of human tutor re-
sponses to uncertain answers in these contexts.

2 Student Uncertainty and Prior Context

ITSPOKE is a speech-enabled version of a text-
based tutoring system (VanLehn et al., 2002). The
student first types an essay answering one of 5 qual-
itative physics problems. ITSPOKE parses the es-
say, extracts dialogue topics concerning misconcep-
tions, then engages the student in dialogue. In this
study we used 2 ITSPOKE corpora containing 4590
student turns over 185 dialogues from 37 students.
Figure 1 shows an annotated dialogue excerpt.

41



ITSPOKE4: Good. Does the packet have an acceleration? If yes please specify its direction. [SAQ, Advance, D1]

STUDENT4: horizontally forward yes [non-uncertain, incorrect]

ITSPOKE5: Well... To find the packet’s acceleration we will use Newton’s 2nd law. What is the definition of this law? [LAQ,
Push, D2]

STUDENT5: an object in motion tends to stay in motion until it’s act by an outside force [uncertain, incorrect]

ITSPOKE6: Well... Newton’s 2nd law says that the net force acting on an object equals the mass times the acceleration of the
object. We can define Newton’s 2nd law as F=m*a. Hence what can we determine about the acceleration of the packet given
that we know the net force acting on it is not zero and points straight down? [DAQ, Advance, D2]

STUDENT6: I don’t know [uncertain, incorrect]

ITSPOKE7: Well... < further discussion of Newton’s 2nd law...> So once again on the original question. Does the packet have an
acceleration? If yes please specify its direction.[SAQ, PopUp, D1]

Figure 1: ITSPOKE Annotated Dialogue Excerpt

2.1 Uncertainty and Correctness Annotations

ITSPOKE, like most computer tutors, responds only
to student correctness. ITSPOKE labels each an-
swer as correct or incorrect1 . If correct, ITSPOKE
moves on to the next question. If incorrect, then for
questions on simple topics, ITSPOKE gives the cor-
rect answer and moves on, while for questions on
complex topics (ITSPOKE4, Figure 1), ITSPOKE
initiates a sub-dialogue with remediation questions
(ITSPOKE5 - ITSPOKE6), before moving on.

Recent computer tutoring research has shown in-
terest in responding to student affect2 over cor-
rectness. Uncertainty is of particular interest: re-
searchers hypothesize that uncertainty and incorrect-
ness each create an opportunity to learn (VanLehn
et al., 2003). They cannot be equated, however.
First, an uncertain answer may be correct or incor-
rect (Pon-Barry et al., 2006). Second, uncertainty in-
dicates that the student perceives a possible miscon-
ception in their knowledge. Thus, system responses
to uncertain answers can address both the correct-
ness and the perceived misconception.

In our ITSPOKE corpora, each student answer
has been manually annotated as uncertain or non-
uncertain3 : uncertain is used to label answers ex-
pressing uncertainty or confusion about the material;
non-uncertain is used to label all other answers.

1We have also manually labeled correctness in our data;
agreement between ITSPOKE and human is 0.79 Kappa (90%).

2We use ‘affect’ to cover emotions and attitudes that affect
how students communicate. Although some argue ‘emotion’
and ‘attitude’ should be distinguished, some speech researchers
find the narrow sense of ‘emotion’ too restrictive because it ex-
cludes states where emotion is present but not full-blown, in-
cluding arousal and attitude (Cowie and Cornelius, 2003).

3A second annotator relabeled our dataset, yielding inter-
annotator agreement of 0.73 Kappa (92%).

2.2 Context Annotations

Here we examine 3 automatically monitorable tutor
question properties as our contexts for uncertainty:
Tutor Question Acts: In prior work one annotator
labeled 4 Tutor Question Acts in one ITSPOKE cor-
pus (Litman and Forbes-Riley, 2006)4: Short (SAQ),
Long (LAQ), and Deep Answer Question (DAQ) dis-
tinguish the question in terms of content and the type
of answer it requires. Repeat (RPT) labels variants
of “Can you repeat that?” after rejections. From
these annotations we built a hash table associating
each ITSPOKE question with a Question Act label;
with this table we automatically labeled ITSPOKE
questions in our second ITSPOKE corpus.
Discourse Structure Depth/Transition: In prior
work we showed that the discourse structure Depth
and Transition for each ITSPOKE turn can be au-
tomatically annotated (Rotaru and Litman, 2006).
E.g., as shown in Figure 1, ITSPOKE4,7 have depth
1 and ITSPOKE5,6 have depth 2. We combine lev-
els 3 and above (3+) due to data sparsity. 6 Transi-
tion labels represent the turn’s position relative to the
prior ITSPOKE turn: NewTopLevel labels the first
question after an essay. Advance labels questions at
the same depth as the prior question (ITSPOKE4,6).
Push labels the first question in a sub-dialogue
(after an incorrect answer) (ITSPOKE5). After a
sub-dialogue, ITSPOKE asks the original question
again, labeled PopUp (ITSPOKE7), or moves on to
the next question, labeled PopUpAdv. SameGoal la-
bels both ITSPOKE RPTS (after rejections) and re-
peated questions after timeouts.

4Our Acts are based on related work (Graesser et al., 1995).
Two annotators labeled the Acts in 8 dialogues in a parallel hu-
man tutoring corpus, with agreement of 0.75 Kappa (90%).
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3 Uncertainty Context Dependencies

We use the χ
2 test to investigate the context depen-

dency of uncertain (unc) or non-uncertain (nonunc)
student answers that are correct (C) or incorrect (I).
First, we compute an overall χ

2 value between each
context variable and the student answer variable. For
example, the Question Act variable (QACT) has 4
values: SAQ, LAQ, DAQ, RPT. The answer vari-
able (SANSWER) also has 4 values: uncC, uncI,
nonuncC, nonuncI. Table 1 (last column) shows the
χ

2 value between these variables is 203.38, which
greatly exceeds the critical value of 16.92 (p≤ 0.05,
df=9), indicating a highly significant dependency.
Significance increases as the χ

2 value increases.

Dependency Obs. Exp. χ
2

QACT ∼ SANSWER 203.38
LAQ ∼ uncC + 72 22 133.98
LAQ ∼ uncI + 43 27 11.17
LAQ ∼ nonuncC - 96 151 50.13
LAQ ∼ nonuncI = 48 60 3.10
DAQ ∼ uncC = 22 22 0.01
DAQ ∼ uncI + 37 27 4.57
DAQ ∼ nonuncC = 135 149 3.53
DAQ ∼ nonuncI = 63 59 0.35
SAQ ∼ uncC - 285 328 41.95
SAQ ∼ uncI - 377 408 17.10
SAQ ∼ nonuncC + 2368 2271 66.77
SAQ ∼ nonuncI - 875 898 5.31
RPT ∼ uncC - 7 14 4.15
RPT ∼ uncI = 22 18 1.25
RPT ∼ nonuncC - 70 98 20.18
RPT ∼ nonuncI + 70 39 33.59

Table 1: Tutor Question Act Dependencies (p≤.05:
critical χ

2=16.92 (df=9); critical χ
2=3.84 (df=1))

However, this does not tell us which variable val-
ues are significantly dependent. To do this, we create
a binary variable from each value of the context and
answer variables. E.g., the binary variable for LAQ
has 2 values: “LAQ” and “Anything Else”, and the
binary variable for uncC has 2 values: “uncC” and
“Anything Else”. We then compute the χ

2 value be-
tween the binary variables. Table 1 shows this value
is 133.98, which greatly exceeds the critical value of
3.84 (p≤ 0.05, df=1). The table also shows the ob-
served (72) and expected (22) counts. Comparison
determines the sign of the dependency: uncC occurs
significantly more than expected (+) after LAQ. The
“=” sign indicates a non-significant dependency.

Table 1 shows uncertain answers (uncC and uncI)

occur significantly more than expected after LAQs.
In contrast, non-uncertain answers occur signifi-
cantly less (-), or aren’t significantly dependent (=).
Also, uncI occurs significantly more than expected
after DAQs. We hypothesize that LAQs and DAQs
are associated with more uncertainty because they
are harder questions requiring definitions or deep
reasoning. Not surprisingly, uncertain (and incor-
rect) answers occur significantly less than expected
after SAQs (easier fill-in-the-blank questions). Un-
certainty shows very weak dependencies on RPTs.

Table 2 shows that Depth1 is associated with more
correctness and less uncertainty overall. Both types
of correct answer occur significantly more than ex-
pected, but this dependency is stronger for nonuncC.
Both incorrect answers occur significantly less than
expected, but this dependency is stronger for uncI.

Dependency Obs. Exp. χ
2

Depth# ∼ SANSWER 53.85
Depth1 ∼ uncC + 250 228 5.46
Depth1 ∼ uncI - 230 283 27.55
Depth1 ∼ nonuncC + 1661 1579 24.73
Depth1 ∼ nonuncI - 575 625 12.66
Depth2 ∼ uncC - 78 101 7.80
Depth2 ∼ uncI + 156 125 11.26
Depth2 ∼ nonuncC - 664 699 5.65
Depth2 ∼ nonuncI + 304 277 4.80
Depth3+ ∼ uncC = 58 57 0.05
Depth3+ ∼ uncI + 93 70 9.76
Depth3+ ∼ nonuncC - 344 391 15.66
Depth3+ ∼ nonuncI + 177 155 4.94

Table 2: Depth Dependencies (p≤.05: critical
χ

2=12.59 (df=6); critical χ
2=3.84 (df=1))

At Depths 2 and 3+, correct answers occur sig-
nificantly less than expected or show no signifi-
cance. Incorrect answers occur significantly more
than expected, and the dependencies are stronger for
uncI. We hypothesize that deeper depths are asso-
ciated with increased uncertainty and incorrectness
because they correspond to deeper knowledge gaps;
uncertainty here may also relate to a perceived lack
of cohesion between sub-topic and larger solution.

Table 3 shows Pushes have the same dependen-
cies as deeper depths (increased uncertainty and in-
correctness); however, here the uncI dependency is
only slightly stronger than nonuncI, which suggests
that increased uncertainty at deeper depths is more
reliably associated with remediation questions after
the Push. Although uncertainty shows only weak
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dependencies on PopUps, after PopUpAdvs the uncI
dependency is strong, with uncI occurring more than
expected. We hypothesize that this dependency re-
lates to students losing track of the original ques-
tion/larger topic. Uncertainty shows only weak de-
pendencies on Advances. After NewTopLevels, in-
correct answers occur less than expected, but the de-
pendency is stronger for nonuncI. After SameGoals,
incorrect answers occur more than expected, but the
dependency is stronger for nonuncI. Compared with
the RPT results, the SameGoal results suggest stu-
dents feel increased uncertainty after timeouts.

Dependency Obs. Exp. χ
2

TRANS ∼ SANSWER 190.97
Push ∼ uncC = 68 57 2.89
Push ∼ uncI + 100 70 16.37
Push ∼ nonuncC - 313 392 44.51
Push ∼ nonuncI + 193 155 14.13
PopUp ∼ uncC - 23 36 5.89
PopUp ∼ uncI - 32 45 4.68
PopUp ∼ nonuncC = 260 251 0.81
PopUp ∼ nonuncI + 117 99 4.47
PopUpAdv ∼ uncC = 8 13 2.50
PopUpAdv ∼ uncI + 32 17 16.22
PopUpAdv ∼ nonuncC - 76 93 7.72
PopUpAdv ∼ nonuncI = 44 37 1.89
Advance ∼ uncC = 217 205 1.70
Advance ∼ uncI - 223 254 9.06
Advance ∼ nonuncC + 1465 1416 8.66
Advance ∼ nonuncI - 530 560 4.51
NewTopLevel ∼ uncC = 53 54 0.04
NewTopLevel ∼ uncI - 49 67 6.47
NewTopLevel ∼ nonuncC + 463 375 57.33
NewTopLevel ∼ nonuncI - 80 148 47.63
SameGoal ∼ uncC = 17 21 0.70
SameGoal ∼ uncI + 43 25 14.24
SameGoal ∼ nonuncC - 92 152 44.25
SameGoal ∼ nonuncI + 92 56 31.43

Table 3: Transition Dependencies (p≤.05: critical
χ

2=25.00 (df=15); critical χ
2=3.84 (df=1))

4 Current Directions

We analyzed dependencies between uncertain stu-
dent answers and 3 automatically monitorable con-
texts. We plan to examine more contexts, such as
a Topic Repetition variable that tracks similar ques-
tions about a topic (e.g. gravity) across dialogues.

Our next step will be to use the significant de-
pendencies to develop system responses to uncer-
tain answers in these contexts. These responses will
be based both on our hypotheses about why uncer-
tainty is significantly associated with these contexts,

as well as on analyses of human tutor responses
in these contexts, using our human tutoring corpus,
which was collected with our first ITSPOKE corpus
using the same experimental procedure.

We also plan to investigate context dependencies
for other affective states, such as student frustration.
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Abstract

We propose an efficient method to detect
end-of-utterances from prosodic information in
conversational speech. Our method is based
on the application of a large set of binary and
ramp filters to the energy and fundamental fre-
quency signals obtained from the speech sig-
nal. These filter responses, which can be com-
puted very efficiently, are used as input to a
learning algorithm that generates the final de-
tector. Preliminary experiments using data ob-
tained from conversations show that an accu-
rate classifier can be trained efficiently and that
good results can be obtained without requiring
a speech recognition system.

1 Introduction

While there have been improvements and a significant
number of methods introduced into the realm of dialog-
based systems, there are aspects of these methods which
can be further improved upon. One such aspect is end-
of-utterance (EOU) detection, which consists of automat-
ically determining when a user has finished his/her turn
and is waiting to receive an answer from the system. Cur-
rent dialog-based systems use a simple pause threshold,
which commonly results in either unnecessary long wait-
ing times or interruptions from the system when the user
makes a pause in the middle of an utterance. These prob-
lems can annoy and discourage users using even simple
dialog systems.

Most previous methods aimed at improving upon
pause thresholds for detecting end-of-utterances use
spectral energy measures (Hariharan et al., 2001; Jia and
Xu, 2002). Other methods use prosodic features with
(Ferrer et al., 2002) and without speech recognition sys-
tems (Ferrer et al., 2003) in conjunction with decision
trees to determine end-of-utterances as quickly as possi-
ble. For this and related problems, the choice of features
is critical. Most common is to use a fixed inventory of
features, chosen based on the linguistics literature and
past experience (Shriberg and Stolcke, 2004). Recently
we have experimented with alternative approaches, in-
cluding features hand-tailored to specific discrimination

problems (Ward and Al Bayyari, 2006) and random ex-
ploration of the feature space (Solorio et al., 2006). In
this paper we explore yet another approach, using a large
battery of very simple and easy to evaluate features.

In this paper we present a method to improve the ac-
curacy that can be obtained in end-of-utterance detection
that uses prosodic information only, without a speech rec-
ognizer. We adapt and extend a filter-based approach
originally proposed in computer graphics (Crow, 1984)
and later exploited successfully in computer vision (Viola
and Jones, 2001) and music retrieval (Ke et al., 2005).

Our approach consists of applying simple filters, which
can be computed in constant time, in order to generate
attributes to be used by a learning algorithm. After the
attributes have been generated, we test different learning
algorithms to detect end-of-utterances. Our results show
that the features yield good results in combination with
several of the classifiers, with the best result being ob-
tained with bagging ensembles of decision trees.

2 Method

The first stage in our system is to extract prosodic infor-
mation from the raw audio signal. Using the audio anal-
ysis tool Didi, the log energy and fundamental frequency
signals are extracted from the source sound wave. After
computing log energy and pitch, we apply a large set of
filters in the time domain to the energy and pitch signals
in order to generate attributes suitable for classification.
We compute the filter responses for both signals at every
time step using three types of filters, each applied at many
different times scales.

The first filter type, shown in Figure 1a), is a two-step
binary filter, split approximately in half. The first half
of the filter consists of a sequence of 1’s. The second
half consists of -1’s. The second filter type is a three-step
binary filter (as shown in Figure 1b)), split in approximate
thirds alternating between 1 and -1. Finally, the third filter
is an upward slope ranging from -1 to 1.

Although simple, these filters, in particular when they
are applied at multiple scales, can characterize most of
the prosodic features that are known to be relevant in
identifying dialog phenomena including raises and falls
in pitch and pauses of different lengths.

The response of any of these filters over the signal at
any time is given by the dot product of the filter and signal
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Figure 1: The three types of filters, the first two being
binary only having values -1 or 1, and the last having an
upward slope from -1 to 1.

window of the same length. Computing this dot product
is slow, especially over larger time window sizes. This
cost is even greater when many filter responses are taken
over the course of the entire signal length.

Given the large number of filters and the size of a nor-
mal audio signal, the straightforward dot-product-based
computation of the filter responses is prohibitively expen-
sive. Fortunately, it is possible to device methods to com-
pute these responses efficiently, as explained in the next
subsection.

2.1 Efficient Filter Computation

This constant time computation of binary filters for two-
dimensional signals was first presented by Crow (Crow,
1984) in the field of computer graphics and later ap-
plied successfully in computer vision (Viola and Jones,
2001). Here we show how that can be adapted to one-
dimensional signals and extended to the case of non-
binary filters, such as ramps.

Let s be the signal corresponding to either the log en-
ergy or the fundamental frequency. Let f be a filter of
size n (in arbitrary time units) and let k be the time in-
stant for which we want to compute the filter response.
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Figure 2: Energy, with mean subtracted, and its corre-
sponding integral signal.

The filter response F is given by

F (s, f, k) =
n−1∑

i=0

sk+i ∗ fi

The standard computation of F takes O(n) operations;
however, for the special case of binary filters like the ones
shown in figures 1a) and 1b), we can compute this re-
sponse in constant time with some preprocessing as fol-
lows. Let I be the integral signal, where each element of
I is given by

Ij =
j∑

i=0

si

It can be seen that
k∑

i=j

sj = Ik − Ij−1

Thus this summation can be computed with two ac-
cesses to memory, after pre-computing and storing the
values of I in an array. Figure 2 shows an example of a
signal (with its mean subtracted) and the corresponding
integral signal.

Consider a binary filter f such as the one shown in
1a), f = {1n/2,−1n/2}, that is, f consists of n/2 ones
followed by n/2 negative ones. Then the filter response
of a signal can then be computed in constant time using
three references to the integral signal I:

F (s, f, k) = 2Ik+n/2−1 − Ik−1 − Ik+n−1

Similarly, the response to a filter like the one shown in
Figure 1 b), given by f = {1n/3,−1n/3, 1n/3} can be
computed with four memory references.

F (s, f, k) = Ik+n−1− 2Ik+2n/3−1 +2Ik+n/3−1− Ik−1
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The third filter is an upward ramp ranging from -1 to
1. Whereas the binary filters are simple to calculate us-
ing look-up values, and their application to 1-dimensional
signals is a simple adaptation to the 2-D algorithm, a
ramp is more difficult and requires separate preprocess-
ing for filters of different lengths. Regardless, it is still
possible to compute its response in constant time after
preprocessing.

We define a ramp filter of length n as f = {−1, 2
n−1 −

1, 4
n−1 − 1, ..., 1− 2

n−1 , 1}. The response to this filter is

F (s, f, k) =
n−1∑

i=0

sk+i ∗ fi

=
n−1∑

i=0

(
2i

n− 1
− 1)sk+i

=
2

n− 1

n−1∑

i=0

isk+i −
n−1∑

i=0

sk+i

=
2

n− 1

n−1∑

i=0

i sk+i − (In−1 − Ik−1)

Let
∑n−1

i=0 i sk+i be denoted by Ank. Clearly, if Ank

can be computed in constant time, then F (s, f, k) can
also be computed in constant time. This can be done, with
a little preprocessing, as follows. Let An0 be computed
in the standard (O(n) time) way,

An0 =
n−1∑

i=0

isi

Then to compute values of Ank for k > 0 we first
observe that

Ank = sk+1 + 2sk+2 + . . . + (n− 1)sk+n−1

and

Ank+1 = sk+2 + 2sk+3 + . . . + (n− 1)sk+n

From this, we can see that

Ank+1 = Ank − sk+1 − sk+2 − . . .

−sk+n−1 + (n− 1)sk+n

= Ank −
k+n−1∑

i=k+1

si + (n− 1)sk+n

= Ank − (Ik+n−1 − Ik) + (n− 1)sk+n

Thus after pre-computing vectors I and An, which
takes linear time in the size of the signal, we can compute
any filter response in constant time. However, while we

can derive all binary-filter responses from vector I , com-
puting ramp-filter responses requires the pre-computation
of a separate An for every filter length n. Nevertheless,
this cost is small compared to the cost of computing a dot
product for every time instant in the input signal.

The integral signal representations are computed from
the two prosodic feature signals, and filter features are
calculated along the timeframe of the signal. Once the fil-
ter responses are obtained, they are used as attributes for
machine learning algorithms, which are used to generate
the final classifiers. The data is then used to train several
learning algorithms, as implemented in Weka (Witten and
Frank, 2005).

3 Experimental Results

Experiments were conducted to test the end-of-utterance
system on pre-recorded conversations, measuring preci-
sion and recall of positive classifications. The conver-
sations used contained speech by both male and female
users to compare the robustness among different vocal
range frequencies.

3.1 Data

The training set of data is derived from about 22 min-
utes of conversations, with the audio split such that each
speaker is on a separate voice channel (see (Hollingsed,
2006)). In 17-minutes worth of these, volunteers were
asked to list eight exits on the east side of El Paso on
Interstate 10. This provided a clear way to measure end-
of-utterances as if a system were prompting users for in-
put. This set of conversations contained a large number of
turn-switches, which also simulated voice-portal systems
well. For most of the time in this set, the same person
(a female) is conducting the quiz. However, the speakers
taking the quiz have distinctly different voices and are
mixed in gender.

Five minutes of the training set were taken from a
casual conversation also containing a male and female
speaker combination. The speakers in this conversa-
tion are different from the speakers in the other dataset.
Adding these data balances the training set, reducing the
probability of the system learning only the specific quiz
format used in much of the training data.

Didi was used to extract the prosodic features, and the
filter responses were computed for each of the three fil-
ter types, in sizes ranging from 200ms to 3 seconds in
increments of 50ms, totaling 342 features per time in-
stance. The class was set to 0 or 1, signaling non-end-
of-utterances and a confirmed end-of-utterances, respec-
tively. 992 instances were created for the experiments,
split equally in two between positive examples of end-of-
utterances, and randomly selected negative examples for
both channels in the source audio.
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Table 1: Experimental results of using different classifiers and
averaging ten ten-fold-cross-validation evaluations with random
seeds per classifier.

Recall Precision F-Measure
Dec.Stump 0.623 0.705 0.660
Dec.Table 0.768 0.799 0.783

C4.5 0.792 0.800 0.796
Boost(DS) 0.792 0.820 0.806
Bag(REP) 0.850 0.833 0.841
Bag(C4.5) 0.786 0.797 0.791

All instances used for training were randomly cho-
sen. The positive examples were chosen from human-
determined end-of-utterance intervals, which ranged
from the time instant a valid end-of-utterance was
recorded to a point either 1.5 seconds after that instant or
a start-of-utterance that occurred prior to that time. The
negative examples were randomly chosen such that no
time instance was chosen prior to the 3-second-mark of
the audio file used and none was within a marked end-of-
utterance interval.

3.2 Results

Six combinations of classifiers were generated using the
Weka data mining tool. Each of these classifier combina-
tions was tested using 10-fold cross-validation. The re-
sults reflect the average of ten such cross-validation runs,
each using a different random seed. The final classifier
combinations used are Weka’s implementations of deci-
sion stumps, decision tables, C4.5 (Quinlan, 1993) and
ensembles of decision stumps using boosting and C4.5
and reduced error pruning (REP) decision trees (Quinlan,
1987) using bagging.

The experiments performed yield interesting results.
Table 1 shows that, with the exception of decision
stumps, which are perhaps too simple for this task, all
classifiers performed well, which shows that our filters
produce suitable features for classification. The best re-
sults were obtained using bagging and REP trees, but re-
sults for other methods yield similar precision and recall.

It is almost certain that better results can be obtained
using these methods if bleeding across channels in the
audio streams was reduced. The F0 features do a good job
of filtering out possible mistakes in the system due to the
way the frequencies are calculated. However, bleeding
can still mislead the classifiers into perceiving an end-of-
utterance from another speaker.

4 Conclusions and Future Work

We have shown a new filter-based method for detect-
ing end-of-utterances in conversation using only basic

prosodic information. We adapted and extended previ-
ously described methods for fast computation of filter re-
sponses, which allows our system to be trained quickly
and easily permits real-time performance. Preliminary
experiments in the task of classifying windows in dialog
recordings as being end-of-utterances or not have yielded
very promising results using standard classification algo-
rithms, with an f-measure of 0.84.

Present and future work includes evaluating the
method as a component of a real-time dialog system,
where its usefulness at decreasing waiting time can be
tested. We are also working on methods for feature se-
lection and compression to obtain further speedup, and
finally we are experimenting with larger datasets.

Acknowledgement: The authors would like to thank
NSF for partially supporting this work under grants IIS-
0415150 and 0080940.
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Abstract 

The ability to distinguish statistically dif-
ferent populations of speakers or writers 
can be an important asset in many NLP 
applications.  In this paper, we describe a 
method of using document similarity 
measures to describe differences in be-
havior between native and non-native 
speakers of English in a writing task.1 

1 Introduction 

The ability to distinguish statistically different 
populations of speakers or writers can be an impor-
tant asset in many NLP applications.  In this paper, 
we describe a method of using document similarity 
measures to describe differences in behavior be-
tween native and non-native speakers of English in 
a prompt response task. 

We analyzed results from the new TOEFL inte-
grated writing task, described in the next section.  
All task participants received the same set of 
prompts and were asked to summarize them.  The 
resulting essays are all trying to express the same 
�gist� content, so that any measurable differences 
between them must be due to differences in indi-
vidual language ability and style.  Thus the task is 
uniquely suited to measuring differences in linguis-
tic behavior between populations. 

Our measure of document similarity, described 
in section 3, is a combination of word overlap and 
syntactic similarity, also serving as a measure of 
syntactic variability.  The results demonstrate sig-
nificant differences between native and non-native 
                                                        
1 This research was funded while the first author was a Re-
search Postdoctoral Fellow at ETS in Princeton, NJ. 

speakers that cannot be attributed to any demo-
graphic factor other than the language ability itself. 

2 TOEFL Integrated Writing Task and 
Scoring 

The Test of English as a Foreign Language 
(TOEFL) is administered to foreign students wish-
ing to enroll in US or Canadian universities.  It 
aims to measure the extent to which a student has 
acquired English; thus native speakers should on 
average perform better on the test regardless of 
their analytical abilities.  The TOEFL now includes 
a writing component, and pilot studies were con-
ducted with native as well as non-native speakers. 

One of the writing components is an Integrated 
Writing Task.  Students first read an expository 
passage, which remains on the screen throughout 
the task.  Students then hear a segment of a lecture 
concerning the same topic.  However, the lecture 
contradicts and complements the information con-
tained in the reading.  The lecture is heard once; 
students then summarize the lecture and the read-
ing and describe any contradictions between them. 

The resulting essays are scored by human raters 
on a scale of 0 to 5, with 5 being the best possible 
score2.  The highest-scoring essays express ideas 
from both the lecture and the reading using correct 
grammar; the lowest-scoring essays rely on only 
one of the prompts for information and have 
grammatical problems; and the scores in between 
show a combination of both types of deficiencies. 

The test prompt contained passages about the 
advantages and disadvantages of working in 
groups; the reading was 260 words long, the lec-
ture 326 words.  540 non-native speakers and 950 
                                                        
2 Native speaker essays were initially scored with possible 
half-grades such as 2.5.  For purposes of comparison, these 
were rounded down to the nearest integer. 
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native speakers were tested by ETS in 2004.  ETS 
also collected essential demographic data such as 
native language, educational level, etc., for each 
student.  For later validation, we excluded 1/3 of 
each set, selected at random, thus involving 363 
non-native speakers and 600 native speakers. 
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Figure 1.  Relative score distributions. 

 
Among the non-native speakers, the most 

common score was 1 (see Fig. 1 for a histogram).  
By contrast, native speaker scores centered around 
3 and showed a normal-type distribution.  The dif-
ference in distributions confirms that the task is 
effective at separating non-native speakers by skill 
level, and is easier for native speakers.  The poten-
tial sources of difficulty include comprehension of 
the reading passage, listening ability and memory 
for the lecture, and the analytical ability to find 
commonalities and differences between the content 
of the reading and the lecture. 

3 Document Similarity Measure 

Due to the design of the TOEFL task, the content 
of the student essays is highly constrained.  The 
aim of the computational measures is to extract 
grammatical and stylistic differences between dif-
ferent essays.  We do this by comparing the essays 
to the reading and lecture prompts.  Our end goal is 
to determine to what extent speakers diverge from 
the prompts while retaining the content.   

The prediction is that native speakers are much 
more likely to paraphrase the prompts while keep-
ing the same gist, whereas non-native speakers are 
likely to either repeat the prompts close to verba-
tim, or diverge from them in ways that do not pre-
serve the gist.  This intuition conforms to previous 
studies of native vs. non-native speakers� text 
summarization (cf. Campbell 1987), although we 
are not aware of any related computational work. 

We begin by measuring lexico-grammatical 
similarity between each essay and the two prompts.  
An essay is represented as a set of features derived 
from its lexico-grammatical content, as described 
below.  The resulting comparison measure goes 
beyond simple word or n-gram overlap by provid-
ing a measure of structural similarity as well.  In 
essence, our method measures to what extent the 
essay expresses the content of the prompt in the 
same words, used in the same syntactic positions. 

3.1 C-rater tuples 

In order to get a measure of syntactic similarity, we 
relied on C-rater (Leacock & Chodorow 2003), an 
automatic scoring engine developed at ETS.  C-
rater includes several basic NLP components, in-
cluding POS tagging, morphological processing, 
anaphora resolution, and shallow parsing.  The 
parsing produces tuples for each clause, which de-
scribe each verb and its syntactic arguments (1). 

(1) CLAUSE: the group spreads responsibil-
ity for a decision to all the members 
TUPLE: :verb: spread :subj: the group :obj: 
responsible :pp.for: for a decide :pp.to: to all 

C-rater does not produce full-sentence trees or 
prepositional phrase attachment.  However, the 
tuples are reasonably accurate on non-native input. 

3.2 Lexical and Syntactic Features 

C-rater produces tuples for each document, often 
several per sentence.  For the current experiment, 
we used the main verb, its subject and object.  We 
then converted each tuple into a set of features, 
which included the following: 

• The verb, subject (pro)noun, and object 
(pro)noun as individual words; 

• All of the words together as a single feature; 
• The verb, subject, and object words with 

their argument roles. 
Each document can now be represented as a set 

of tuple-derived features, or feature vectors. 

3.3 Document Comparison 

Two feature vectors derived from tuples can be 
compared using a cosine measure (Salton 1989).  
The closer to 1 the cosine, the more similar the two 
feature sets.  To compensate for different frequen-
cies of the features and for varying document 
lengths, the feature vectors are weighted using 
standard tf*idf techniques. 
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In order to estimate the similarity between two 
documents, we use the following procedure.  For 
each tuple vector in Document A, we find the tuple 
in Document B with the maximum cosine to the 
tuple in Document A.  The maximum cosine val-
ues for each tuple are then averaged, resulting in a 
single scalar value for Document A.  We call this 
measure Average Maximum Cosine (AMC). 

We calculated AMCs for each student response 
versus the reading, the lecture, and the reading + 
lecture combined.  This procedure was performed 
for both native and non-native essays.  A detailed 
examination of the resulting trends is in section 4. 

3.4 Other Measures of Document Similarity 

We also performed several measures of document 
similarity that did not include syntactic features. 

Content Vector Analysis 

The student essays and the prompts were compared 
using Content Vector Analysis (CVA), where each 
document was represented as a vector consisting of 
the words in it (Salton 1989).  The tf*idf-weighted 
vectors were compared by a cosine measure. 

For non-native speakers, there was a noticeable 
trend.  At higher score levels (where the score is 
determined by a human rater), student essays 
showed more similarity to both the reading and the 
lecture prompts.  Both the reading and lecture 
similarity trends were significant (linear trend; F= 
MSlinear trend/MSwithin-subjects=63 for the reading; F=71 
for the lecture at 0.05 significance level3).  Thus, 
the rate of vocabulary retention from both prompts 
increases with higher English-language skill level. 

Native speakers showed a similar pattern of in-
creasing cosine similarity between the essay and 
the reading (F=35 at 0.05 significance for the 
trend), and the lecture (F=35 at the 0.05 level). 

BLEU score 

In order to measure the extent to which whole 
chunks of text from the prompt are reproduced in 
the student essays, we used the BLEU score, 
known from studies of machine translation (Pap-
ineni et al. 2002).  We used whole essays as sec-
tions of text rather than individual sentences. 

For non-native speakers, the trend was similar 
to that found with CVA: at higher score levels, the 
                                                        
3 All statistical calculations were performed as ANOVA-style 
trend analyses using SPSS. 

overlap between the essays and both prompts in-
creased (F=52.4 at the 0.05 level for the reading; 
F=53.6 for the lecture). 

Native speakers again showed a similar pattern, 
with a significant trend towards more similarity to 
the reading (F=35.6) and the lecture (F=31.3).  
These results were confirmed by a simple n-gram 
overlap measure. 

4 Results 

4.1 Overall similarity to reading and lecture 

The AMC similarity measure, which relies on syn-
tactic as well as lexical similarity, produced some-
what different results from simpler bag-of-word or 
n-gram measures.  In particular, there was a differ-
ence in behavior between native and non-native 
speakers: non-native speakers showed increased 
structural similarity to the lecture with increasing 
scores, but native speakers did not.   

For non-native speakers, the trend of increased 
AMC between the essay and the lecture was sig-
nificant (F=10.9).  On the other hand, there was no 
significant increase in AMC between non-native 
essays and the reading (F=3.4).  Overall, for non-
native speakers the mean AMC was higher for the 
reading than for the lecture (0.114 vs. 0.08). 

Native speakers, by contrast, showed no sig-
nificant trends for either the reading or the lecture.  
Overall, the average AMCs for the reading and the 
lecture were comparable (0.08 vs. 0.075). 

We know from results of CVA and BLEU 
analyses that for both groups of speakers, higher-
scoring essays are more lexically similar to the 
prompts.  Thus, the lack of a trend for native 
speakers must be due to lack of increase in struc-
tural similarity between higher-scoring essays and 
the prompts.  Since better essays are presumably 
better at expressing the content of the prompts, we 
can hypothesize that native speakers paraphrase the 
content more than non-native speakers. 

4.2 Difference between lecture and reading 

The most informative measure of speaker behavior 
was the difference between the Average Maximum 
Cosine with the reading and the lecture, calculated 
by subtracting the lecture AMC from the reading 
AMC.  Here, non-native speakers showed a sig-
nificant downward linear trend with increasing 
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score (F=6.5; partial eta-squared 0.08), whereas the 
native speakers did not show any trend (F=1.5).  
The AMC differences are plotted in Figure 3. 
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Figure 2 - AMC difference between reading and 

lecture 
 

Non-native speakers with lower scores rely 
mostly on the reading to produce their response, 
whereas speakers with higher scores rely some-
what more on the lecture than on the reading.  By 
contrast, native speakers show no correlation be-
tween score and reading vs. lecture similarity.  
Thus, there is a significant difference in the overall 
distribution and behavior between native and non-
native speaker populations.  This difference also 
shows that human raters rely on information other 
than simple verbatim similarity to the lecture in 
assigning the overall scores. 

4.3 Other parameters of variation 

For non-native speakers, the best predictor of the 
human-rated score is the difference in AMC be-
tween the reading and the lecture. 

As demonstrated in the previous section, the 
AMC difference does not predict the score for na-
tive speakers.  We analyzed native speaker demo-
graphic data in order to find any other possible 
predictors.  The students� overall listening score, 
their status as monolingual vs. bilingual, their par-
ents� educational levels all failed to predict the es-
say scores.  

5 Discussion and Future Work 

The Average Maximum Cosine measure as de-
scribed in this paper successfully characterizes the 
behavior of native vs. non-native speaker popula-
tions on an integrated writing task.  Less skillful 
non-native speakers show a significant trend of 
relying on the easier, more available prompt (the 
reading) than on the harder prompt (the lecture), 

whereas more skillful readers view the lecture as 
more relevant and rely on it more than on the read-
ing.  This difference can be due to better listening 
comprehension for the lecture and/or better mem-
ory.  By contrast, native speakers rely on both the 
reading and the lecture about the same, and show 
no significant trend across skill levels.  Native 
speakers seem to deviate more from the structure 
of the original prompts while keeping the same 
content, signaling better paraphrasing skills. 

While not a direct measure of gist similarity, 
this technique represents a first step toward detect-
ing paraphrases in written text.  In the immediate 
future, we plan to extend the set of features to in-
clude non-verbatim similarity, such as synonyms 
and words derived by LSA-type comparison (Lan-
dauer et al. 1998).  In addition, the syntactic fea-
tures will be expanded to include frequent 
grammatical alternations such as active / passive. 

A rather simple measure such as AMC has al-
ready revealed differences in population distribu-
tions for native vs. non-native speakers.  
Extensions of this method can potentially be used 
to determine if a given essay was written by a na-
tive or a non-native speaker.  For instance, a statis-
tical classifier can be trained to distinguish feature 
sets characteristic for different populations.  Such a 
classifier can be useful in a number of NLP-related 
fields, including information extraction, search, 
and, of course, educational measurement. 
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Abstract

We present a diacritization system for
written Arabic which is based on a lexical
resource. It combines a tagger and a lex-
eme language model. It improves on the
best results reported in the literature.

1 Introduction

Arabic is written without certain orthographic sym-
bols, called diacritics, which represent among other
things short vowels.1 The restoration of diacritics
to written Arabic is an important processing step
for several natural language processing applications,
including training language models for automatic
speech recognition, text-to-speech generation, and
so on. For a discussion of the role of diacritiza-
tion, see (Maamouri et al., 2006). In this paper, we
present a new diacritization module that outperforms
the best previously published results, using a new
combination of techniques. A more detailed presen-
tation can be found in (Habash and Rambow 2007).

2 Diacritization in Arabic: Linguistic
Description

Arabic script consists of two classes of symbols:
letters and diacritics. Letters are always written
whereas diacritics are optional: written Arabic can
be fully diacritized, it can have some diacritics (to
disambiguate certain words), or it can be entirely
undiacritized. There are three types of diacritics:
vowel, nunation, and shadda. Vowel diacritics rep-
resent Arabic’s three short vowels and the absence
of any vowel. The following are the four vowel-
diacritics exemplified in conjunction with the letter
� � b (we use Buckwalter transliteration): �� � ba,

�� �
1This research was supported by the Defense Advanced Re-

search Projects Agency (DARPA) under Contract No. HR0011-
06-C-0023. Any opinions, findings and conclusions or recom-
mendations expressed in this paper are those of the authors and
do not necessarily reflect the views of DARPA.

bu, � �� bi and
�� � bo (no vowel). Nunation diacrit-

ics can only occur in word final positions in nomi-
nals (nouns, adjectives and adverbs). They represent
a short vowel followed by an n sound:

���� � 2 bF, 	� �
bN and � �� bK. Nunation is an indicator of nominal

indefiniteness. Shadda is a consonant doubling dia-
critic: 
� � b∼. The shadda can combine with vowel

or nunation diacritics:
�

� � b∼u or 	
� � b∼N. Addi-

tional diacritical marks in Arabic include the hamza,
which appears in conjunction with a small number

of letters (e.g.,
� �
,
�
� ,

 �
,
�� ,

�� ). Since most Arabic en-
codings do not consider the hamza a diacritic, but
rather a part of the letter (like the dot on the lower-
case Roman i or under the Arabic b: � � ), we do not
count it here as part of the diacritic set.

Functionally, diacritics can be split into two dif-
ferent kinds: lexemic diacritics and inflectional di-
acritics. Lexemic diacritics distinguish between two
lexemes.3 For example, the diacritization differ-
ence between the lexemes � ���� �

� ��
kAtib ’writer’ and

� �
�
��
� ��

kAtab ‘to correspond’ distinguish between the
meanings of the word rather than their inflections.
Thus, there are lexemes that look alike when undia-
critized but are spelled differently when diacritized.
Note that there are also distinct lexemes that are al-
ways spelled the same way, even when diacritized –
their difference is only a difference in word sense.

Inflectional diacritics distinguish different in-
flected forms of the same lexeme. For instance,
the final diacritics in

�
��
�� �
�
��
��

katabtu ‘I wrote’ and
�
��
�� �
�
��
��

katabta ‘you wrote’ distinguish the person of
the subject of the verb. We further distinguish be-

2Arabic orthography calls for adding a silent Alif ( � ) in con-

junction with �� in words ending with a consonant.
3A lexeme is an abstraction over inflected wordforms which

groups together all those wordforms that differ only in terms
of one of the morphological categories such as number, gender,
aspect, or voice. The lemma is the distinguished word form
which serves as citation form.
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tween two types of inflectional diacritics: variant
inflectional diacritics and invariant inflectional dia-
critics. The distinction is made with respect to two
morphosyntactic features: nominal case and verbal
mood. The variant inflectional diacritics need not al-
ways appear at the end of the word. For instance, the
variant inflectional diacritics at the penultimate po-
sitions of the following two words distinguish their
case:

� � �� � �� �
� ��

kAtibuhu ‘his writer [nominative]’ and� � �� � �� �
� ��

kAtibahu ‘his writer [accusative]’.

3 The MADA-D System

In a previous publication, we described the Mor-
phological Analysis and Disambiguation of Ara-
bic (MADA) system (Habash and Rambow, 2005).
The basic approach used in MADA is inspired by
the work of Hajič (2000) for tagging morphologi-
cally rich languages, which was extended to Ara-
bic independently by Hajič et al. (2005). In this
approach, a set of taggers are trained for individ-
ual linguistic features which are components of the
full morphological tag (such as core part-of-speech,
tense, number, and so on). In Arabic, we have ca.
2,000 to 20,000 morphological tags, depending on
how we count. The Buckwalter Arabic Morpholog-
ical Analyzer (BAMA) (Buckwalter, 2004) is con-
sulted to produce a list of possible analyses for a
word. BAMA returns, given an undiacritized in-
flected word form, all possible morphological anal-
yses, including full diacritization for each analy-
sis. The results of the individual taggers are used
to choose among these possible analyses. The algo-
rithm we proposed in (Habash and Rambow, 2005)
for choosing the best BAMA analysis simply counts
the number of predicted values for the set of linguis-
tic features in each candidate analysis. Hajič et al.
(2005), however, weigh the predicted values by their
probability or confidence measure. To our knowl-
edge, no results on diacritization have been previ-
ously reported using this particular approach to tag-
ging.4

In this paper, we extend our basic MADA sys-
tem in the following ways: First, we follow Hajič
et al. (2005) in including case, mood, and nunation

4Smith et al. (2005) also use the Buckwalter Analyzer in
their Arabic morphological tagger, but then use a rather differ-
ent approach to choosing among the possible analyses. They
represent the possible analyses in a lattice, and a noisy channel
model to choose among them. We leave to future work how the
issue of diacritization can be integrated with their model.

as features, because of its importance to diacritiza-
tion. Second, we replace the YAMCHA (Kudo and
Matsumoto, 2003) implementation of Support Vec-
tor Machines (SVMs) with SVMTool (Giménez and
Màrquez, 2004) as our machine learning tool, for
reasons of speed, at the cost of a slight decrease in
accuracy. Like Hajič et al. (2005), we do not use
Viterbi decoding. Finally, we introduce a specialized
module for resolving residual ambiguity after the ba-
sic tagging is done. We explain this module in detail
next. We train our classifiers on the exact training set
defined by Zitouni et al. (2006), a subpart of the third
segment of the Penn Arabic Treebank (Maamouri et
al., 2004) (“ATB3-Train”, 288,000 words). We also
(reluctantly) follow them in having a single set for
development and testing (“ATB3-Devtest”, 52,000
words), rather than separate development and test
sets (as is common), in order to be able to compare
our results to theirs.

Up until this point, MADA-D has narrowed the
list of possible analyses of a word (supplied by
BAMA) down to a small number. This number can
sometimes be greater than one for two reasons: first,
the way in which we use the output of the taggers
to choose among the analyses may yield a tie among
several analyses; second, there may be lexeme-based
diacritic ambiguity, and the morphological taggers
cannot disambiguate lexemic diacritization. To ad-
dress the residual ambiguity, we implemented a sec-
ond component. Ideally, this would be (or include) a
full word sense disambiguation (WSD) system, but
WSD is a hard problem. Instead, we approximate
WSD using standard n-gram language models. We
use two types of data for training: fully diacritized
word forms, and data in which we have replaced the
inflected word by the diacritized citation form of the
lexeme. Note that this procedure conflates lexemes
that differ only in meaning, not in diacritization, as
we are not actually interested in WSD for its own
sake in this paper. The training corpus is the same
corpus we use for the classifiers, ATB3-Train. This
means that the diacritization and the choice of lex-
eme are done by hand, but it also means that the
training set is quite small by the standards of lan-
guage models. We build an open-vocabulary lan-
guage model with Kneser-Ney smoothing using the
SRILM toolkit (Stolcke, 2002). We will call the re-
sulting language models XLM-n, where X is “D”
for the fully diacritized word forms, or “L” for the
lexeme citation forms, and n is the order of the n-
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grams (n = 1, 2, 3). When all candidate tokens (di-
acritized word or lexeme citation form) are unknown
(out-of-vocabulary), the language model does not
actually make a choice among them. We then use a
diacritization unigram model, and then finally ran-
dom choice. In the case of a preceding DLM-n
model, this simply amounts to random choice, but
in the case of a preceding LLM-n model, the dia-
critization model may actually make a non-random
choice.

4 Related Work

We review three approaches that are directly rele-
vant to us; we refer to the excellent literature review
in (Zitouni et al., 2006) for a general review. Vergyri
and Kirchhoff (2004) follow an approach similar to
ours in that they choose from the diacritizations pro-
posed by BAMA. However, they train a single tag-
ger using unannotated data and EM, which necessar-
ily leads to a lower performance. The most salient
difference, however, is that they are motivated by the
goal of improving automatic speech recognition, and
have an acoustic signal parallel to the undiacritized
text. All their experiments use acoustic models.
They show that WER for diacritization decreases by
nearly 50% (from 50%) when BAMA is added to the
acoustic information, but the tagger does not help. It
would be interesting to investigate ways of incorpo-
rating acoustic model information in our approach.

Ananthakrishnan et al. (2005) also work on dia-
critization with the goal of improving ASR. They
use a word-based language model (using both di-
acritized and undiacritized words in the context)
but back off to a character-based model for unseen
words. They consult BAMA to narrow possible di-
acritizations for unseen words, but BAMA does not
provide much improvement used in this manner.

Zitouni et al. (2006) use a maximum entropy clas-
sifier to assign a set of diacritics to the letters of
each word. They use the output of a tokenizer (seg-
menter) and a part-of-speech tagger (which presum-
ably tags the output of the tokenizer). They then use
segment n-grams, segment position of the character
being diacritized, the POS of the current segment,
along with lexical features, including letter and word
n-grams. Thus, while many of the same elements
are used in their and our work (word n-grams, fea-
tures related to morphological analysis), the basic
approach is quite different: while we have one pro-
cedure that chooses a correct analysis (including to-

All Diacritics Ignore Last
Model WER DER WER DER
Only-DLM-1 39.4 14.5 13.8 6.6

Tagger-DLM-1 15.9 5.3 6.2 2.5
Tagger-DLM-2 15.2 5.1 5.8 2.4
Tagger-DLM-3 15.1 5.0 5.7 2.4

Tagger-LLM-1 16.0 5.3 6.3 2.6
Tagger-LLM-2 15.0 4.9 5.6 2.2
Tagger-LLM-3 14.9 4.8 5.5 2.2
Only-LLM-3 35.5 10.8 8.8 3.6
Tagger-noLM 16.0 5.3 6.3 2.6

Zitouni 18.0 5.5 7.9 2.5

Figure 1: Diacritization Results (all followed by
single-choice-diac model); our best results are
shown in boldface; Only-DLM-1 is the baseline;
“Zitouni” is (Zitouni et al., 2006)

kenization, morphological tag, and diacritization),
they have a pipeline of processors. Furthermore, Zi-
touni et al. (2006) do not use a morphological lexi-
con. To our knowledge, their system is the best per-
forming currently, and we have set up our experi-
ments to allow us to compare our results directly to
their results.

5 Results

There are several ways of defining metrics for dia-
critization. In order to assure maximal comparabil-
ity with the work of Zitouni et al. (2006), we adopt
their metric.5 We count all words, including num-
bers and punctuation. Each letter (or digit) in a word
is a potential host for a set of diacritics; we count
all diacritics on a single letter as a single binary
choice. So, for example, if we correctly predict a
shadda but get the vowel wrong, it counts as a wrong
choice. We approximate non-variant diacritization
by removing all diacritics from the final letter (Ig-
nore Last), while counting that letter in the evalua-
tion. We give diacritic error rate (DER) which tells
us for how many letters we incorrectly restored all
diacritics, and word error rate (WER), which tells
us how many words had at least one DER.

The results are shown in Figure 1. Going top
to bottom, we first see the baseline, Only-DLM-1,
which is simply a diacritization unigram model with

5We thank Imed Zitouni (personal communication) for de-
tails on their evaluation.
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random choice for unseen words. We then show the
results using the morphological tagger along with a
language model. We first show results for the dia-
critization model, with 1-, 2-, and 3-grams. As we
can see, the bigram language model helps slightly.
The next three lines are the three lexeme n-gram
models. Here we see that the unigram model per-
forms worse than the unigram diacritization model,
while the bigram and trigram models perform better
(the trigram lexeme model is our best result). We
interpret this as meaning that the lexeme model is
useful only when context is taken into account, be-
cause it is actually performing a rudimentary form of
WSD. We tease apart the contribution of the tagger
and of the language model with two further experi-
ments, in the next two lines: using just the lexeme
language model (trigrams), and running just the tag-
ger, followed by random choice. We can see that
the tagger alone does as well as the tagger with the
unigram lexeme model, while the lexeme model on
its own does much worse. However, as expected, the
lexeme model on its own for the Ignore Last measure
is much closer to the performance of the tagger on
its own. We conclude from this that the quite simple
lexeme model is in fact contributing to the correct
choice of the lexemic diacritics. Finally, we give the
results of Zitouni et al. (2006) on the last line, which
we understand to be the best published results cur-
rently. We see that we improve on their results in all
categories. We can see the effect of our different ap-
proaches to diacritization in the numbers: while for
WER we reduce the Zitouni et al error by 17.2%, the
DER error reduction is only 10.9%. This is because
we are choosing among complete diacritization op-
tions for white space-tokenized words, while Zitouni
et al. (2006) make choices for each diacritic. This
means that when we make a mistake, it may well
affect several diacritics at once, so that the diacritic
errors are concentrated in fewer words. This effect
is even stronger when we disregard the final letter
(30.4% reduction in WER versus 12.0% reduction
in DER), suggesting that singleton errors in words
tend to be in the final position (case, mood), as it is
often hard for the tagger to determine these features.

6 Conclusion

We have shown that a diacritizer that uses a lexical
resource can outperform a highly optimized ad-hoc
diacritization system that draws on a large number
of features. We speculate that further work on WSD

could further improve our results. We also note the
issue of unknown words, which will affect our sys-
tem much more than that of (Zitouni et al., 2006).
It is possible to construct a combined system which
uses a lexicon, but backs off to a Zitouni-style sys-
tem for unknown words. However, a large portion
of the unknown words are in fact foreign words and
names, and it is not clear whether the models learned
handle such words well.
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Abstract

This paper describes an efficient method
to extract largen-best lists from a word
graph produced by a statistical machine
translation system. The extraction is based
on thek shortest paths algorithm which
is efficient even for very largek. We
show that, although we can generate large
amounts of distinct translation hypothe-
ses, these numerous candidates are not
able to significantly improve overall sys-
tem performance. We conclude that large
n-best lists would benefit from better dis-
criminating models.

1 Introduction

This paper investigates the properties of largen-
best lists in the context of statistical machine trans-
lation (SMT). We present a method that allows for
fast extraction of very largen-best lists based on
the k shortest paths algorithm by (Eppstein, 1998).
We will argue that, despite being able to generate a
much larger amount of hypotheses than previously
reported in the literature, there is no significant gain
of such a method in terms of translation quality.

In recent years, phrase-based approaches evolved
as the dominating method for feasible machine
translation systems. Many research groups use a de-
coder based on a log-linear approach incorporating
phrases as main paradigm (Koehn et al., 2003). As a
by-product of the decoding process, one can extract
n-best translations from a word graph and use these
fully generated hypotheses for additional reranking.

In the past, several groups report on usingn-best
lists with n ranging from 1 000 to 10 000. The ad-
vantage ofn-best reranking is clear: we can apply

complex reranking techniques, based e.g. on syntac-
tic analyses of the candidates or using huge addi-
tional language models, since the whole sentence is
already generated. During the generation process,
these models would either need hard-to-implement
algorithms or large memory requirements.

1.1 Related work

The idea ofn-best list extraction from a word graph
for SMT was presented in (Ueffing et al., 2002). In
(Zens and Ney, 2005), an improved method is re-
ported that overcomes some shortcomings, such as
duplicate removal by determinization of the word
graph (represented as a weighted finite state automa-
ton) and efficient rest-cost estimation with linear
time complexity.

There are several research groups that use a two-
pass approach in their MT systems. First, they gen-
eraten-best translation hypotheses with the decoder.
Second, they apply additional models to the out-
put and rerank the candidates (see e.g. (Chen et al.,
2006)).

Syntactic features were investigated in (Och et al.,
2004) with moderate success. Although complex
models, such as features based on shallow parsing or
treebank-based syntactic analyses, were applied to
then-best candidates, the “simpler” ones were more
promising (e.g. IBM model 1 on sentence-level).

In the following section 2, we describe our SMT
system and explain how an improvedn-best extrac-
tion method is capable of generating a very large
number of distinct candidates from the word graph.
In section 3, we show our experiments related to
n-best list reranking with various sizes and the cor-
responding performance in terms of MT evaluation
measures. Finally, we discuss the results in section 4
and give some conclusive remarks.

57



2 Generating N-best lists

We use a phrase-based SMT system (Mauser et al.,
2006) and enhance then-best list extraction with
Eppstein’sk shortest path algorithm which allows
for generating a very large number of translation
candidates in an efficient way.

2.1 Baseline SMT system

The baseline system uses phrases automatically ex-
tracted from a word-aligned corpus (trained with
GIZA++) and generates the best translations using
weighted log-linear model combination with several
features, such as word lexicon, phrase translation
and language models. This direct approach is cur-
rently used by most state-of-the-art decoders. The
model scaling factors are trained discriminatively on
some evaluation measure, e.g. BLEU or WER, using
the simplex method.

2.2 N-best list extraction

We incorporated an efficient extraction ofn best
translations using thek shortest path algorithm
(Eppstein, 1998) into a state-of-the-art SMT system.
The implementation is partly based on code that is
publicly available.1

Starting point for the extraction is a word graph,
generated separately by the decoder for each sen-
tence. Since these word graphs are directed and
acyclic, it is possible to construct a shortest path tree
spanning from the sentence begin node to the end
node. The efficiency of finding thek shortest paths
in this tree lies in the book-keeping of edges through
a binary heap that allows for an implicit representa-
tion of paths. The overall performance of the algo-
rithm is efficient even for largek. Thus, it is feasi-
ble to use in situations where we want to generate a
large number of paths, i.e. translation hypotheses in
this context.

There is another issue that has to be addressed.
In phrase-based SMT, we have to deal with differ-
ent phrase segmentations for each sentence. Due to
the large number of phrases, it is possible that we
have paths through the word graph representing the
same sentence but internally having different phrase
boundaries. Inn-best list generation, we want to get
rid of these duplicates. Due to the efficiency of the
k shortest paths algorithm, we allow for generating
a very large number of hypotheses (e.g.100 · n) and

1http://www.ics.uci.edu/∼eppstein/pubs/
graehl.zip

then filter the output via a prefix tree (also called
trie) until we getn distinct translations.

With this method, it is feasible to generate
100 000-best lists without much hassle. In gen-
eral, the file input/output operations are more time-
consuming than the actualn-best list extraction.
The average generation time ofn-best candidates
for each of the sentences of the development list
is approximately 30 seconds on a 2.2GHz Opteron
machine, whereas 7.4 million hypotheses are com-
puted per sentence on average. The overall extrac-
tion time including filtering and writing to hard-disk
takes around 100 seconds per sentence. Note that
this value could be optimized drastically if checking
for how many duplicates are generated on average
beforehand and adjusting the initial number of hy-
potheses before applying the filtering. We only use
thek = 100 · n as a proof of concept.

2.3 Rescoring models

After having generated the 100 000-best lists, we
have to apply additional rescoring models to all hy-
potheses. We select the models that have shown
to improve overall translation performance as used
for recent NIST MT evaluations. In addition to the
main decoder score (which is already a combination
of several models and constitutes a strong baseline),
these include several large language models trained
on up to 2.5 billion running words, a sentence-level
IBM model 1 score,m-gram posterior probabilities
and an additional sentence length model.

3 Experiments

The experiments in this section are carried out onn-
best lists withn going up to 100 000. We will show
that, although we are capable of generating this large
amount of hypotheses, the overall performance does
not seem to improve significantly beyond a certain
threshold. Or to put it simple: although we generate
lots of hypotheses, most of them are not very useful.

As experimental background, we choose the large
data track of the Chinese-to-English NIST task,
since the length of the sentences and the large vo-
cabulary of the task allow for largen-best lists. For
smaller tasks, e.g. the IWSLT campaign, the domain
is rather limited such that it does not make sense
to generate lists reaching beyond several thousand
hypotheses. As development data, we use the 2002
eval set, whereas for test, the 2005 eval set is chosen.
The corpus statistics are shown in Table 1.
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Chinese English
Train Sentence Pairs 7M

Running Words 199M 213M
Vocabulary Size 222K 351K

Dev Sentence Pairs 878 3 512
Running Words 25K 105K

Test Sentence Pairs 1 082 4 328
Running Words 33K 148K

Table 1: Corpus statistics for the Chinese-English
NIST MT task.

3.1 Oracle-best hypotheses

In the first experiment, we examined the oracle-best
hypotheses in then-best lists for several list sizes.
For an efficient calculation of the true BLEU oracle
(the hypothesis which has a maximum BLEU score
when compared to the reference translations), we
use approximations based on WER/PER-oracles, i.e.
we extract the hypotheses that have the lowest edit
distance (WER, word error rate) to the references.
The same is applied by disregarding the word or-
der (leading to PER, position-independent word er-
ror rate).

As can be seen in Table 2, the improvements are
steadily decreasing, i.e. with increasing number of
generated hypotheses, there are less and less use-
ful candidates among them. For the first 10 000
candidates, we therefore have the possibility to find
hypotheses that could increase the BLEU score by
at least 8.3% absoluteif our models discriminated
them properly. For the next 90 000 hypotheses, there
is only a small potential to improve the whole sys-
tem by around 1%. This means that most of the
generated hypotheses are not very useful in terms of
oracle-WER and likely distracting the “search” for
the needle(s) in the haystack. It has been shown in
(Och et al., 2004) that true BLEU oracle scores on
lists with much smallern ≤ 4096 are more or less
linear inlog(n). Our results support this claim since
the oracle-WER/PER is a lower bound of the real
BLEU oracle. For the PER criterion, the behavior of
the oracle-best hypotheses is similar. Here we can
notice that after 10,000 hypotheses, the BLEU score
of the oracle-PER hypotheses stays the same.

These observations already impair the alleged
usefulness of a large amount of translation hypothe-
ses by showing that the overall possible gain with in-
creasingn gets disproportionately small if one puts
it in relation to the exponential growth of then.

Oracle-WER [%] Oracle-PER [%]
N BLEU abs. imp. BLEU abs. imp.
1 36.1 36.1
10 38.8 +2.7 38.0 +1.9
100 41.3 +2.5 39.8 +1.8
1000 43.3 +2.0 41.0 +1.2
10000 44.4 +1.1 42.0 +1.0
100000 45.3 +0.9 42.0 +0.0

Table 2: Dev BLEU scores of oracle-best hypothe-
ses based on minimum WER/PER.

3.2 Rescoring performance

As a next step, we show the performance of tuning
the model scaling factors towards best translation
performance. In our experiments, we use the BLEU
score as objective function of the simplex method.

Figure 1 shows the graphs for the development
(on the left) and test set (on the right). The up-
per graphs depict the oracle-WER BLEU scores (cf.
also Table 2) for comparison. As was already stated,
these are a lower bound since the real oracle-BLEU
hypotheses might have even higher scores. Still, it is
an indicator of what could be achieved if the models
discriminated good from bad hypotheses properly.

The lower two graphs show the behavior when
(a) optimizing and extracting hypotheses on a sub-
set (the firstn) of the 100k-best hypotheses and (b)
optimizing on a subset but extracting from the full
100k set. As can be seen, extracting from the full
set does not even help for the development data on
which the scaling factors were tuned. Experiments
on the test list show similar results. We can also
observe that the improvement declines rapidly with
highern. Note that an optimization on the full 100k
list was not possible due to huge memory require-
ments. The highestn that fit into the 16GB machine
was 60 000. Thus, this setting was used for extrac-
tion on the full 100k set.

The results so far indicate that it is not very use-
ful to go beyondn = 10000. For the development
set, the baseline of 36.1% BLEU can be improved
by 1.6% absolute to 37.7% for the first 10k entries,
whereas for the 60k setting, the absolute improve-
ment is only increased by a marginal 0.1%. For the
chosen setting, whose focus was on various list sizes
for optimization and extraction, the improvements
on the development lists do not carry over to the test
list. From the baseline of 31.5%, we only get a mod-
erate improvement of approximately 0.5% BLEU.
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Figure 1: BLEU scores of the reranked system. Development set (left) vs. Test set (right).

One possible explanation for this lies in the poor
performance of the rescoring models. A short test
was carried out in which we added the reference
translations to then-best list and determined the cor-
responding scores of the additional models, such as
the large LM and the IBM model 1. Interestingly,
only less than 1/4 of the references was ranked as
the best hypothesis. Thus, most reference transla-
tions would never have been selected as final candi-
dates. This strongly indicates that we have to come
up with better models in order to make significant
improvements from largen-best lists. Furthermore,
it seems that the exponential growth ofn-best hy-
potheses for maintaining a quasilinear improvement
in oracle BLEU score has a strong impact on the
overall system performance. This is in contrast to a
word graph, where a linear increment of its density
yields disproportionately high improvements in ora-
cle BLEU for lower densities (Zens and Ney, 2005).

4 Conclusion

We described an efficientn-best list extraction
method that is based on thek shortest paths algo-
rithm. Experiments with large 100 000-best lists in-
dicate that the models do not have the discriminating
power to separate the good from the bad candidates.
The oracle-best BLEU scores stay linear inlog(n),
whereas the reranked system performance seems to
saturate at around 10k best translations given the ac-
tual models. Using more hypotheses currently does
not help to significantly improve translation quality.

Given the current results, one should balance the
advantages ofn-best lists, e.g. easily testing com-
plex rescoring models, and word graphs, e.g. repre-
sentation of a much larger hypotheses space. How-

ever, as long as the models are not able to correctly
fire on good candidates, both approaches will stay
beneath their capabilities.
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Abstract

Dependency analysis of natural language
gives rise to non-projective structures.
The constraint of well-nestedness on de-
pendency trees has been recently shown
to give a good fit with empirical linguis-
tic data. We present a reformulation of
this constraint using properties of non-
projective edges and show its formal re-
lationship to level types of non-projective
edges; we also derive a simple O(n2) al-
gorithm for checking well-nestedness.

1 Introduction

Dependency analysis of natural language has been
gaining an ever increasing interest thanks to its ap-
plicability in many tasks of NLP—a recent example
is the dependency parsing work of McDonald et al.
(2005), which introduces an approach based on the
search for maximum spanning trees, capable of han-
dling non-projective structures naturally.
In this context, the issue of delimiting dependency

structures permissible in natural language grows in
importance (see e.g. Nivre (2006)). We would like
to point out that since neither syntactic structures in
dependency treebanks, nor structures arising in de-
pendency parsing need a priori fall into any formal
subclass of dependency trees, we need means of de-
scribing any non-projective structure.1

1The importance of such means is evident from the asymp-
totically negligible proportion of projective trees to all depen-
dency trees. (Unrestricted dep. trees (i.e. labelled rooted trees),

Kuhlmann and Nivre (2006) compare several con-
straints on dependency structures and among the
considered ones find well-nestedness to be in good
accord with empirical data. However, they do not in-
clude level types of non-projective edges introduced
by Havelka (2005), which present another means of
characterizing any non-projective structure and have
interesting formal properties. We link properties of
non-projective edges and their level types to the con-
straint of well-nestedness and show that they provide
a more fine-grained means capable of capturing it.
The paper is organized as follows: Sect. 2 con-

tains formal preliminaries; Sect. 3 and 4 review def-
initions and show the necessary properties of the
constraint of well-nestedness and level types of non-
projective edges; Sect. 5 presents the main results
concerning the relationship between non-projective
edges (and their level types) and well-nestedness.

2 Formal preliminaries

To make the paper as self-contained as possible, we
provide a concise reference with definitions and sim-
ple properties used in subsequent sections.
Definition 1 A dependency tree is a triple
(V,→,"), where V is a finite set of nodes, → a de-
pendency relation on V , and " a total order on V .
Relation→ models linguistic dependency, and so

represents a directed, rooted tree on V . There are
many ways of characterizing rooted trees, we give
here a characterization via the properties of→: there
is a root r∈V such that r→∗ v for all v∈V and there
well-nested dep. trees, and projective dep. trees are counted by
sequences A000169, A113882, and A006013 (offset 1), resp.,
in the On-Line Encyclopedia of Sequences (Sloane, 2007).)
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is a unique edge p→ v for all v ∈V , v %= r. Relation
→∗ is the reflexive transitive closure of → and is
usually called subordination.
The following definitions allow us to formulate

our results succinctly. For each node i we define
its level as the length of the path r →∗ i; we de-
note it leveli. The symmetrization ↔ = →∪→−1

makes it possible to talk about edges (pairs of nodes
i, j such that i → j) without explicitly specifying
the parent (head etc.; i here) and the child (de-
pendent etc.; j here); so → represents directed
edges and ↔ undirected edges. To retain the abil-
ity to talk about the direction of edges, we define

Parenti↔ j =

{

i if i→ j
j if j→ i and Childi↔ j =

{

j if i→ j
i if j→ i .

Our notation for rooted subtrees is Subtreei = {v ∈
V | i→∗ v}, Subtreei↔ j = {v∈V | Parenti↔ j →∗ v},
and for ancestors Anci = {v ∈V | v→∗ i}, Anci↔ j =
{v ∈ V | v →∗ Parenti↔ j}. To be able to talk con-
cisely about the total order on nodes ", we de-
fine open and closed intervals whose endpoints need
not be in a prescribed order: (i, j) = {v ∈ V |
min"{i, j} ≺ v ≺ max"{i, j}} and [i, j] = {v ∈ V |
min"{i, j} " v " max"{i, j}}, resp. For any edge
i↔ j we define its gap as follows Gapi↔ j = {v ∈
V | v ∈ (i, j) & v /∈ Subtreei↔ j}. An edge with an
empty gap is projective, an edge whose gap is non-
empty is non-projective. (See e.g. (Havelka, 2005)
for the characterization of projectivity via properties
of edges and further references.)
Property 2 Let a be a node and i ↔ j any edge
disjoint from a. Then i ∈ Subtreea ⇔ j ∈ Subtreea.
PROOF. From the assumption i %= a %= j it follows
that i, j ∈ Subtreea ⇔ Parenti↔ j ∈ Subtreea.
Proposition 3 Let i↔ j, u↔ v be disjoint edges.
(i) If u,v ∈ (i, j), then u ∈ Gapi↔ j ⇔ v ∈ Gapi↔ j .
(ii) If u ∈ Gapi↔ j and v /∈ Gapi↔ j , then v /∈ [i, j].
PROOF. (i) follows immediately from the definition
of Gapi↔ j and Property 2. To prove (ii), assume v ∈
(i, j) and using (i) arrive at a contradiction.

3 Well-nestedness

Kuhlmann and Nivre (2006) claim that the constraint
of well-nestedness seems to approximate well de-
pendency structures occurring in natural language.
Definition 4 A dependency tree T is ill-nested if
there are disjoint subtrees T1, T2 of T and nodes

x1,y1 ∈ T1 and x2,y2 ∈ T2 such that x1 ∈ (x2,y2) and
x2 ∈ (x1,y1). A dependency tree T that is not ill-
nested is well-nested.2

It is easy to express the constraint in terms of
edges—it will prove crucial in Sect. 5.
Theorem 5 A dependency tree T is ill-nested iff
there are edges i1 ↔ j1, i2 ↔ j2 in disjoint subtrees
T1, T2 of T , resp., such that i1 ∈ (i2, j2), i2 ∈ (i1, j1).
PROOF. Direction⇐ is obvious.
Direction ⇒: Let ri be the root of Ti. To find

i1 ↔ j1, first suppose that r1 ∈ (x2,y2). Consider the
first edge vk → vk+1 on the downward path v0 = r1,
v1, . . . ,vm = y1, m > 0, such that vk ∈ (x2,y2) and
vk+1 /∈ [x2,y2]. If r1 /∈ [x2,y2], consider the first edge
vk+1 → vk on the upward path v0 = x1,v1, . . . ,vn =
r1, n > 0, such that vk ∈ (x2,y2) and vk+1 /∈ [x2,y2].
Let us denote i1 = vk and j1 = vk+1, and possibly re-
name x2,y2 so that i1 ∈ (x2,y2) and x2 ∈ (i1, j1). To
find i2 ↔ j2 such that i1 ∈ (i2, j2), i2 ∈ (i1, j1), pro-
ceed similarly as above. Obviously, edges i1 ↔ j1,
i2 ↔ j2 are in disjoint subtrees.

4 Level types of non-projective edges

Level types of non-projective edges allow their
structural classification with interesting formal prop-
erties. They were introduced by Havelka (2005),
who presents them in more detail.
Definition 6 The level type (or just type) of a non-
projective edge i↔ j is defined as follows

Typei↔ j = levelChildi↔ j −minn∈Gapi↔ j leveln .

The type of an edge is the distance of its child
node and a node in its gap closest to the root (dis-
tance here means difference in levels)—for sample
configurations see Figure 13. Note that there may
be more than one node witnessing an edge’s type.
The type of an edge is not bounded—it can take any
integer value (depending on the height of a tree).
Our definition of level type of non-projective

edges extends naturally the original definition im-
2The original definition requires x1 ≺ x2 ≺ y1 ≺ y2, however

our equivalent formulation leads to shorter theorems and proofs.
3We adopt the following convention: nodes are drawn top-

down according to their increasing level, with nodes on the
same level on the same horizontal line; nodes are drawn from
left to right according to the total order on nodes; edges are
drawn as solid lines, paths as dotted curves. We assume that no
node on a path lies in the span of an edge the path crosses.
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positive type type 0 negative type

Figure 1: Sample non-projective edges

plicit in (Havelka, 2005), where classes correspond-
ing to positive, zero and negative types are defined.
We now show a relationship between edges of cer-

tain types that will allow us to derive a relationship
between non-projective edges and well-nestedness.
Theorem 7 For any non-projective edge i↔ j in a
dependency tree T with Typei↔ j ≤ 0 (< 0) there is
a non-projective edge v→ u in T with Typeu↔v ≥ 0
(> 0) such that u ∈ argminn∈Gapi↔ j

leveln and either
i ∈ Gapu↔v, or j ∈ Gapu↔v.
PROOF. Let u be any node in argminn∈Gapi↔ j

leveln.
From the assumption Typei↔ j ≤ 0 node u has a par-
ent v /∈ Gapi↔ j. Obviously i ↔ j, v → u are dis-
joint, thus from Proposition 3 we have v /∈ [i, j], and
so either i ∈ (u,v), or j ∈ (u,v). Since levelv ≥
levelParenti↔ j , we have that Parenti↔ j /∈ Subtreev, and
so either i ∈ Gapu↔v, or j ∈ Gapu↔v. Finally from
Typei↔ j ≤ 0 (< 0) we get levelu− levelChildi↔ j ≥ 0
(> 0), hence Typeu↔v ≥ 0 (> 0).

5 Well-nestedness & non-projective edges

We give characterizations of well-nestedness solely
in terms of properties of non-projective edges and
show some applications.

5.1 Characterization using pairs of edges

First we give a characterization of pairs of edges in
Theorem 5 in terms of their gaps.
Theorem 8 Let i1 ↔ j1, i2 ↔ j2 be two edges in a
dependency tree T . They are in disjoint subtrees T1,
T2, resp., and satisfy i1 ∈ (i2, j2), i2 ∈ (i1, j1) iff the
following condition holds

(inp) i1 ∈ Gapi2↔ j2 & i2 ∈ Gapi1↔ j1 .

PROOF. Direction ⇐: Root Tk in Parentik↔ jk , k =
1,2. Condition (inp) obviously implies i1 ∈ (i2, j2),
i2 ∈ (i1, j1), which in turn implies that edges i1↔ j1,
i2 ↔ j2 are disjoint. From Property 2 we get that
both Parenti2↔ j2 /∈ Subtreei1↔ j1 and Parenti1↔ j1 /∈

Subtreei2↔ j2 , hence subtrees T1, T2 are disjoint.
Direction ⇒: Let us consider the edge i2 ↔ j2

and node i1. Since T1 is disjoint from T2, we have
that i1 /∈ Subtreei2↔ j2 , and therefore i1 ∈ Gapi2↔ j2 .
The proof that i2 ∈ Gapi1↔ j1 is analogous.
Condition (inp) allows us to talk about pairs of

edges causing ill-nestedness and so characterize
well-nestedness using properties of pairs of edges.
Definition 9 We say that any two non-projective
edges i1 ↔ j1, i2 ↔ j2 in a dependency tree T sat-
isfying condition (inp) form an ill-nested pair of
edges.
Corollary 10 A dependency tree T is ill-nested iff it
contains an ill-nested pair of edges.
PROOF. Follows from Theorems 5 and 8.

5.2 Sufficient condition for ill-nestedness
The results of Section 4 and previous subsection give
the following relationship between types of non-
projective edges and well-nestedness.
Theorem 11 If a dependency tree contains a non-
proj. edge of nonpositive type, then it is ill-nested.
PROOF. Follows from Theorems 7 and 10.
We see that types of non-projective edges and

well-nestedness share a common ground; however,
the statement of Theorem 11 cannot be strengthened
to equivalence (it is easy to see that also two edges
of positive type can satisfy (inp)).

5.3 Characterization using single edges
Now we show that well-nestedness can be character-
ized in terms of properties of single non-projective
edges only. We define the ill-nested set of an edge
and show that it gives the desired characterization.
Definition 12 The ill-nested set of any edge i↔ j
is defined as follows

Ini↔ j = {u↔ v | u ∈ Gapi↔ j & v /∈ [i, j]
& u,v /∈ Anci↔ j} .

The next proposition exposes the relationship of
edges in Ini↔ j to the gap of i↔ j.
Proposition 13 For any edge i↔ j Ini↔ j = {u↔ v |
u ∈ Gapi↔ j & v /∈ Gapi↔ j & u,v /∈ Anci↔ j}.
PROOF. The inclusion ⊆ is obvious. The inclusion
⊇ follows from Proposition 3 (u ∈ Gapi↔ j and v /∈
Anci↔ j imply that edges i↔ j, u↔ v are disjoint).
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We are ready to formulate the main result of this
section, which gives as corollary a characterization
of well-nestedness using properties of single edges.
Theorem 14 Let i↔ j be an edge in a dependency
tree T . The edges that form an ill-nested pair with
the edge i↔ j are exactly the edges in Ini↔ j .
PROOF. Direction⇒: Let u↔ v be an edge forming
an ill-nested pair with the edge i↔ j, i.e. i∈Gapu↔v
and u∈Gapi↔ j. This implies i∈ (u,v) and u∈ (i, j),
which immediately gives v /∈ [i, j]. Supposing u ∈
Anci↔ j or v ∈ Anci↔ j we get i ∈ Subtreeu↔v, which
is in contradiction with i ∈ Gapu↔v, and therefore
u,v /∈ Anci↔ j. Hence u↔ v ∈ Ini↔ j.
Direction⇐: Let u↔ v ∈ Ini↔ j (i.e. u ∈ Gapi↔ j,

v /∈ [i, j], and u,v /∈ Anci↔ j; without loss of gen-
erality assume i ∈ (u,v)). From the assumptions
u ∈ Gapi↔ j and v /∈ [i, j] we get that edges i ↔ j,
u↔ v are disjoint. Using Property 2, from the as-
sumption u,v /∈ Anci↔ j we get i /∈ Subtreeu↔v, thus
i ∈ Gapu↔v. Hence i↔ j, u↔ v satisfy (inp).
Corollary 15 A dependency tree T is ill-nested iff
Ini↔ j %= /0 for some non-projective edge i↔ j in T .
PROOF. Follows from Theorems 8 and 14.

5.4 Checking well-nestedness
Our characterization of well-nestedness gives also a
novel way of checking it. Here is a pseudocode of
an algorithm for fully determining all ill-nested sets:
1: for all edges i↔ j do
2: for all edges u↔ v s.t. u ∈ (i, j) do
3: check u↔ v ∈ Ini↔ j

Its time complexity is obviously O(n2), since the
check on line 3 can be implemented so as to take
constant time (by precompuing →∗, which can be
done in O(n2) time). The bound is the same
as for the reported algorithms for checking well-
nestedness (Möhl, 2006).
However, the following theorem allows well-

nestedness checking to be linear for projective trees,
to be faster for random input, and to remain O(n2).
Theorem 16 In any ill-nested pair of edges, at least
one of the edges is of nonnegative type (witnessed by
an end-point of the other edge).
PROOF. Let i1 ↔ j1, i2 ↔ j2 satisfy (inp). Let
us suppose that levelChildi1↔ j1

≥ levelChildi2↔ j2
. Since

levelChildu↔v ≥ levelu for any edge u ↔ v, we have
that levelChildi1↔ j1

≥ leveli2 , and hence Typei1↔ j1 ≥

0. If levelChildi1↔ j1
≤ levelChildi2↔ j2

, it is analogously
proved that i2 ↔ j2 is of nonnegative type.
Havelka (2005) presents a linear algorithm for

finding all non-projective edges of nonnegative type.
Thus well-nestedness can be checked as follows:
first find all edges of nonnegative type, and then
check their ill-nested sets for non-emptiness. Com-
puting →∗ on demand for subtrees of the processed
edges, we preserve worst-case quadratic complexity.

6 Conclusion
We have presented new formal results linking prop-
erties of non-projective edges and their level types to
well-nestedness. This work extends the current body
of research on non-projective dependency structures
in natural language. In particular, we offer new in-
sights into formal properties of non-projective edges
that, if possible, both provide adequate means for
linguistic description and at the same time are use-
ful as features in machine-learning approaches.
Acknowledgement This work was supported by
projects 1ET201120505 of the Ministry of Edu-
cation of the Czech Republic and 374/2005/A-
INF/MFF of Grant Agency of Charles University.

References
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Abstract

We present an improved system combination
technique, ı̇ROVER. Our approach obtains sig-
nificant improvements over ROVER, and is
consistently better across varying numbers of
component systems. A classifier is trained on
features from the system lattices, and selects
the final word hypothesis by learning cues to
choose the system that is most likely to be
correct at each word location. This approach
achieves the best result published to date on
the TC-STAR 2006 English speech recognition
evaluation set.

1 Introduction
State-of-the-art automatic speech recognition (ASR) sys-
tems today usually include multiple contrasting systems,
which are ultimately combined to produce the final hy-
pothesis. There is consensus that improvements from
combination are usually best when systems are suffi-
ciently different, but there is uncertainty about which sys-
tem combination method performs the best. In addition,
the success of commonly used combination techniques
varies depending on the number of systems that are com-
bined (Hoffmeister et al., 2007). In this work, we develop
a system combination method that outperforms all previ-
ously known techniques and is also robust to the number
of component systems. The relative improvements over
ROVER are particularly large for combination when only
using two systems.

The aim of system combination for ASR is to mini-
mize the expected word error rate (WER) given multiple
system outputs, which are ideally annotated with word
confidence information. The most widely used system
combination approach to date is ROVER (Fiscus, 1997).
It is a simple voting mechanism over just the top hy-
pothesis from each component system. Two alternatives
that incorporate information about multiple hypotheses
and leverage word posterior probabilities are confusion
network (CN) combination (Mangu et al., 2000; Ever-
mann and Woodland, 2000) and minimum Time Frame
Word Error (min-fWER) decoding (Hoffmeister et al.,

2006), discussed further in the next section. Previous
work found that among ROVER, CN combination, and
min-fWER combination, no one method was consistently
superior across varying numbers and types of systems
(Hoffmeister et al., 2007).

The main contribution of this work is to develop an
approach that always outperforms other possible system
combination methods. We train a classifier to learn which
system should be selected for each output word, using
features that describe the characteristics of the compo-
nent systems. ROVER alignments on the 1-best hypothe-
ses are used for decoding, but many of the features are
derived from the system lattices. The classifier learns a
selection strategy (i.e. a decision function) from a devel-
opment set and then is able to make better selections on
the evaluation data then the current 1-best or lattice-based
system combination approaches.

Next, Section 2 describes previous work in system
combination techniques. Section 3 describes our ap-
proach, and Section 4 provides experiments and results.
Finally, we summarize the approach and findings in Sec-
tion 5.

2 Previous Work

Previous work in speech recognition system combination
has produced significant improvements over the results
possible with just a single system. The most popular, and
often best performing method is ROVER (Fiscus, 1997),
which selects the word that the most systems agree on
at a particular location (majority voting). An extended
version of ROVER also weights system votes by the word
confidence produced by the system (confidence voting).

Further improvements have been achieved by includ-
ing multiple system alternatives, with methods such as
Confusion Network Combination (CNC) (Evermann and
Woodland, 2000), or N-Best ROVER (Stolcke et al.,
2000), which is a special case of CNC. Alternatively, the
combination can be performed at the frame level (min-
fWER) (Hoffmeister et al., 2006). Recent work found
that the best system combination method depended on the
number of systems being combined (Hoffmeister et al.,
2007). When only two systems are available, approaches
considering multiple alternatives per system were bet-
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ter, but as the number of systems increased the standard
ROVER with confidence scores was more robust and
sometimes even better than CNC or min-fWER combi-
nation.

Another approach (Zhang and Rudnicky, 2006) used
two stages of neural networks to select a system at each
word, with features that capture word frequency, posteri-
ors at the frame, word, and utterance level, LM back-off
mode, and system accuracy. They obtained consistent but
small improvements over ROVER: between 0.7 and 1.7%
relative gains for systems with about 30% WER.

3 Approach

We develop a system that uses the ROVER alignment but
learns to consistently make better decisions than those
of standard ROVER. We call the new system ı̇ROVER,
where the ı̇ stands for improved results, and/or intelligent
decisions. The following sections discuss the compo-
nents of our approach. First, we emulate the approach
of ROVER in our lattice preprocessing and system align-
ment. We then introduce new methods to extract hypoth-
esis features and train a classifier that selects the best
system at each slot in the alignment.

3.1 Lattice Preparation

Our experiments use lattice sets from four different sites.
Naturally, these lattice sets differ in their vocabulary,
segmentation, and density. A compatible vocabulary is
essential for good combination performance. The main
problems are related to contractions, e.g. “you’ve” and
“you have”, and the alternatives in writing foreign names,
e.g. “Schröder” and “Schroder”. In ASR this problem is
well-known and is addressed in scoring by using map-
pings that allow alternative forms of the same word.

Such a mapping is provided within the TC-STAR Eval-
uation Campaign and we used it to normalize the lat-
tices. In case of multiple alternative forms we used only
the most frequent one. Allowing multiple parallel alter-
natives would have distorted the posterior probabilities
derived from the lattice. Furthermore, we allowed only
one-to-one or one-to-many mappings. In the latter case
we distributed the time of the lattice arc according to the
character lengths of the target words.

In order to create comparable posterior probabilities
over the lattice sets we pruned them to equal average
density. The least dense lattice set defined the target
density: around 25 for the development and around 30
for the evaluation set.

Finally, we unified the segmentation by concatenat-
ing the lattices recording-wise. The concatenation was
complicated by segmentations with overlapping regions,
but our final concatenated lattices scored equally to the
original lattice sets. The unified segmentation is needed
for lattice-based system combination methods like frame-
based combination.

3.2 System Alignments

In this work we decided to use the ROVER alignment as
the basis for our system combination approach. At first
glance the search space used by ROVER is very limited

because only the first-best hypothesis from each compo-
nent system is used. But the oracle error rate is often very
low, normally less than half of the best system’s error rate.

The ROVER alignment can be interpreted as a confu-
sion network with an equal number of arcs in each slot.
The number of arcs per slot equals the number of compo-
nent systems and thus makes the training and application
of a classifier straightforward.

For the production of the alignments we use a stan-
dard, dynamic programming-based matching algorithm
that minimizes the global cost between two hypothesis.
The local cost function is based on the time overlap of
two words and is identical to the one used by the ROVER
tool. We also did experiments with alternative local cost
functions based on word equalities, but could not outper-
form the simple, time overlap-based distance function.

3.3 Hypothesis Features

We generate a cohort of features for each slot in the
alignment, which is then used as input to train the classi-
fier. The features incorporate knowledge about the scores
from the original systems, as well as comparisons among
each of the systems. The following paragraphs enumerate
the six classes of feature types used in our experiments
(with their names rendered in italics).

The primary, and most important feature class covers
the basic set of features which indicate string matches
among the top hypotheses from each system. In addition,
we include the systems’ frame-based word confidence.
These features are all the information available to the
standard ROVER with confidences voting.

An additional class of features provides extended con-
fidence information about each system’s hypothesis. This
feature class includes the confusion network (CN) word
confidence, CN slot entropy, and the number of alter-
natives in the CN slot. The raw language model and
acoustic scores are also available. In addition, it in-
cludes a frame-based confidence that is computed from
only the acoustic model, and a frame-based confidence
that is computed from only the language model score.
Frame-based confidences are calculated from the lattices
according to (Wessel et al., 1998); the CN-algorithm is
an extension of (Xue and Zhao, 2005).

The next class of features describes durational aspects
of the top hypothesis for each system, including: charac-
ter length, frame duration, frames per character, and if the
word is the empty or null word. A feature that normalizes
the frames per character by the average over a window
of ten words is also generated. Here we use characters
as a proxy for phones, because phone information is not
available from all component systems.

We also identify the system dependent top error words
for the development set, as well as the words that occur
to the left and right of the system errors. We encode this
information by indicating if a system word is on the list
of top ten errors or the top one hundred list, and likewise
if the left or right system context word is found in their
corresponding lists.

In order to provide comparisons across systems, we
compute the character distance (the cost of aligning the
words at the character level) between the system words
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and provide that as a feature. In addition, we include the
confidence of a system word as computed by the frame-
wise posteriors of each of the other systems. This allows
each of the other systems to ‘score’ the hypothesis of
a system in question. These cross-system confidences
could also act as an indicator for when one system’s hy-
pothesis is an OOV-word for another system. We also
compute the standard, confidence-based ROVER hypoth-
esis at each slot, and indicate whether or not a system
agrees with ROVER’s decision.

The last set of features is computed relative to the
combined min-fWER decoding. A confidence for each
system word is calculated from the combined frame-wise
posteriors of all component systems. The final feature
indicates whether each system word agrees with the com-
bined systems’ min-fWER hypothesis.

3.4 Classifier
After producing a set of features to characterize the sys-
tems, we train a classifier with these features that will
decide which system will propose the final hypothesis at
each slot in the multiple alignment. The target classes
include one for each system and a null class (which is
selected when none of the system outputs are chosen, i.e.
a system insertion).

The training data begins with the multiple alignment
of the hypothesis systems, which is then aligned to the
reference words. The learning target for each slot is the
set of systems which match the reference word, or the
null class if no systems match the reference word. Only
slots where there is disagreement between the systems’
1-best hypotheses are included in training and testing.

The classifier for our work is Boostexter (Schapire and
Singer, 2000) using real Adaboost.MH with logistic loss
(which outperformed exponential loss in preliminary ex-
periments). Boostexter trains a series of weak classifiers
(tree stumps), while also updating the weights of each
training sample such that examples that are harder to
classify receive more weight. The weak classifiers are
then combined with the weights learned in training to
predict the most likely class in testing. The main dimen-
sions for model tuning are feature selection and number
of iterations, which are selected on the development set
as described in the next section.

4 Experiments
We first perform experiments using cross-validation on
the development set to determine the impact of different
feature classes, and to select the optimal number of iter-
ations for Boostexter training. We then apply the models
to the evaluation set.

4.1 Experimental setup
In our experiments we combine lattice sets for the English
task of the TC-STAR 2006 Evaluation Campaign from
four sites. The TC-STAR project partners kindly pro-
vided RWTH their development and evaluation lattices.
Systems and lattice sets are described in (Hoffmeister et
al., 2007).

Table 1 summarizes the best results achieved on the
single lattice sets. The latter columns show the results of

Viterbi min-fWER CN
dev eval dev eval dev eval

1 10.5 9.0 10.3 8.6 10.4 8.6
2 11.4 9.0 11.4 9.5 11.6 9.1
3 12.8 10.4 12.5 10.4 12.6 10.2
4 13.9 11.9 13.9 11.8 13.9 11.8

Table 1: WER[%] results for single systems.

CN and min-fWER based posterior decoding (Mangu et
al., 2000; Wessel et al., 2001).

4.2 Feature analysis on development data

We evaluate the various feature classes from Section 3.3
on the development set with a cross validation testing
strategy. The results in Tables 2 and 3 are generated
with ten-fold cross validation, which maintains a clean
separation of training and testing data. The total number
of training samples (alignment slots where there is system
disagreement) is about 3,700 for the 2 system case, 5,500
for the 3 system case, and 6,800 for the 4 system case.

The WER results for different feature conditions on the
development set are presented in Table 2. The typical
ROVER with word confidences is provided in the first
row for comparison, and the remainder of the rows con-
tain the results for various configurations of features that
are made available to the classifier.

The basic features are just those that encode the same
information as ROVER, but the classifier is still able to
learn better decisions than ROVER with only these fea-
tures. Each of the following rows provides the results for
adding a single feature class to the basic features, so that
the impact of each type can be evaluated.

The last two rows contain combinations of feature
classes. First, the best three classes are added, and then
all features. Using just the best three classes achieves
almost the best results, but a small improvement is gained
when all features are added. The number of iterations in
training is also optimized on the development set by se-
lecting the number with the lowest average classification
error across the ten splits of the training data.

Features 2 System 3 System 4 System
ROVER 10.2% 8.8% 9.0%
basic 9.4% 8.6% 8.5%
+confidences 9.3% 8.7% 8.4%
+durational 9.2% 8.6% 8.4%
+top error 9.0% 8.5% 8.4%
+comparisons 8.9% 8.6% 8.4%
+min-fWER 8.5% 8.5% 8.4%
+top+cmp+fWER 8.3% 8.3% 8.2%
all features 8.3% 8.2% 8.2%

Table 2: WER results for development data with different
feature classes.
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2 System 3 System 4 System
ROVER (maj.) 10.8% 9.1% 9.1%
ROVER (conf.) 10.1% 8.8% 9.0%
min-fWER 9.6% 9.2 % 8.9 %
ı̇ROVER 8.3% 8.2% 8.2%
oracle 6.5% 5.4% 4.7%

Table 3: WER[%] results for development data with
manual segmentation, and using cross-validation for
ı̇ROVER.

4.3 Results on evaluation data

After analyzing the features and selecting the optimal
number of training iterations on the development data,
we train a final model on the full development set and
then apply it to the evaluation set. In all cases our clas-
sifier achieves a lower WER than ROVER (statistically
significant by NIST matched pairs test). Table 3 and Ta-
ble 4 present a comparison of the ROVER with majority
voting, confidence voting, frame-based combination, and
our improved ROVER (ı̇ROVER).

5 Conclusions

In summary, we develop ı̇ROVER, a method for sys-
tem combination that outperforms ROVER consistently
across varying numbers of component systems. The rela-
tive improvement compared to ROVER is especially large
for the case of combining two systems (14.5% on the
evaluation set). The relative improvements are larger than
any we know of to date, and the four system case achieves
the best published result on the TC-STAR English evalu-
ation set. The classifier requires relatively little training
data and utilizes features easily available from system
lattices.

Future work will investigate additional classifiers, clas-
sifier combination, and expanded training data. We are
also interested in applying a language model to decode
an alignment network that has been scored with our clas-
sifier.
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Abstract

This paper presents an alternative algo-
rithm based on the singular value decom-
position (SVD) that creates vector rep-
resentation for linguistic units with re-
duced dimensionality. The work was mo-
tivated by an application aimed to repre-
sent text segments for further processing
in a multi-document summarization sys-
tem. The algorithm tries to compensate
for SVD’s bias towards dominant-topic
documents. Our experiments on measur-
ing document similarities have shown that
the algorithm achieves higher average pre-
cision with lower number of dimensions
than the baseline algorithms - the SVD
and the vector space model.

1 Introduction

We present, in this paper, an alternative algorithm
called Clustered Sub-matrix Singular Value Decom-
position(CSSVD) algorithm, which applied cluster-
ing techniques before basis vector calculation in
SVD (Golub and Loan, 1996). The work was
motivated by an application aimed to provide vec-
tor representation for terms and text segments in a
document collection. These vector representations
were then used for further preprocessing in a multi-
document summarization system.

The SVD is an orthogonal decomposition tech-
nique closely related to eigenvector decomposition
and factor analysis. It is commonly used in infor-

mation retrieval as well as language analysis appli-
cations. In SVD, a real m-by-n matrix A is decom-
posed into three matrices, A = U

∑
V T .

∑
is an

m-by-n matrix such that the singular value σi=
∑

ii is
the square root of the ith largest eigenvalue of AAT ,
and

∑
ij = 0 for i 6= j. Columns of orthogonal ma-

trices U and V define the orthonormal eigenvectors
associated with eigenvalues of AAT and AT A, re-
spectively. Zeroing out all but the k, k < rank(A),
largest singular values yields Ak =

∑k
i=1 σiuiv

T
i ,

which is the closest rank-k matrix to A. Let A be a
term-document matrix. Applications such as latent
semantic indexing (Deerwester et al., 1990) apply
the rank-k approximation Ak to the original matrix
A, which corresponds to projecting A onto the k-
dimension subspace spanned by u1, u2, ..., uk. Be-
cause k ¿ m, in this k-dimension space, minor
terms are ignored, so that terms are not indepen-
dent as they are in the traditional vector space model.
This allows semantically related documents to be re-
lated to each other even though they may not share
terms.

However, SVD tends to wipe out outlier
(minority-class) documents as well as minor terms
(Ando, 2000). Consequently, topics underlying out-
lier documents tend to be lost. In applications such
as multi-document summarization, a set of related
documents are used as the information source. Typ-
ically, the documents describe one broad topic from
several different view points or sub-topics. It is im-
portant for each of the sub-topics underlying the
document collection to be represented well.

Based on the above consideration, we propose the
CSSVD algorithm with the intention of compensat-
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ing for SVD’s tendency to wipe out minor topics.
The basic idea is to group the documents into a set
of clusters using clustering algorithms. The SVD
is then applied on each of the document clusters.
The algorithm thus selects basis vectors by treat-
ing equally each of the topics. Our experiments
on measuring document similarities have shown that
the algorithm achieves higher average precision with
lower number of dimensions than the SVD.

2 the Algorithm

The input to the CSSVD algorithm is an m×n term-
document matrix A. Documents in matrix A are
grouped into a set of document clusters. Here,
we adopt single-link algorithm to develop the ini-
tial clusters, then use K-means method to refine the
clusters. After clustering, columns in matrix A are
partitioned and regrouped into a set of sub-matrices
A1,A2,...,Aq. Each of these matrices represents a
document cluster. Assume Ai, 1 ≤ i ≤ q, is an
m× ni matrix, these sub-matrices are ranked in de-
creasing order of their sizes, i.e., n1 ≥ n2 ≥ ... ≥
nq, then n1 + n2 + ... + nq = n.

The algorithm computes basis vectors as follows:
the first basis vector u1 is computed from A1, i.e.,
the first left singular vector of A1 is selected. In or-
der to ensure that the basis vectors are orthogonal,
singular vectors are actually computed on residual
matrices. Rij , the residual matrix of Ai after the se-
lection of basis vectors u1, u2,..., uj , is defined as

Rij =
{

Ai j = 0
Ai − proj(Aij) otherwise

where, proj(Aij) is the orthogonal projection of the
document vectors in Ai onto the span of u1,u2,...,uj ,
i.e.,

proj(Aij) =
j∑

k=1

uku
T
k Ai

the residual matrix of Ai describes how much the
document vectors in Ai are excluded from the pro-
posed basis vectors u1, u2,..., uj . For the first ba-
sis vector computation, residual matrices are initial-
ized as original sub-matrices. The computation of
the residual matrix makes the remaining vectors per-
pendicular to the previous basis vectors, thus ensures

that the basis vectors are orthogonal, as the eigen-
vector computed next is a linear combination of the
remaining vectors.

After calculating a basis vector, the algorithm
judges whether the sub-matrices have been well rep-
resented by the derived basis vectors. The residual
ratio was defined as a criterion for this judgement,

rrij =
||Rij ||2F

ni × (ki + 1)

where Rij is the residual matrix of Ai after j basis
vectors have been selected1; ni is the number of
the documents in matrix Ai; ki is the number
of singular vectors that have been selected from
matrix Ai. Residual ratios of each sub-matrix are
calculated. The sub-matrix with the largest residual
ratio is assumed to be the one that contains the
most information that has not been represented by
the previous chosen basis vectors. The first left
singular vector of this sub-matrix is computed and
selected as the next basis vector. As described
above, the computation of a basis vector uses the
corresponding residual matrix. Once a basis vector
is selected, its influence from each sub-matrix is
subtracted. The procedure is repeated until an
expected number of basis vectors have been chosen.
The pseudo-code of the algorithm for semantic
space construction is shown as follows:
1. Partition A into matrices A1,...,Aq corresponding
to document clusters, where Ai , 1 ≤ i ≤ q, is an
m× ni (n1 ≥ n2 ≥ ... ≥ nq) matrix.
2. For i=1,2,...,q {Ri= Ai; k[i]=0;}
3. j=1; r=1;
4. ur= the first unit eigenvector of RjR

T
j ;

5. For i=1,2,...,q Ri= Ri - uru
T
r Ri;

6. k[r]=k[r]+1; r=r+1;
7. For i=1,2,...,q rri=

||Ri||2F
(ni×(k[i]+1)) ;

8. j=t if rrt > rrp for p=1,2,...,q and p 6= t;
9. If rrj ≤ threshold then stop else goto step 4.

For the single-link algorithm used in the CSSVD,
we use a threshold 0.2 and cosine measure to cal-
culate the similarity between two clusters in our ex-
periments. The performance of the CSSVD is also
relative to the number of dimensions of the created

1||A||F =
qP

i,j A2
ij

70



subspace. As described above, the algorithm uses
the residual ratio as a stopping criterion for the basis
vector computation. In each iteration, after a basis
vector is created, the residual ratio is compared to a
threshold. Once the residual ratio of each sub-matrix
fell below a certain threshold, the process of basis-
vector selection is finished. In our experiments, the
threshold was trained on corpus.

After all the k basis vectors are chosen, a term-
document vector di can be converted to dk

i , a
vector in the k-dimensional space, by multiply-
ing the matrix of basis vectors following the stan-
dard method of orthogonal transformation,i.e., dk

i =
[u1, u2, ..., uk]T di.

3 Evaluation

3.1 Experimental Setup

For the evaluation of the algorithm, 38 topics from
the Text REtrieval Conference (TREC) collections
were used in our experiments. These topics include
foreign minorities, behavioral genetics, steel pro-
duction, etc. We deleted documents relevant to more
than one topic so that each document is related only
to one topic. The total number of documents used
was 2962. These documents were split into two dis-
joint groups, called ’pool 1’ and ’pool 2’. The num-
ber of documents in ’pool 1’ and ’pool 2’ were 1453
and 1509, respectively. Each of the two groups used
19 topics.

We generated training and testing data by simu-
lating the result obtained by a query search. This
simulation is further simplified by selecting docu-
ments containing same keywords from each docu-
ment group. Thirty document sets were generated
from each of the two document groups, i.e. 60 doc-
ument sets in total. The number of documents for
each set ranges from 51 to 582 with an average of
128; the number of topics ranges from 5 to 19 with
an average of 12. Due to the limited number of the
document sets we created, these sets were used both
for training and evaluation. For the evaluation of the
documents sets from ’pool 1’, ’pool 2’ was used for
training, and vice versa.

To construct the original term-document matrix,
the following operations were performed on each of
the documents: 1) filtering out all non-text tags in
the documents; 2) converting all the characters into

lower case; 3) removing stop words - a stoplist con-
taining 319 words was used; and 4) term indexing
- the tf.idf scheme was used to calculate a term’s
weight in a document. Finally, a document set is
represented as a matrix A = [aij ], where aij de-
notes the normalized weight assigned to term i in
document j.

3.2 Evaluation Measures
Our algorithm was motivated by a multi-document
summarization application which is mainly based
on measuring the similarities and differences among
text segments. Therefore, the basic requisite is to ac-
curately measure similarities among texts. Based on
this consideration, we used the CSSVD algorithm to
create the document vectors in a reduced space for
each of the document sets; cosine similarities among
these document vectors were computed; and the re-
sults were then compared with the TREC relevance
judgments. As each of the TREC documents we
used has one specific topic. Assume that similarity
should be higher for any document pair relevant to
the same topic than for any pair relevant to different
topics. The algorithm’s accuracy for measuring the
similarities among documents was evaluated using
average precision taken at various recall levels (Har-
man, 1995). Let pi denote the document pair that
has the ith largest similarity value among all pairs of
documents in the document set. The precision for an
intra-topic pair pk is calculated by

precision(pk) =
number of pj where j ≤ k

k

where pj is an intra-topic pair. The average of the
precision values over all intra-topic pairs is com-
puted as the average precision.

3.3 Results
The algorithms are evaluated by the average preci-
sion over 60 document sets. In order to make a com-
parison, two baseline algorithms besides CSSVD are
evaluated. One is the vector space model (VSM)
without dimension reduction. The other is SVD tak-
ing the left singular vectors as the basis vectors.

To treat the selection of dimensions as a separate
issue, we first evaluate the algorithms in terms of
the best average precision. The ’best average preci-
sion’ means the best over all the possible numbers
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of dimensions. The second row of Table 1 shows the
best average precision of our algorithm, VSM, and
SVD. The best average precision on average over 60
document sets of CSSVD is 69.6%, which is 11.5%
higher than VSM and 6.1% higher than SVD.

measure VSM SVD CSSVD
best average
precision (%) 58.1 63.5 69.6

average DR (%) N/A 54.4 32.1
average precision (%) 58.1 59.5 66.8

Table 1: the algorithm performance

In the experiments, we observed that the CSSVD al-
gorithm obtained its best performance with the num-
ber of dimensions lower than that of SVD. The Di-
mensional Ratio (DR) is defined as the number of
dimensions of the derived sub-space compared with
the dimension number of the original space, i.e.,

DR =
# of dimensions in derived space

# of dimensions in original space

The average dimensional ratio is calculated over all
the 60 document sets. As the algorithms’ computa-
tional efficiency is dependent on the number of di-
mensions computed, our interest is in getting good
performance with an average dimensional ratio as
low as possible. The third row of Table 1 shows the
average dimensional ratio that yielded the best av-
erage precision. The average dimensional ratio that
CSSVD yielded the best average precision is 32.1%,
which is 22.3% lower than that of SVD. Thus, our
algorithm has the advantage of being computation-
ally inexpensive, assuming that we can find the op-
timal number of dimensions.

The bottom row of Table 1 shows the average
precision of the algorithms. The threshold used in
CSSVD algorithm was trained on corpus. Let p be
the threshold on residual ratio that yielded the best
average precision on the training data. The value
of p is then used as the threshold on the evaluation
data. For the SVD algorithm, the average dimen-
sional ratio that yielded the best average precision
on training data was used as the dimensional ratio
to determine the subspace dimensionality in evalua-
tion. The performance shown here are the average
of average precision over 60 document sets. Again,
the CSSVD achieves the best performance, which is

7.3% higher than the performance of SVD and 8.7%
higher than VSM.

4 Conclusion

We have presented an alternative algorithm, the
CSSVD, that creates vector representation for lin-
guistic units with reduced dimensionality. The al-
gorithm aims to compensate for SVD’s bias towards
dominant-topic documents by grouping documents
into clusters and selecting basis vectors from each
of the clusters. It introduces a threshold on the resid-
ual ratio of clusters as a stopping criterion of basis
vector selection. It thus treats each topic underly-
ing the document collection equally while focuses
on the dominant documents in each topic. The pre-
liminary experiments on measuring document simi-
larities have shown that the CSSVD achieves higher
average precision with lower number of dimensions
than the baseline algorithms.

Motivated by a multi-document summarization
application, the CSSVD algorithm’s emphasis on
topics and dominant information within each topic
meets the general demand of summarization. We ex-
pect that the algorithm fits the task of summarization
better than SVD. Our future work will focus on more
thorough evaluation of the algorithm and integrating
it into a summarization system.
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Abstract

We describe the use of meeting metadata,
acquired using a computerized meeting
organization and note-taking system, to
improve automatic transcription of meet-
ings. By applying a two-step language
model adaptation process based on notes
and agenda items, we were able to re-
duce perplexity by 9% and word error rate
by 4% relative on a set of ten meetings
recorded in-house. This approach can be
used to leverage other types of metadata.

1 Introduction

Automatic transcription of multi-party conversa-
tions such as meetings is one of the most difficult
tasks in automatic speech recognition. In (Morgan
et al., 2003) it is described as an “ASR-complete”
problem, one that presents unique challenges for ev-
ery component of a speech recognition system.

Though much of the literature on meeting tran-
scription has focused on the unique acoustic mod-
eling and segmentation problems incurred by meet-
ing transcription, language modeling for meetings
is an interesting problem as well. Though meet-
ing speech is spontaneous in nature, the vocabulary
and phrasing in meetings can be very specialized
and often highly technical. Speaking style can vary
greatly between speakers, and the discourse struc-
ture of multi-party interaction gives rise to cross-
speaker effects that are difficult to model with stan-
dard N-gram models (Ji and Bilmes, 2004).

Speech in meetings has one crucial advantage
over many other transcription tasks, namely that it
does not occur in isolation. Meetings are scheduled
and discussed in advance, often via e-mail. People
take notes and create agendas for meetings, and of-
ten read directly from electronic presentation mate-
rials. The structure of meetings can be exploited -
topics can be segmented both temporally and across
speakers, and these shifting topics can be modeled
as sub-languages.

We examine the effect of leveraging one partic-
ular type of external information, namely the writ-
ten agendas and meeting minutes, and we demon-
strate that, by using off-line language model adapta-
tion techniques, these can significantly (p < 0.01)
improve language modeling and speech recognition
accuracy. The language in the notes and agendas is
very similar to that used by the speakers, hence we
consider this to be a form of semi-supervised orim-
plicitly supervised adaptation.

2 Corpus

The SmartNotes system, described in (Banerjee and
Rudnicky, 2007) is a collaborative platform for
meeting organization, recording, and note-taking.
As part of our research into meeting segmentation
and recognition, we have collected a series of 10 un-
scripted meetings using SmartNotes. These meet-
ings themselves are approximately 30 minutes in
length (ranging from 1745 to 7208 words) with three
regular participants, and consist of discussions and
reporting on our ongoing research. The meetings
are structured around the agendas and action items
constructed through the SmartNotes interface. The
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agenda itself is largely constant from meeting to
meeting, while each meeting typically reviews dis-
cusses the previous week’s action items. Each par-
ticipant is equipped with a laptop computer and an
individual headset microphone.

Each meeting was manually transcribed and seg-
mented for training and testing purposes. The tran-
scription includes speaker identification and timing
information. As part of the meeting, participants are
encouraged to take notes and define action items.
These are automatically collected on a server along
with timestamp information. In (Banerjee and Rud-
nicky, 2007), it was shown that timestamped text of
this kind is useful for topic segmentation of meet-
ings. In this work, we have not attempted to take
advantage of the timing information, nor have we
attempted to perform any topic segmentation. Given
the small quantity of text available from the notes,
we feel that the type of static language model adap-
tation presented here is most feasible when done at
the entire meeting level. A cache language model
(Kuhn and Mori, 1990) may be able to capture the
(informally attested) locality effects between notes
and speech.

Since the notes are naturalistic text, often con-
taining shorthand, abbreviations, numbers, punctu-
ation, and so forth, we preprocess them by running
them through the text-normalization component of
the Festival1 speech synthesis system and extracting
the resulting string of individual words. This yielded
an average of 252 words of adaptation data for each
of the 10 meetings.

3 System Description

Unless otherwise noted, all language models eval-
uated here are trigram models using Katz smooth-
ing (Katz, 1987) and Good-Turing discounting. Lin-
ear interpolation of multiple source models was per-
formed by maximizing the likelihood over a held-out
set of adaptation data.

For automatic transcription, our acoustic mod-
els consist of 5000 tied triphone states (senones),
each using a 64-component Gaussian mixture model
with diagonal covariance matrices. The input fea-
tures consist of 13-dimensional MFCC features,
delta, and delta-delta coefficients. These models

1http://www.festvox.org/

Corpus # Words Perplexity

Fisher English 19902585 178.41
Switchboard-I 2781951 215.52
ICSI (75 Meetings) 710115 134.94
Regular Meetings 266043 111.76
Switchboard Cellular 253977 280.81
CallHome English 211377 272.19
NIST Meetings 136932 199.40
CMU (ISL Meetings) 107235 292.86
Scenario Meetings 36694 306.43

Table 1: Source Corpora for Language Model

are trained on approximately 370 hours of speech
data, consisting of the ICSI meeting corpus (Mor-
gan et al., 2003), the HUB-4 Broadcast News cor-
pus, the NIST pilot meeting corpus, the WSJ CSR-
0 and CSR-1 corpora,2 the CMU Arctic TTS cor-
pora (Kominek and Black, 2004), and a corpus of 32
hours of meetings previously recorded by our group
in 2004 and 2005.

Our baseline language model is based on a linear
interpolation of source language models built from
conversational and meeting speech corpora, using a
held-out set of previously recorded “scenario” meet-
ings. These meetings are unscripted, but have a fixed
topic and structure, which is a fictitious scenario in-
volving the hiring of new researchers. The source
language models contain a total of 24 million words
from nine different corpora, as detailed in Table 1.
The “Regular Meetings” and “Scenario Meetings”
were collected in-house and consist of the same 32
hours of meetings mentioned above, along with the
remainder of the scenario meetings. We used a vo-
cabulary of 20795 words, consisting of all words
from the locally recorded, ICSI, and NIST meetings,
combined with the Switchboard-I vocabulary (with
the exception of words occurring less than 3 times).
The Switchboard and Fisher models were pruned by
dropping singleton trigrams.

4 Interpolation and Vocabulary Closure

We created one adapted language model for each
meeting using a two-step process. First, the source
language models were re-combined using linear in-
terpolation to minimize perplexity on the set of notes

2All corpora are available through http://ldc.upenn.edu/
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Meeting Baseline Interpolated Closure

04/17 90.05 85.96 84.41
04/24 90.16 85.54 81.88
05/02 94.27 89.24 89.19
05/12 110.95 101.68 87.13
05/18 85.78 81.50 78.04
05/23 97.51 93.07 94.39
06/02 109.70 104.49 101.90
06/12 96.80 92.88 91.05
06/16 93.93 87.71 79.17
06/20 97.19 93.88 92.48

Mean 96.57 91.59 (-5.04) 87.96 (-8.7)
S.D. 8.61 7.21 (1.69) 7.40 (6.2)
p n/a < 0.01 < 0.01

Table 2: Adaptation Results: Perplexity

for each meeting. Next, the vocabulary was ex-
panded using the notes. In order to accomplish
this, a trigram language model was trained from the
notes themselves and interpolated with the output of
the previous step using a small, fixed interpolation
weight λ = 0.1. It should be noted that this also
has the effect of slightly boosting the probabilities
of the N-grams that appear in the notes. We felt this
was useful because, though these probabilities are
not reliably estimated, it is likely that people will use
many of the same N-grams in the notes as in their
meeting speech, particularly in the case of numbers
and acronyms. The results of interpolation and N-
gram closure are shown in Table 2 in terms of test-
set perplexity, and in Table 3 in terms of word error
rate. Using a pairedt-test over the 10 meetings, the
improvements in perplexity and accuracy are highly
significant (p < 0.01).

5 Topic Clustering and Dimensionality
Reduction

In examining the interpolation component of the
adaptation method described above, we noticed that
the in-house meetings and the ICSI meetings consis-
tently took on the largest interpolation weights. This
is not surprising since both of these corpora are sim-
ilar to the test meetings. However, all of the source
corpora cover potentially relevant topics, and by in-
terpolating the corpora as single units, we have no
way to control the weights given to individual top-

Meeting Baseline Interpolated Closure

04/17 45.22 44.37 43.34
04/24 47.35 46.43 45.25
05/02 47.20 47.20 46.28
05/12 49.74 48.02 46.07
05/18 45.29 44.63 43.44
05/23 43.68 43.00 42.80
06/02 48.66 48.29 47.85
06/12 45.68 45.90 45.28
06/16 45.98 45.45 44.29
06/20 47.03 46.73 46.68

Mean 46.59 46.0 (-0.58) 45.13 (-1.46)
S.D. 1.78 1.68 (0.54) 1.64 (1.0)
p n/a < 0.01 < 0.01

Table 3: Adaptation Results: Word Error

ics within them. Also, people may use different, but
related, words in writing and speaking to describe
the same topic, but we are unable to capture these
semantic associations between the notes and speech.

To investigate these issues, we conducted sev-
eral brief experiments using a reduced training cor-
pus consisting of 69 ICSI meetings. We converted
these to a vector-space representation usingtf.idf
scores and used adeterministic annealing algorithm
(Rose, 1998) to create hard clusters of meetings,
from each of which we trained a source model for
linear interpolation. We compared these clusters to
random uniform partitions of the corpus. The in-
terpolation weights were trained on the notes, and
the models were tested on the meeting transcripts.
Out-of-vocabulary words were not removed from
the perplexity calculation. The results (mean and
standard deviation over 10 meetings) are shown in
Table 4. For numbers of clusters between 2 and
42, the annealing-based clusters significantly out-
perform the random partition. The perplexity with
42 clusters is also significantly lower (p < 0.01)
than the perplexity (256.5± 21.5) obtained by train-
ing a separate source model for each meeting.

To address the second issue of vocabulary mis-
matches between notes and speech, we appliedprob-
abilistic latent semantic analysis (Hofmann, 1999)
to the corpus, and used this to “expand” the vocab-
ulary of the notes. We trained a 32-factor PLSA
model on the content words (we used a simple
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# of Clusters Random Annealed

2 546.5± 107.4 514.1± 97.9
4 462.2± 86.3 426.2± 73.9
8 397.7± 67.1 356.1± 54.9
42 281.6± 31.5 253.7± 22.9

Table 4: Topic Clustering Results: Perplexity

Meeting Baseline PLSA “Boosted”

04/17 105.49 104.59 104.87
04/24 98.97 97.58 97.80
05/02 105.61 104.15 104.48
05/12 122.37 116.73 118.04
05/18 98.55 94.92 95.18
05/23 111.28 107.84 108.03
06/02 125.31 121.49 121.64
06/12 109.31 106.38 106.55
06/16 106.86 103.27 104.28
06/20 117.46 113.76 114.18

Mean 110.12 107.07 107.50
S.D. 8.64 7.84 7.93
p n/a < 0.01 < 0.01

Table 5: PLSA Results: Perplexity

entropy-based pruning to identify these “content
words”) from the ICSI meeting vocabulary. To adapt
the language model, we used the “folding-in” proce-
dure described in (Hofmann, 1999), running an iter-
ation of EM over the notes to obtain an adapted un-
igram distribution. We then simply updated the uni-
gram probabilities in the language model with these
new values and renormalized. While the results,
shown in Table 5, show a statistically significant im-
provement in perplexity, this adaptation method is
is problematic, as it increases the probability mass
given to all the words in the PLSA model. In subse-
quent results, also shown in Table 5, we found that
simply extracting these words from the original un-
igram distribution and boosting their probabilities
by the equivalent amount also reduces perplexity
by nearly as much (though the difference from the
PLSA model is statistically significant,p = 0.004).

6 Conclusions

We have shown that notes collected automatically
from participants in a structured meeting situation

can be effectively used to improve language mod-
eling for automatic meeting transcription. Further-
more, we have obtained some encouraging results
in applying source clustering and dimensionality re-
duction to make more effective use of this data. In
future work, we plan to exploit other sources of
metadata such as e-mails, as well as the structure of
the meetings themselves.
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Abstract 

We present results from a new Interagency 
Language Roundtable (ILR) based compre-
hension test. This new test design presents 
questions at multiple ILR difficulty levels 
within each document. We incorporated 
Arabic machine translation (MT) output 
from three independent research sites, arbi-
trarily merging these materials into one MT 
condition.  We contrast the MT condition, 
for both text and audio data types, with high 
quality human reference Gold Standard 
(GS) translations.  Overall, subjects 
achieved 95% comprehension for GS and 
74% for MT, across 4 genres and 3 diffi-
culty levels. Surprisingly, comprehension 
rates do not correlate highly with translation 
error rates, suggesting that we are measur-
ing an additional dimension of MT quality.   
We observed that it takes 15% more time 
overall to read MT than GS.  

1 Introduction 
The official Defense Language Proficiency Test 
(DLPT) is constructed according to rigorous and 
well-established principles that have been devel-
oped to measure the foreign language proficiency 
of human language learners in U.S. Department of 
Defense settings.  In 2004, a variant of that test 
type was constructed, following the general DLPT 
design principles, but modified to measure the 
quality of machine translation.  This test, known as 
the DLPTstar (Jones et al, 2005),  was based on 
authentic Arabic materials at ILR  text difficulty 
levels 1, 2, and 3, accompanied by constructed-
response questions at matching levels.  The ILR 
level descriptors, used throughout the U.S. gov-
ernment, can be found at the website cited in the 
list of references. The text documents were pre-

sented in two conditions in English translation: (1) 
professionally translated into English, and (2) ma-
chine translated with state-of-the art MT systems, 
often quite garbled.  Results showed that native 
readers of English could generally pass the Levels 
1 and 2 questions on the test, but not those at Level 
3.  Also, Level 1 comprehension was less than ex-
pected, given the low level of the original material.  
It was not known whether the weak Level 1 per-
formance was due to systematic deficits in MT 
performance at Level 1, or whether the materials 
were simply mismatched to the MT capabilities. 

In this paper, we present a new variant of the 
test, using materials specifically created to test the 
capabilities of the MT systems.  To guarantee that 
the MT systems were up to the task of processing 
the documents, we used the DARPA GALE 2006 
evaluation data sets, against which several research 
sites were testing MT algorithms.  We arbitrarily 
merged the MT output from three sites. The ILR 
difficulty of the documents ranged from Level 2 to 
Level 3, but the test did not contain any true Level 
1 documents.  To compensate for this lack, we 
constructed questions about Level 1 elements (e.g., 
personal and place names) in Level 2 and 3 docu-
ments.  A standard DLPT would have more varia-
tion at Level 1.  

2 Related and Previous Work 
Earlier work in MT evaluation incorporated an in-
formativeness measure, based on comprehension 
test answers, in addition to fluency, a measure of 
output readability without reference to a gold stan-
dard, and adequacy, a measure of accuracy with 
reference to a gold standard translation (White and 
O'Connell, 1994).  Later MT evaluation found flu-
ency and adequacy to correlate well enough with 
automatic measures (BLEU), and since compre-
hension tests are relatively more expensive to cre-
ate, the informativeness test was not used in later 
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MT evaluations, such as the ones performed by 
NIST from 2001-2006.  In other work, task-based 
evaluation has been used for MT evaluation (Voss 
and Tate, 2006), which measures human perform-
ance on exhaustively extracting ‘who’, ‘when’, and 
‘where’ type elements in MT output. The DLPT-
star also uses this type of factual question, particu-
larly for Level 2 documents, but not exhaustively.  
Instead, the test focuses on text elements most 
characteristic of the levels as defined in the ILR 
scale.  At Level 3, for example, questions may 
concern abstract concepts or hypotheses found in 
the documents.  Applying the ILR construct pro-
vides Defense Department decision makers with 
test scores that are readily interpretable. 

3 Test Construction and Administration 
In this paper, we present a new test, based entirely 
on the DARPA GALE 2006 evaluation data, se-
lecting approximately half of the material for our 
test. We selected twenty-four test documents, with 
balanced coverage across four genres: newswire, 
newsgroups, broadcast news and talk radio.  Our 
target was to have at least 2500 words for each 
genre, which we exceeded slightly with approxi-
mately 12,200 words in total for the test.  We be-
gan with a random selection of documents and 
adjusted it for better topic coverage.  We con-
structed an exhaustive set of questions for each 
document, approximately 200 questions in total.  
The questions ranged in ILR difficulty, from "0+, 
1,1+, 2, 2+ and 3, with Levels 0+, 1 and 1+ com-
bined to a pseudo-level we called L1~, providing 
four levels of difficulty to be measured.  We di-
vided the questions into two sets, and each indi-
vidual subject answered questions for one of the 
sets. The test itself was constructed by a DLPT 
testing expert and a senior native-speaking Arabic 
language instructor, using only the original Arabic 
documents and the Gold Standard translations.  
They had no access to any machine translation 
output during the test construction or scoring. 

In August 2006, we administered the test at MIT 
to 49 test subjects who responded to announce-
ments for paid experimental subjects.  The subjects 
read the documents in a Latin square design, mean-
ing that each subject saw each document, but only 
in one of the two conditions, randomly assigned.  
Subjects were allowed 5 hours to complete the test.  
Since the questions were divided into two sets for 

each document, the actual set of 49 subjects 
yielded approximately 25 “virtual subjects” read-
ing the full list of 228 questions.  The mean time 
spent on testing, not counting breaks or subject 
orientation, was 2.5 hours; fastest was 1.1 hours, 
slowest was 3.4 hours. 

The subject responses were hand-graded by the 
two testing experts, following the pre-established 
answers in the test protocol.  There was no pre-
assessment of whether information was preserved 
or garbled in the MT when designing questions or 
responses in the test protocol.  The testing experts 
were provided the reference translations and the 
original Arabic documents, but not the MT during 
scoring.  Moreover, test conditions were masked in 
order to provide a blind assessment.  The two test-
ing experts provided both preliminary and final 
scores; multiple passes provided an opportunity to 
clarify the correct answers and to normalize scor-
ing.  The scoring agreement rate was 96% for the 
final scores. 

4 Overall Results 
The overall result for comprehension accuracy was 
95% for subjects reading the Gold Standard trans-
lation and 74% for reading Machine Translation, 
across each of the genres and difficulty levels. The 
comprehension accuracy for each genre is shown 
in Figure 1. The two text genres score better than 
the audio genres, which is to be expected because 
the audio MT condition has more opportunities for 
error.  Within each modality, the more standard, 
more structured genre fares better: newswire re-
sults are better than newsgroup results, and the 
more structured genre of broadcast news scores 
better than the less constrained, less structured 
conversations present in the talk radio shows. 
 

 
Figure 1. Comprehension Accuracy per Genre  
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The break-down by ILR level of difficulty for each 
question is shown in Figure 2.  The general trend is 
consistent with what has been observed previously 
(Jones et al. 2005).  The best results are at Level 2; 
Level 1 does well but not as well as expected.  
Thus the test has provided a key finding, which is 
that MT systems perform more poorly on Level 1, 
even when the data is matched to their capabilities. 
Level 3 is very challenging for the MT condition, 
and also more difficult in the GS condition.  Using 
a standard 70 percent passing threshold, responses 
to questions on all MT documents, except for 
Level 3, received a passing grade. 

 
Figure 2. Comprehension Accuracy per Level. 

To provide a snapshot of the ILR levels: L1 in-
dicates sentence-level comprehensibility, and may 
include factual local announcements, etc.; L2 indi-
cates paragraph-level comprehensibility; factual/ 
concrete, covering a wide spectrum of topics (poli-
tics, economy, society, culture, security, science); 
L3 involves extended discourse comprehensibility; 
the ability to understand hypotheses, supported 
opinion, implications, and abstract linguistic for-
mulations, etc. 

It was not possible to balance Level 3 documents 
across genres within the GALE evaluation data; 
except for those taken from Talk Radio, most 
documents did not reach that level of complexity.  
Hence, genre and difficulty level were not com-
pletely independent in this test. 

5 Comprehension and Translation Error 
We expect to see a relationship between compre-
hension rates and translation error.  In an idealized 
case, we may expect a precise inverse correlation.  
We then compared comprehension rates with Hu-
man Translation Error Rate (HTER), an error 
measure for machine translation that counts the 
number of human edits required to change system 

MT output so that it contains all and only the in-
formation present in a Gold Standard reference 
(NIST, 2006).  The linear regression line in Figure 
3 shows the kind of inverse correlation we might 
expect.  Subjects lose about 12% in comprehension 
for every 10% of translation error. The R2 value is 
33%.  The low correlation suggests that the com-
prehension results are measuring a somewhat inde-
pendent aspect of MT quality, which we feel is 
important.  HTER does not directly address the 
facts that not all MT errors are equally important 
and that the texts contain inherent redundancy that 
the readers use to answer the questions.  For ex-
ploratory purposes, we divide the graph of Figure 3 
into four quadrants.  Quadrant I and IV contain 
expected behavior: 122 data points of good transla-
tions and good comprehension results versus 43 
points of bad translations and poor comprehension.  
Q-II has 24 robust points: the translations have 
high error, but somehow managed to contain 
enough well-translated words that people can an-
swer the questions.  Q-III has 28 fragile points: the 
few translation errors impaired comprehension. 

 
Figure 3. Comprehension vs. Translation Error. 

We point out that there is a 1-to-1 mapping be-
tween comprehension questions and individual 
sub-passages of the documents in the data.  Each 
point in Figure 3 plots the HTER of a single seg-
ment versus the average comprehension score on 
the corresponding question. The good and bad 
items are essentially a sanity-check on the experi-
mental design.  We expect to see good comprehen-
sion when translations are good, and we expect to 
see poor comprehension when translations are bad.  
Next we will examine the two other types: fragile 
and robust translations. 
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A fragile translation is one that has a good 
HTER score but a bad comprehension score.  A 
sample fragile translation is one from a broadcast 
news which asks for a particular name:  the HTER 
was a respectable 24%, but the MT comprehension 
accuracy was a flat 0%, since the name was miss-
ing.  Everyone reading GS answered correctly. 

A robust translation is one that has a bad HTER 
score but still manages to get a good comprehen-
sion score.  A sample robust translation is one 
drawn from a posting providing instructions for 
foot massage.  The text was quite garbled, with an 
HTER score of 48%, but the MT comprehension 
accuracy was a perfect 100%. Everyone reading 
the GS condition also answered the question cor-
rectly, which was that one should start a foot mas-
sage with oil. We note in passing that the highest 
error rate for a question with 100% comprehension 
is about 50%, shown with the up-arrow in Figure 
3.  We should be surprised to see any items with 
100% comprehension for HTER rates above 50%, 
considering Shannon’s estimate that written Eng-
lish is about 50% redundant. We expect that MT 
readers are making use of their general world 
knowledge to interpret the garbled MT output.  A 
challenge is to identify robust translations, which 
are useful despite their high translation error rate. 
6 Detailed Discussion 
In this section we will discuss several aspects of 
the test in more detail: the scoring methodology, 
including a discussion of partial credit and inter-
rater agreement; timing information; questions 
about personal names. 

Each correct answer was assigned a score of 1, 
and each incorrect answer was assigned a score of 
0.  Partial credit was assigned on an ad-hoc basis, 
but normalized for scoring by assigning all non-
integer scores to 0.5.  This method yielded scores 
that were generally at the midpoint between binary 
scoring, in which non-integer scored were uni-
formly mapped either harshly to 0 or leniently to 1, 
the average difference between harsh and lenient 
scoring being approximately 11%.  Inter-rater 
agreement was 96%. 

The testing infrastructure we used recorded the 
amount of time spent on each document.  The gen-
eral trend is that people spend longer on MT than 
on GS.  The mean percentage of time spent on MT 
compared with GS is 115% per item, meaning that 
it takes 15% more time to read MT than GS. The 

standard error was 4%.  The median is 111%; 
minimum is 89% and maximum is 159%.  In future 
analysis and experimentation we will conduct more 
fine-grained temporal estimates.    

As we have seen in previous experiments, the 
performance for personal names is lower than for 
non-names.  We observed that the name questions 
have 71% comprehension accuracy, compared with 
the 83% for questions about things other than per-
sonal names.  
7 Conclusions and Future Work 
We have long felt that Level 2 is the natural and 
successful level for machine translation.  The abil-
ity to present concrete factual information that can 
be retrieved by the reader, without requirements 
for understanding the style, tone, or organizational 
pattern used by the writer seemed to be present in 
the previous work. It is worth pointing out that 
though we have many Level 1 questions, we are 
still not really testing Level 1 because the test does 
not contain true Level 1 documents. In future tests 
we wish to include Level 1 documents and ques-
tions.  

Continuing along these lines, we are currently 
creating two new tests. We are constructing a new 
Arabic DLPT-star test, tailoring the document se-
lection more specifically for comprehension testing 
and ensuring texts and tasks are at the intended 
ILR levels. We are also constructing a Mandarin 
Chinese test with similar design specifications.  
We intend for both of these tests to be available for 
a public machine translation evaluation to be con-
ducted in 2007. 
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Abstract

We present a method for utilizing unan-

notated sentences to improve a semantic

parser which maps natural language (NL)

sentences into their formal meaning rep-

resentations (MRs). Given NL sentences

annotated with their MRs, the initial su-

pervised semantic parser learns the map-

ping by training Support Vector Machine

(SVM) classifiers for every production in

the MR grammar. Our new method ap-

plies the learned semantic parser to the

unannotated sentences and collects unla-

beled examples which are then used to

retrain the classifiers using a variant of

transductive SVMs. Experimental results

show the improvements obtained over

the purely supervised parser, particularly

when the annotated training set is small.

1 Introduction

Semantic parsing is the task of mapping a natu-

ral language (NL) sentence into a complete, for-

mal meaning representation (MR) which a computer

program can execute to perform some task, like

answering database queries or controlling a robot.

These MRs are expressed in domain-specific unam-

biguous formal meaning representation languages

(MRLs). Given a training corpus of NL sentences

annotated with their correct MRs, the goal of a learn-

ing system for semantic parsing is to induce an ef-

ficient and accurate semantic parser that can map

novel sentences into their correct MRs.

Several learning systems have been developed for

semantic parsing, many of them recently (Zelle and

Mooney, 1996; Zettlemoyer and Collins, 2005; Ge

and Mooney, 2005; Kate and Mooney, 2006). These

systems use supervised learning methods which

only utilize annotated NL sentences. However, it

requires considerable human effort to annotate sen-

tences. In contrast, unannotated NL sentences are

usually easily available. Semi-supervised learning

methods utilize cheaply available unannotated data

during training along with annotated data and of-

ten perform better than purely supervised learning

methods trained on the same amount of annotated

data (Chapelle et al., 2006). In this paper we present,

to our knowledge, the first semi-supervised learning

system for semantic parsing.

We modify KRISP, a supervised learning sys-

tem for semantic parsing presented in (Kate and

Mooney, 2006), to make a semi-supervised system

we call SEMISUP-KRISP. Experiments on a real-

world dataset show the improvements SEMISUP-

KRISP obtains over KRISP by utilizing unannotated

sentences.

2 Background

This section briefly provides background needed for

describing our approach to semi-supervised seman-

tic parsing.

2.1 KRISP: The Supervised Semantic Parsing

Learning System

KRISP (Kernel-based Robust Interpretation for Se-

mantic Parsing) (Kate and Mooney, 2006) is a su-

pervised learning system for semantic parsing which
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takes NL sentences paired with their MRs as train-

ing data. The productions of the formal MRL

grammar are treated like semantic concepts. For

each of these productions, a Support-Vector Ma-

chine (SVM) (Cristianini and Shawe-Taylor, 2000)

classifier is trained using string similarity as the ker-

nel (Lodhi et al., 2002). Each classifier can then

estimate the probability of any NL substring rep-

resenting the semantic concept for its production.

During semantic parsing, the classifiers are called to

estimate probabilities on different substrings of the

sentence to compositionally build the most probable

meaning representation (MR) of the sentence.

KRISP trains the classifiers used in semantic pars-

ing iteratively. In each iteration, for every produc-

tion � in the MRL grammar, KRISP collects pos-

itive and negative examples. In the first iteration,

the set of positive examples for production � con-

tains all sentences whose corresponding MRs use

the production � in their parse trees. The set of neg-

ative examples includes all of the other training sen-

tences. Using these positive and negative examples,

an SVM classifier is trained for each production �
using a string kernel. In subsequent iterations, the

parser learned from the previous iteration is applied

to the training examples and more refined positive

and negative examples, which are more specific sub-

strings within the sentences, are collected for train-

ing. Iterations are continued until the classifiers con-

verge, analogous to iterations in EM (Dempster et

al., 1977). Experimentally, KRISP compares favor-

ably to other existing semantic parsing systems and

is particularly robust to noisy training data (Kate and

Mooney, 2006).

2.2 Transductive SVMs

SVMs (Cristianini and Shawe-Taylor, 2000) are

state-of-the-art machine learning methods for clas-

sification. Given positive and negative training ex-

amples in some vector space, an SVM finds the

maximum-margin hyperplane which separates them.

Maximizing the margin prevents over-fitting in very

high-dimensional data which is typical in natural

language processing and thus leads to better general-

ization performance on test examples. When the un-

labeled test examples are also available during train-

ing, a transductive framework for learning (Vapnik,

1998) can further improve the performance on the

test examples.

Transductive SVMs were introduced in

(Joachims, 1999). The key idea is to find the

labeling of the test examples that results in the

maximum-margin hyperplane that separates the

positive and negative examples of both the training

and the test data. This is achieved by including

variables in the SVM’s objective function repre-

senting labels of the test examples. Finding the

exact solution to the resulting optimization problem

is intractable, however Joachims (1999) gives an

approximation algorithm for it. One drawback of

his algorithm is that it requires the proportion of

positive and negative examples in the test data be

close to the proportion in the training data, which

may not always hold, particularly when the training

data is small. Chen et al. (2003) present another

approximation algorithm which we use in our

system because it does not require this assumption.

More recently, new optimization methods have been

used to scale-up transductive SVMs to large data

sets (Collobert et al., 2006), however we did not

face scaling problems in our current experiments.

Although transductive SVMs were originally de-

signed to improve performance on the test data by

utilizing its availability during training, they can also

be directly used in a semi-supervised setting (Ben-

nett and Demiriz, 1999) where unlabeled data is

available during training that comes from the same

distribution as the test data but is not the actual data

on which the classifier is eventually to be tested.

This framework is more realistic in the context of se-

mantic parsing where sentences must be processed

in real-time and it is not practical to re-train the

parser transductively for every new test sentence. In-

stead of using an alternative semi-supervised SVM

algorithm, we preferred to use a transductive SVM

algorithm (Chen et al., 2003) in a semi-supervised

manner, since it is easily implemented on top of an

existing SVM system.

3 Semi-Supervised Semantic Parsing

We modified the existing supervised system KRISP,

described in section 2.1, to incorporate semi-

supervised learning. Supervised learning in KRISP

involves training SVM classifiers on positive and

negative examples that are substrings of the anno-
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function TRAIN SEMISUP KRISP(Annotated corpus A = f(si;mi)ji = 1::Ng, MRL grammar G,
Unannotated sentences T = ftiji = 1::Mg)C � fC�j� 2 Gg = TRAIN KRISP(A,G) // classifiers obtained by training KRISP

LetP = fp� = Set of positive examples used in training C�j� 2 GgN = fn� = Set of negative examples used in training C�j� 2 GgU = fu� = �j� 2 Gg // set of unlabeled examples for each production, initially all empty
for i = 1 to M dofui� j� 2 Gg =COLLECT CLASSIFIER CALLS(PARSE(ti; C))U = fu� = u� [ ui�j� 2 Gg
for each � 2 G doC� =TRANSDUCTIVE SVM TRAIN(p�; n�; u�) // retrain classifiers utilizing unlabeled examples
return classifiers C = fC� j� 2 Gg

Figure 1: SEMISUP-KRISP’s training algorithm

tated sentences. In order to perform semi-supervised

learning, these classifiers need to be given appropri-

ate unlabeled examples. The key question is: Which

substrings of the unannotated sentences should be

given as unlabeled examples to which productions’

classifiers? Giving all substrings of the unannotated

sentences as unlabeled examples to all of the clas-

sifiers would lead to a huge number of unlabeled

examples that would not conform to the underly-

ing distribution of classes each classifier is trying to

separate. SEMISUP-KRISP’s training algorithm, de-

scribed below and shown in Figure 1, addresses this

issue.

The training algorithm first runs KRISP’s exist-

ing training algorithm and obtains SVM classifiers

for every production in the MRL grammar. Sets of

positive and negative examples that were used for

training the classifiers in the last iteration are col-

lected for each production. Next, the learned parser

is applied to the unannotated sentences. During the

parsing of each sentence, whenever a classifier is

called to estimate the probability of a substring rep-

resenting the semantic concept for its production,

that substring is saved as an unlabeled example for

that classifier. These substrings are representative of

the examples that the classifier will actually need to

handle during testing. Note that the MRs obtained

from parsing the unannotated sentences do not play

a role during training since it is unknown whether

or not they are correct. These sets of unlabeled ex-

amples for each production, along with the sets of

positive and negative examples collected earlier, are

then used to retrain the classifiers using transductive

SVMs. The retrained classifiers are finally returned

and used in the final semantic parser.

4 Experiments

We compared the performance of SEMISUP-KRISP

and KRISP in the GEOQUERY domain for semantic

parsing in which the MRL is a functional language

used to query a U.S. geography database (Kate et

al., 2005). This domain has been used in most of

the previous work. The original corpus contains 250
NL queries collected from undergraduate students

and annotated with their correct MRs (Zelle and

Mooney, 1996). Later, 630 additional NL queries

were collected from real users of a web-based inter-

face and annotated (Tang and Mooney, 2001). We

used this data as unannotated sentences in our cur-

rent experiments. We also collected an additional407 queries from the same interface, making a total

of 1; 037 unannotated sentences.

The systems were evaluated using standard 10-

fold cross validation. All the unannotated sentences

were used for training in each fold. Performance

was measured in terms of precision (the percent-

age of generated MRs that were correct) and recall

(the percentage of all sentences for which correct

MRs were obtained). An output MR is considered

correct if and only if the resulting query retrieves

the same answer as the correct MR when submit-

ted to the database. Since the systems assign confi-

dences to the MRs they generate, the entire range of

the precision-recall trade-off can be obtained for a

system by measuring precision and recall at various

confidence levels. We present learning curves for the

best F-measure (harmonic mean of precision and re-
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Figure 2: Learning curves for the best F-measures

on the GEOQUERY corpus.

call) obtained across the precision-recall trade-off as

the amount of annotated training data is increased.

Figure 2 shows the results for both systems.

The results clearly show the improvement

SEMISUP-KRISP obtains over KRISP by utilizing

unannotated sentences, particularly when the num-

ber of annotated sentences is small. We also show

the performance of a hand-built semantic parser

GEOBASE (Borland International, 1988) for com-

parison. From the figure, it can be seen that, on

average, KRISP achieves the same performance as

GEOBASE when it is given 126 annotated examples,

while SEMISUP-KRISP reaches this level given only94 annotated examples, a 25:4% savings in human-

annotation effort.

5 Conclusions

This paper has presented a semi-supervised ap-

proach to semantic parsing. Our method utilizes

unannotated sentences during training by extracting

unlabeled examples for the SVM classifiers it uses to

perform semantic parsing. These classifiers are then

retrained using transductive SVMs. Experimental

results demonstrated that this exploitation of unla-

beled data significantly improved the accuracy of the

resulting parsers when only limited supervised data

was provided.
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Abstract

In present Statistical Machine Translation
(SMT) systems, alignment is trained in a
previous stage as the translation model.
Consequently, alignment model parame-
ters are not tuned in function of the trans-
lation task, but only indirectly. In this
paper, we propose a novel framework for
discriminative training of alignment mod-
els with automated translation metrics as
maximization criterion. In this approach,
alignments are optimized for the transla-
tion task. In addition, no link labels at the
word level are needed. This framework
is evaluated in terms of automatic trans-
lation evaluation metrics, and an improve-
ment of translation quality is observed.

1 Introduction

In the first SMT systems (Brown et al., 1993), word
alignment was introduced as a hidden variable of
the translation model. When word-based translation
models have been replaced by phrase-based mod-
els (Zens et al., 2002), alignment1 and translation
model training have become two separated tasks.

The system of Brownet al. was based on the
noisy channel approach. Present SMT systems use a
more general maximum entropy approach in which a
log-linear combination of multiple feature functions
is implemented (Och and Ney, 2002). Within this

1Hereinafter, alignment will refer to word alignment, unless
otherwise stated.

new framework translation quality can be tuned by
adjusting the weight of each feature function in the
log-linear combination. In order to improve transla-
tion quality, this tuning can be effectively performed
by minimizing translation error over a development
corpus for which manually translated references are
available (Och, 2003). As a separate first stage of the
process, alignment is not in practice directly tuned in
function of the machine translation task.

Tuning alignment for an MT system is subject to
practical difficulties. Unsupervised systems (Och
and Ney, 2003; Liang et al., 2006) are based on gen-
erative models trained with the EM algorithm. They
require large computational resources, and incorpo-
rating new features is difficult. In contrast, adding
new features to some supervised systems (Liu et al.,
2005; Moore, 2005; Ittycheriah and Roukos, 2005)
is easy, but the need of annotated data is a problem.

A more general difficulty, however, is that of find-
ing an alignment evaluation metric favoring align-
ments which benefit Machine Translation. The fact
that the required alignment characteristics depend
on each particular system makes it even more dif-
ficult. It seems that high precision alignments are
better for phrase-based SMT (Chen and Federico,
2006; Ayan and Dorr, 2006), whereas high recall
alignments are more suited to N-gram SMT (Mariño
et al., 2006). In this context, alignment quality im-
provements does not necessarily imply translation
quality improvements. This is in agreement with
the observation of a poor correlation between word
alignment error rate (AER (Och and Ney, 2000)) and
automatic translation evaluation metrics (Ittycheriah
and Roukos, 2005; Vilar et al., 2006).
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Recently some alignment evaluation metrics have
been proposed which are more informative when
the alignments are used to extract translation
units (Fraser and Marcu, 2006; Ayan and Dorr,
2006). However, these metrics assess translation
quality very indirectly.

In this paper, we propose a novel framework for
discriminative training of alignment models with au-
tomated translation metrics as maximization crite-
rion. Thus we just need a reference aligned at the
sentence level instead of link labels at the word level.

The paper is structured as follows. Section 2 ex-
plains the models used in our word aligner, focusing
on the features designed to account for the specifici-
ties of the SMT system. In section 3, our minimum
error training procedure is described and experimen-
tal results are shown. Finally, some concluding re-
marks and lines of further research are given.

2 Bilingual Word Aligner

For versatility and efficiency requirements, we im-
plemented BIA, a BIlingual word Aligner similar
to that of Moore (2005). BIA consists in a beam-
search decoder searching, for each sentence pair, the
alignment which minimizes the cost of a linear com-
bination of various models. The differences with
the system of Moore lie in the features, which we
specially designed to suit our translation system (N-
gram SMT (Marĩno et al., 2006)). Its particularity
is the translation model, which is based on a4-gram
language model of bilingual units referred to as tu-
ples. Two issues regarding this translation model can
be dealt with at the alignment stage.

Firstly, in order to estimate the bilingual n-gram
model, only one monotonic segmentation of each
sentence pair is performed. Thus long reorderings
cause long and sparse tuples to be extracted. For ex-
ample, if the first source word is linked to the last
target word, only one tuple can be extracted, which
contains the whole sentence pair. This kind of tuple
is not reusable, and the data between its two extreme
words are lost.

Secondly, it occurs very often that unlinked words
(i.e. linked to NULL) end up producing tuples with
NULL source sides. This cannot be allowed since
no NULL is expected to occur in a translation input.
This problem is solved by preprocessing alignments

before tuple extraction such that any unlinked target
word is attached to either its precedent or its follow-
ing word.

Taking theses issues into account, we imple-
mented the following features:
• distinct source and target unlinked word penal-

ties: since unlinked words have a different im-
pact whether they appear in the source or target
language, we introduced an unlinked word fea-
ture for each side of the sentence pair.
• link bonus: in order to accommodate the N-

gram model preference for higher recall align-
ment, we introduced a feature which adds a
bonus for each link in the alignment.
• embedded word position penalty: this feature

penalizes situations like the one depicted in fig-
ure 1. In this example, the bilingual units s2-t2
and s3-t3 cannot be extracted because word po-
sitions s2 and s3 are embedded between links
s1-t1 and s4-t1. Thus the link s4-t1 may intro-
duces data sparseness in the translation model,
although it may be a correct link. So we want
to have a feature which counts the number of
embedded word positions in an alignment.

Figure 1: Word positions embedded in a tuple.

In addition to the embedded word position feature,
we used the same two distortion features as Moore
to penalize reorderings in the alignment (one sums
the number of crossing links, and the other one sums
the amplitude of crossing links). We also used theφ2

score (Gale and Church, 1991) as a word association
model, and as a POS-tags association model.

3 Experimental Work

For these experiments we used the Chinese-
English data provided for IWSLT’06 evaluation
campaign (Paul, 2006). The training set contains
46000 sentences (of 6.7 and 7.0 average length). Pa-
rameters were tuned over the development set (dev4)
provided, consisting of 489 sentences of 11.2 words
in average, with 7 references. Our test set was a se-
lection of 500 sentences (of 6 words in average, with
16 references) among dev1, dev2 and dev3 sets.
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3.1 Optimization Procedure

Once the alignment models were computed, a set of
optimal log-linear coefficients was estimated via the
optimization procedure depicted in Figure 2.

Figure 2: Optimization loop.

The training corpus was aligned with a set of ini-
tial parametersλ1, . . . , λ7. This alignment was used
to extract tuples and build a bilingual N-gram trans-
lation model (TM). A baseline SMT system, consist-
ing of MARIE decoder and this translation model as
unique feature2, was used to produce a translation
(OUT) of the development source set. Then, trans-
lation quality over the development set is maximized
by iteratively varying the set of coefficients.

The optimization procedure was performed by us-
ing the SPSA algorithm (Spall, 1992). SPSA is a
stochastic implementation of the conjugate gradient
method which requires only two evaluations of the
objective function. It was observed to be more ro-
bust than the Downhill Simplex method when tuning
SMT coefficients (Lambert and Banchs, 2006).

Each function evaluation required to align the
training corpus and build a new translation model.
The algorithm converged after about 80 evaluations,
lasting each 17 minutes with a 3 GHz processor.
Alignment decoding was performed with a beam of
10 (it took 50 seconds and required 8 MB memory).

Finally, the corpus was aligned with the opti-
mum set of coefficients, and a full SMT system was
build, with a target language model (trained on the
provided training data), a word bonus model and
two lexical models. SMT models weights were op-
timized with a standard Minimum Error Training
(MET) strategy3 and the test corpus was translated

2An N-gram SMT system can produce good translations
without additional target language model since the target lan-
guage is modeled inside the bilingual N-gram model.

3SMT parameters are not optimized together with alignment

with the full system. To contrast the results, full
translation systems were also build extracting tuples
from various combinations of GIZA++ alignments
(trained with 50 classes and respectively 4,5 and 4
iterations of models 1,HMM and 4). In order to limit
the error introduced by MET, we translated the test
corpus with three sets of SMT model weights, and
took the average and standard deviation.

3.2 Results

Table 1 shows results obtained with the full SMT
system on the test corpus, with GIZA++ alignments,
and BIA alignments optimized in function of three
metrics: BLEU, NIST, and BLEU+4*NIST. The
standard deviation is indicated in parentheses. Al-
though results for systems trained with different BIA
alignments present more variability than systems
trained with GIZA++ alignments, they achieve bet-
ter average scores, and one of them obtains much
higher scores. Unexpectedly, BIA alignments tuned
with NIST yield the system with worse NIST score.

4 Conclusions and further work

We proposed a novel framework for discriminative
training of alignment models with automated trans-
lation metrics as maximization criterion. Accord-
ing to this type of metrics, the translation systems
trained from the optimized alignments clearly per-
formed better than the ones trained from Giza++
alignment combinations.

In addition, this first version of the alignment
system has very basic models and could be im-
proved. We could certainly improve the association
score model, for example adding discount factors or
adding more association score types, or dictionaries.

During the alignment coefficient optimization de-
picted in Figure 2, only the baseline SMT system
is used. In future work, we could consider using
various SMT features (as would be required for a
phrase-based SMT system).

Our approach, as it is, cannot be applied to a large
corpus, since it requires to align the whole training
corpus at each iteration. Thus an interesting further
research would consist in determining whether the

parameters for two main reasons. Firstly, translation is more
sensitive to variations of SMT parameters. Secondly, alignment
is optimized over the full training set, whereas SMT is tuned
over the development set.
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System BLEU NIST PER WER
GIZA++ union 42.7 (1.1) 8.82 (0.07) 34.7 (0.2) 43.7 (0.4)
GIZA++ intersection 42.4 (0.9) 8.53 (0.07) 37.0 (0.9) 45.0 (1.3)
GIZA++ Zh→En 43.7 (0.9) 8.90 (0.2) 37.2 (1.4) 45.5 (2.0)
BIA (BLEU) 44.8 (0.4) 9.00 (0.04) 35.7 (0.07) 43.8 (0.09)
BIA (BLEU+4*NIST) 47.0 (1.5) 8.83 (0.4) 32.9 (0.8) 40.9 (0.5)
BIA (NIST) 44.8 (0.1) 8.55 (0.14) 33.0 (0.2) 41.4 (0.5)

Table 1:Automatic translation evaluation results.

alignment parameters trained on a part of the corpus
are valid for the whole corpus.

Finally, some Giza++ parameters may also be
tuned, in the same way as for BIA parameters.
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Abstract

Vocal activity detection is an impor-
tant technology for both automatic speech
recognition and automatic speech under-
standing. In meetings, standard vocal
activity detection algorithms have been
shown to be ineffective, because partici-
pants typically vocalize for only a frac-
tion of the recorded time and because,
while they are not vocalizing, their channels
are frequently dominated by crosstalk from
other participants. In the present work,
we review a particular type of normaliza-
tion of maximum cross-channel correlation,
a feature recently introduced to address the
crosstalk problem. We derive a plausible
geometric interpretation and show how the
frame size affects performance.

1 Introduction

Vocal activity detection (VAD) is an important tech-
nology for any application with an automatic speech
recognition (ASR) front end. In meetings, partic-
ipants typically vocalize for only a fraction of the
recorded time. Their temporally contiguous contri-
butions should be identified prior to ASR in order to
leverage speaker adaptation schemes and language
model constraints, and to associate recognized out-
put with specific speakers (who said what). Segmen-
tation into such contributions is informed primarily
by VAD on a frame-by-frame basis.

Individual head-mounted microphone (IHM)
recordings of meetings present a particular challenge
for VAD, due to crosstalk from other participants.
Most state-of-the-art VAD systems for meetings rely
on decoding in a binary speech/non-speech space,
assuming independence among participants, but are

increasingly relying on features specifically designed
to address the crosstalk issue (Wrigley et al., 2005).

A feature which has attracted attention since its
use in VAD post-processing in (Pfau et al., 2001)
is the maximum cross-channel correlation (XC),
maxτ φjk (τ), between channels j and k, where τ is
the lag. When designing features descriptive of the
kth channel, XC is frequently normalized by the en-
ergy in the target1 channel k (Wrigley et al., 2003).
Alternately, XC can be normalized by the energy in
the non-target channel j (Laskowski et al., 2004),
a normalization which we refer to here as NT-Norm,
extending the Norm and S-Norm naming conventions
in (Wrigley et al., 2005). Table 1 shows several types
of normalizations which have been explored.

Normalization of XC Mean Min Max

(none) maxj 6=k φjk(τ) [2][4] [2][4] [2][4]

Norm
maxj 6=k φjk(τ)

φkk(0) [2][4] [2][4] [2][4]

S-Norm
maxj 6=k φjk(τ)√

φjj(0)φkk(0)
[2][4][5] [2][4] [1][2][4]

NT-Norm
maxj 6=k φjk(τ)

φjj(0)
[3] [6] [6]

Table 1: Normalizations and statistics of cross-
channel correlation features to describe channel k.
In [1], a median-smoothed version was used in post-
processing. In [3], the sum (JMXC) was used in-
stead of the mean. In [5], cross-correlation was com-
puted over samples and features. In [6], the mini-
mum and the maximum were jointly referred to as
NMXC. References in bold depict features selected
by an automatic feature selection algorithm in [2] and
[4]. (1:(Pfau et al., 2001), 2:(Wrigley et al., 2003),
3:(Laskowski et al., 2004), 4:(Wrigley et al., 2005),
5:(Huang, 2005), 6:(Boakye and Stolcke, 2006))

1The target/non-target terms are due to (Boakye and
Stolcke, 2006).
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The present work revisits NT-Norm normalization,
which has been successfully used in a threshold de-
tector (Laskowski et al., 2004), in automatic initial
label assignment (Laskowski and Schultz, 2006), and
as part of a two-state decoder feature vector (Boakye
and Stolcke, 2006). Our main contribution is a geo-
metric interpretation of NT-Norm XC, in Section 2.
We also describe, in Section 3, several contrastive
experiments, and discuss the results in Section 4.

2 Geometric Interpretation

We propose an interpretable geometric approxima-
tion to NT-Norm XC for channel k,

ξk,j =
maxτ φjk (τ)

φjj

, ∀j 6=k (1)

We assume the simplified response in the kth IHM
microphone at a distance dk from a single point
source s (t) to be

mk (t)
.
= Ak

(

1

dk

s

(

t− dk

c

)

+ ηk (t)

)

, (2)

where c, Ak and ηk (t) are the speed of sound, the
gain of microphone k, and source-uncorrelated noise
at microphone k, respectively. Cross-channel corre-
lation is approximated over a frame of size Ω by

φjk (τ) =

∫

Ω

AjAk

djdk

s (t) s (t− τ) dt , (3)

where τ ≡ (dj − dk) /c. Letting Ps ≡
∫

Ω
s2 (t) dt and

Pηk
≡
∫

Ω
η2

k (t) dt,

φjj (0) = A2
j

(

1

d2
j

Ps + Pηj

)

, (4)

max
τ

φjk (τ) =
AjAk

djdk

Ps , (5)

respectively, as the maximum of φjk (τ) occurs at
τ∗ = (dk − dj) /c. In consequence,

maxτ φjk (τ)

φjj (0)
≈ dj

dk

, (6)

provided that

Ak

Aj



1− Pηj

1
d2

j

Ps + Pηj



 ≈ 1 , (7)

i.e., under assumptions of similar microphone gains,
a non-negligible farfield signal-to-noise ratio at each
microphone, and the simplifications embodied in
Equation 2, NT-Norm XC approximates the relative

distances of 2 microphones to the single point source
s (t). We stress that this approximation requires no
side knowledge about the true positions of the par-
ticipants or of their microphones.

Importantly, this interpretation is valid only if τ∗

lies within the integration window Ω in Equation 3.
In (Boakye and Stolcke, 2006), the authors showed
that when the analysis window is 25 ms, the NMXC
feature is not as robust as frame-level energy flooring
followed by cross-channel normalization (NLED).

3 Experimental Setup

3.1 VAD and ASR Systems

Our multispeaker VAD system, shown in Figure 1,
was introduced in (Laskowski and Schultz, 2006).
Rather than detecting the 2-state speech (V) vs.
non-speech (N ) activity of each partipant indepen-
dently, the system implements a Viterbi search for
the best path through a 2K-state vocal interac-
tion space, where K is the number of participants.
Segmentation consists of three passes: initial la-
bel assignment (ILA), described in the next subsec-
tion, for acoustic model training; simultaneous multi-
participant Viterbi decoding; and smoothing to pro-
duce segments for ASR. In the current work, during
decoding, we limit the maximum number of simulta-
neously vocalizing participants to 3.

This system is an improved version of that fielded
in the NIST Rich Transcription 2006 Meeting Recog-
nition evaluation (RT06s)2, to produce automatic
segmentation in the IHM condition on conference
meetings. The ASR system which we use in this
paper is as described in (Fügen et al., 2007).

3.2 Unsupervised ILA

For unsupervised labeling of the test audio, prior to
acoustic model training, we employ the criterion

q̃ [k] =







V if
∑

j 6=k

log
(

maxτ φjk(τ)
φjj(0)

)

> 0

N otherwise .

(8)

Assuming equality in Equation 6, this corresponds
to declaring a participant as vocalizing when the dis-

tance between the location of the dominant sound

source and that participant’s microphone is smaller

than the geometric mean of the distances from the

source to the remaining microphones, ie. when

K−1

√

∏

j 6=k

dj > dk (9)

2http://www.nist.gov/speech/tests/rt/
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Figure 1: VAD system architecture, with 4 error measurement points. Symbols as in the text.

We refer to this algorithm as ILAave. For contrast we
also consider ILAmin, with the sum in Equation 8 re-
placed by the minimum over j 6=k. This corresponds
to declaring a participant as vocalizing when the dis-

tance between the location of the dominant sound

source and that participant’s microphone is smaller

than the distance from the source to any other mi-

crophone. We do not consider ILAmax, whose inter-
pretation in light of Equation 6 is not useful.

3.3 Data

The data used in the described experiments con-
sist of two datasets from the NIST RT-05s and
RT-06s evaluations. The data which had been
used for VAD system improvement, rt05s eval*,
is the complete rt05s eval set less one meeting,
NIST 20050412-1303. This meeting was excluded
as it contains a participant without a microphone, a
condition known a priori to be absent in rt06s eval;
we use the latter in its entirety.

3.4 Description of Experiments

The experiments we present aim to compare ILAave
and ILAmin, and to show how the size of the inte-
gration window, Ω, affects system performance. As
our VAD decoder operates at a frame size of 100ms,
we introduce a reframing step between the ILA com-
ponent and both AM training and decoding; see Fig-
ure 1. V is assigned to each 100ms frame if 50% or
more of the frame duration is assigned V by ILA;
otherwise, the 100ms frame is assigned an N label.

We measure performance in four locations within
the combined VAD+ASR system architecture, also
shown in Figure 1. We compute a VAD frame er-
ror just after reframing (q̃F ), just after decoding
(q∗), and just after smoothing (σ (q∗)). This er-
ror is the sum of the miss rate (MS), and the false
alarm rate excluding intervals of all-participant si-
lence (FAX), computed against unsmoothed word-
level forced alignment references. We use this met-
ric for comparative purposes only, across the vari-
ous measurement points. We also use first-pass ASR
word error rates (WERs), after lattice rescoring, as

a final measure of performance impact.

We evaluate, over a range of ILA frame sizes, the
performance of ILAave(3), with a maximum number
of simultaneously vocalizing participants of 3, and
for the contrastive ILAmin. We note that ILAmin
is capable of declaring at most one microphone at a
time as being worn by a current speaker. As a re-
sult, construction of acoustic models for overlapped
vocal activity states, described in (Laskowski and
Schultz, 2006), results in states of at most 2 simul-
taneously vocalizing participants. We therefore refer
to ILAmin as ILAmin(2), and additionally consider
ILAave(2), in which states with 3 simultaneously vo-
calizing participants are removed.

4 Results and Discussion

We show the results of our experiments in Ta-
ble 2. First-pass WERs, using reference segmenta-
tion (.stm), vary by 1.3% absolute (abs) between
rt05s eval and rt06s eval. We also note that re-
moving the one meeting with a participant without
a microphone reduces the rt05s eval manual seg-
mentation WER by 1.7% abs. WERs obtained with
automatic segmentation should be compared to the
manual segmentation WERs for each set.

As the q̃F columns shows, ILAmin(2) entails sig-
nificantly more VAD errors than ILAave. Notably,
although we do not show the breakdown, ILAmin(2)
is characterized by fewer false alarms, but misses
much more speech than ILAave(2). This is due in
part to its inability to identify simultaneous talk-
ers. However, following acoustic model training and
use (q∗), the VAD error rates between the two algo-
rithms are approximately equal.

In studying the WERs for each ILA algorithm in-
dependently, the variation across ILA frame sizes in
the range 25–100 ms can be significant: for example,
it is 1.2% abs for ILAmin(2) on rt06s eval, com-
pared to the difference with manual segmentation of
3.1% abs. Error curves, as a function of ILA frame
size, are predominantly shallow parabolas, except at
75 ms (notably for ILAmin(2) at q̃F ); we believe that
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VAD, rt05s WER, 1st pass
ILA Ω

q̃F q∗ σ (q∗) 05 05* 06

a 100 31.3 16.7 16.0 39.0 34.1 39.6

v 75 33.6 16.6 15.9 38.9 34.1 39.9
e 50 35.2 16.7 16.0 38.8 34.0 39.3
3

25 36.8 17.3 16.3 39.6 34.2 39.7

a 100 31.3 15.8 15.2 37.8 34.4 39.7

v 75 33.6 15.6 15.0 37.9 34.4 39.6
e 50 35.2 15.8 15.2 37.6 34.3 39.3
2

25 36.8 16.4 15.6 38.1 34.3 39.5

m 100 43.4 15.8 14.7 38.2 35.2 39.3

i 75 51.9 15.6 14.6 38.1 35.2 39.3
n 50 47.1 15.7 14.6 37.9 35.1 40.1
2

25 47.7 16.2 14.9 38.1 35.4 40.5

refs 9.5 9.5 9.5 36.1 34.4 37.4

Table 2: VAD errors, measured at three points in our
system, and first-pass WERs for rt05s eval (05),
as well as first-pass WERs for rt05s eval* (05*)
and rt06s eval (06). Results are shown for 3 con-
trastive VAD systems (ILAave(3), ILAave(2) and
ILAmin(2)), and 4 ILA frame sizes (100ms, 75ms,
50ms, and 25ms).

this is because 75 ms does not divide evenly into the
decoder frame size of 100 ms, causing more deletions
across the reframing step than for other ILA frame
sizes. Error minima appear for an ILA frame size
somewhere between 50 ms and 75 ms, for both ASR
and post-decoding VAD errors.

Although (Pfau et al., 2001) considered a maxi-
mum lag of 250 samples (15.6ms, or 5m at the speed
of sound), their computation of S-Norm XC used
a rectangular window. Here, as in (Laskowski and
Schultz, 2006) and (Boakye and Stolcke, 2006), we
use a Hamming window. Our results suggest that a
large, broadly tapered window is important for Equa-
tion 6 to hold.

The table also shows that for datasets with-
out uninstrumented participants, rt05s eval*

and rt06s eval, ILAmin(2) is outperformed by
ILAave(2) by as much as 1.1% abs in WER, espe-
cially at small frame sizes. The difference for the full
rt05s eval dataset is smaller. The results also sug-
gest that reducing the maximum degree of simulta-
neous vocalization from 3 to 2 during decoding is an
effective means of reducing errors (ASR insertions,
not shown) for uninstrumented participants.

5 Conclusions

We have derived a geometric approximation for a
particular type of normalization of maximum cross-

channel correlation, NT-Norm XC, recently intro-
duced for multispeaker vocal activity detection. Our
derivation suggests that it is effectively comparing
the distance between each speaker’s mouth and each
microphone. This is novel, as geometry is most often
inferred using the lag of the crosscorrelation maxi-
mum, rather than its amplitude.

Our experiments suggest that frame sizes of 50–75
ms lead to WERs which are lower than those for ei-
ther 100 ms or 25 ms by as much as 1.2% abs; that
ILAave outperforms ILAmin as an initial label as-
signment criterion; and that reducing the degree of
simultaneous vocalization during decoding may ad-
dress problems due to uninstrumented participants.
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Abstract

Training statistical models to detect non-
native sentences requires a large corpus
of non-native writing samples, which is
often not readily available. This paper
examines the extent to which machine-
translated (MT) sentences can substitute
as training data.

Two tasks are examined. For the na-
tive vs non-native classification task, non-
native training data yields better perfor-
mance; for the ranking task, however,
models trained with a large, publicly avail-
able set of MT data perform as well as
those trained with non-native data.

1 Introduction

For non-native speakers writing in a foreign lan-
guage, feedback from native speakers is indispens-
able. While humans are likely to provide higher-
quality feedback, a computer system can offer bet-
ter availability and privacy. A system that can dis-
tinguish non-native (“ill-formed”) English sentences
from native (“well-formed”) ones would provide
valuable assistance in improving their writing.

Classifying a sentence into discrete categories can
be difficult: a sentence that seems fluent to one judge
might not be good enough to another. An alternative
is to rank sentences by their relative fluency. This
would be useful when a non-native speaker is un-
sure which one of several possible ways of writing a
sentence is the best.

We therefore formulate two tasks on this problem.
The classification task gives one sentence to the sys-
tem, and asks whether it is native or non-native. The
ranking task submits sentences with the same in-
tended meaning, and asks which one is best.

To tackle these tasks, hand-crafting formal rules
would be daunting. Statistical methods, however,
require a large corpus of non-native writing sam-
ples, which can be difficult to compile. Since
machine-translated (MT) sentences are readily avail-
able in abundance, we wish to address the question
of whether they can substitute as training data.

The next section provides background on related
research. Sections 3 and 4 describe our experiments,
followed by conclusions and future directions.

2 Related Research

Previous research has paid little attention to rank-
ing sentences by fluency. As for classification, one
line of research in MT evaluation is to evaluate the
fluency of an output sentence without its reference
translations, such as in (Corston-Oliver et al., 2001)
and (Gamon et al., 2005). Our task here is simi-
lar, but is applied on non-native sentences, arguably
more challenging than MT output.

Evaluation of non-native writing has encom-
passed both the document and sentence levels. At
the document level, automatic essay scorers, such
as (Burstein et al., 2004) and (Ishioka and Kameda,
2006), can provide holistic scores that correlate well
with those of human judges.

At the sentence level, which is the focus of this
paper, previous work follows two trends. Some re-
searchers explicitly focus on individual classes of er-
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rors, e.g., mass vs count nouns in (Brockett et al.,
2006) and (Nagata et al., 2006). Others implicitly do
so with hand-crafted rules, via templates (Heidorn,
2000) or mal-rules in context-free grammars, such
as (Michaud et al., 2000) and (Bender et al., 2004).

Typically, however, non-native writing exhibits a
wide variety of errors, in grammar, style and word
collocations. In this research, we allow unrestricted
classes of errors1, and in this regard our goal is clos-
est to that of (Tomokiyo and Jones, 2001). How-
ever, they focus on non-native speech, and assume
the availability of non-native training data.

3 Experimental Set-Up

3.1 Data
Our data consists of pairs of English sentences, one
native and the other non-native, with the same “in-
tended meaning”. In our MT data (MT), both sen-
tences are translated, by machine or human, from
the same sentence in a foreign language. In our non-
native data (JLE), the non-native sentence has been
edited by a native speaker2. Table 1 gives some ex-
amples, and Table 2 presents some statistics.

MT (Multiple-Translation Chinese and Multiple-
Translation Arabic corpora) English MT out-
put, and human reference translations, of Chi-
nese and Arabic newspaper articles.

JLE (Japanese Learners of English Corpus) Tran-
scripts of Japanese examinees in the Standard
Speaking Test. False starts and disfluencies
were then cleaned up, and grammatical mis-
takes tagged (Izumi et al., 2003). The speaking
style is more formal than spontaneous English,
due to the examination setting.

3.2 Machine Learning Framework
SVM-Light (Joachims, 1999), an implementation
of Support Vector Machines (SVM), is used for the
classification task.

For the ranking task, we utilize the ranking mode
of SVM-Light. In this mode, the SVM algorithm
is adapted for learning ranking functions, origi-
nally used for ranking web pages with respect to a

1Except spelling mistakes, which we consider to be a sepa-
rate problem that should be dealt with in a pre-processing step.

2The nature of the non-native data constrains the ranking to
two sentences at a time.

query (Joachims, 2002). In our context, given a set
of English sentences with similar semantic content,
say s1, . . . , sn, and a ranking based on their fluency,
the learning algorithm estimates the weights ~w to
satisfy the inequalities:

~w · Φ(sj) > ~w · Φ(sk) (1)

where sj is more fluent than sk, and where Φ maps
a sentence to a feature vector. This is in contrast to
standard SVMs, which learn a hyperplane boundary
between native and non-native sentences from the
inequalities:

yi(~w · Φ(si) + w0) − 1 ≥ 0 (2)

where yi = ±1 are the labels. Linear kernels are
used in our experiments, and the regularization pa-
rameter is tuned on the development sets.

3.3 Features
The following features are extracted from each sen-
tence. The first two are real numbers; the rest are
indicator functions of the presence of the lexical
and/or syntactic properties in question.

Ent Entropy3 from a trigram language model
trained on 4.4 million English sentences with
the SRILM toolkit (Stolcke, 2002). The tri-
grams are intended to detect local mistakes.

Parse Parse score from Model 2 of the statisti-
cal parser (Collins, 1997), normalized by the
number of words. We hypothesize that non-
native sentences are more likely to receive
lower scores.

Deriv Parse tree derivations, i.e., from each parent
node to its children nodes, such as S → NP VP.
Some non-native sentences have plausible N -
grams, but have derivations infrequently seen
in well-formed sentences, due to their unusual
syntactic structures.

DtNoun Head word of a base noun phrase, and its
determiner, e.g., (the, markets) from the human
non-native sentence in Table 1. The usage of ar-
ticles has been found to be the most frequent er-
ror class in the JLE corpus (Izumi et al., 2003).

3Entropy H(x) is related to perplexity PP (x) by the equa-
tion PP (x) = 2H(x).
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Type Sentence
Native Human New York and London stock markets went up
Non-native Human The stock markets in New York and London were increasing together

MT The same step of stock market of London of New York rises

Table 1: Examples of sentences translated from a Chinese source sentence by a native speaker, by a non-
native speaker, and by a machine translation system.

Data Set Corpus # sentences (for classification) # pairs (for
total native non-native ranking)

MT train LDC{2002T01, 2003T18, 2006T04} 30075 17508 12567 91795
MT dev LDC2003T17 (Zaobao only) 1995 1328 667 2668
MT test LDC2003T17 (Xinhua only) 3255 2184 1071 4284
JLE train Japanese Learners of English 9848 4924 4924 4924
JLE dev 1000 500 500 500
JLE test 1000 500 500 500

Table 2: Data sets used in this paper.

Colloc An in-house dependency parser extracts
five types of word dependencies4: subject-verb,
verb-object, adjective-noun, verb-adverb and
preposition-object. For the human non-native
sentence in Table 1, the unusual subject-verb
collocation “market increase” is a useful clue
in this otherwise well-formed sentence.

4 Analysis

4.1 An Upper Bound

To gauge the performance upper bound, we first at-
tempt to classify and rank the MT test data, which
should be less challenging than non-native data. Af-
ter training the SVM on MT train, classification
accuracy on MT test improves with the addition
of each feature, culminating at 89.24% with all
five features. This result compares favorably with
the state-of-the-art5. Ranking performance reaches
96.73% with all five features.

We now turn our attention to non-native test data,
and contrast the performance on JLE test using
models trained by MT data (MT train), and by
non-native data (JLE train).

4Proper nouns and numbers are replaced with special sym-
bols. The words are further stemmed using Porter’s Stemmer.

5Direct comparison is impossible since the corpora were dif-
ferent. (Corston-Oliver et al., 2001) reports 82.89% accuracy
on English software manuals and online help documents, and
(Gamon et al., 2005) reports 77.59% on French technical docu-
ments.

Test Set: Train Set
JLE test MT train JLE train

Ent+ 57.2 57.7
Parse (+) 48.6 (+) 70.6

(-) 65.8 (-) 44.8
+Deriv 58.4 64.7

(+) 54.6 (+)72.2
(-) 62.2 (-) 57.2

+DtNoun 59.0 66.4
(+) 57.6 (+) 72.8
(-) 60.4 (-) 60.0

+Colloc 58.6 65.9
(+) 54.2 (+) 72.6
(-) 63.2 (-) 59.2

Table 3: Classification accuracy on JLE test. (-)
indicates accuracy on non-native sentences, and (+)
indicates accuracy on native sentences. The overall
accuracy is their average.

4.2 Classification

As shown in Table 3, classification accuracy on JLE
test is higher with the JLE train set (66.4%)
than with the larger MT train set (59.0%). The
SVM trained on MT train consistently misclas-
sifies more native sentences than non-native ones.
One reason might be that speech transcripts have a
less formal style than written news sentences. Tran-
scripts of even good conversational English do not
always resemble sentences in the news domain.

4.3 Ranking

In the ranking task, the relative performance be-
tween MT and non-native training data is reversed.
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Test Set: Train Set
JLE test MT train JLE train

Ent+Parse 72.8 71.4
+Deriv 73.4 73.6
+DtNoun 75.4 73.8
+Colloc 76.2 74.6

Table 4: Ranking accuracy on JLE test.

As shown in Table 4, models trained on MT train
yield higher ranking accuracy (76.2%) than those
trained on JLE train (74.6%). This indicates that
MT training data can generalize well enough to per-
form better than a non-native training corpus of size
up to 10000.

The contrast between the classification and rank-
ing results suggests that train/test data mismatch is
less harmful for the latter task. Weights trained on
the classification inequalities in (2) and on the rank-
ing inequalities in (1) both try to separate native and
MT sentences maximally. The absolute boundary
learned in (2) is inherently specific to the nature
of the training sentences, as we have seen in §4.2.
In comparison, the relative scores learned from (1)
have a better chance to carry over to other domains,
as long as some gap still exists between the scores
of the native and non-native sentences.

5 Conclusions & Future Work

We explored two tasks in sentence-level fluency
evaluation: ranking and classifying native vs. non-
native sentences. In an SVM framework, we exam-
ined how well MT data can replace non-native data
in training.

For the classification task, training with MT data
is less effective than with non-native data. How-
ever, for the ranking task, models trained on pub-
licly available MT data generalize well, performing
as well as those trained with a non-native corpus of
size 10000.

In the future, we would like to search for more
salient features through a careful study of non-native
errors, using error-tagged corpora such as (Izumi et
al., 2003). We also plan to explore techniques for
combining large MT training corpora and smaller
non-native training corpora. Our ultimate goal is to
identify the errors in the non-native sentences and
propose corrections.
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Abstract

This paper proposes a ternary relation
extraction method primarily based on
rich syntactic information. We identify
PROTEIN-ORGANISM-LOCATION re-
lations in the text of biomedical articles.
Different kernel functions are used with
an SVM learner to integrate two sources
of information from syntactic parse trees:
(i) a large number of syntactic features
that have been shown useful for Seman-
tic Role Labeling (SRL) and applied here
to the relation extraction task, and (ii) fea-
tures from the entire parse tree using a
tree kernel. Our experiments show that the
use of rich syntactic features significantly
outperforms shallow word-based features.
The best accuracy is obtained by combin-
ing SRL features with tree kernels.

1 Introduction
Biomedical functional relations (relations for short)
state interactions among biomedical substances. For
instance, the PROTEIN-ORGANISM-LOCATION
(POL) relation that we study in this paper provides
information about where a PROTEIN is located in
an ORGANISM, giving a valuable clue to the bi-
ological function of the PROTEIN and helping to
identify suitable drug, vaccine and diagnostic tar-
gets. Fig. 1 illustrates possible locations of proteins
in Gram+ and Gram− bacteria. Previous work in
biomedical relation extraction task (Sekimizu et al.,
1998; Blaschke et al., 1999; Feldman et al., 2002)
suggested the use of predicate-argument structure by
taking verbs as the center of the relation – in con-
trast, in this paper we directly link protein named en-
tities (NEs) to their locations; in other related work,
(Claudio et al., 2006) proposed an approach that

∗This research was partially supported by NSERC, Canada.
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outer 
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inner 
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Figure 1: Illustration of bacterial locations

solely considers the shallow semantic features ex-
tracted from sentences.

For relation extraction in the newswire domain,
syntactic features have been used in a generative
model (Miller et al., 2000) and in a discriminative
log-linear model (Kambhatla, 2004). In comparison,
we use a much larger set of syntactic features ex-
tracted from parse trees, many of which have been
shown useful in SRL task. Kernel-based methods
have also been used for relation extraction (Zelenko
et al., 2003; Culotta and Sorensen, 2004; Bunescu
and Mooney, 2005) on various syntactic represen-
tations, such as dependency trees or constituency-
based parse trees. In contrast, we explore a much
wider variety of syntactic features in this work. To
benefit from both views, a composite kernel (Zhang
et al., 2006) integrates the flat features from enti-
ties and structured features from parse trees. In our
work, we also combine a linear kernel with a tree
kernel for improved performance.

2 SRL Features for Information Extraction
Fig. 2 shows one example illustrating the ternary re-
lation we are identifying. In this example, “Exoen-
zyme S” is a PROTEIN name, “extracellular” a LO-
CATION name and “Pseudomonas aeruginosa” an
ORGANISM name. Our task is to identify if there
exists a ”PROTEIN-ORGANISM-LOCATION” re-
lation among these three NEs.

To simplify the problem, we first reduce the POL
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Figure 2: An example of POL ternary relation in a parse tree

ternary relation extraction problem into two binary
relation extraction problems. Specifically, we split
the POL ternary relation into binary relations as: (1)
PO: PROTEIN and ORGANISM, and (2) PL: PRO-
TEIN and LOCATION.

The ORGANISM-LOCATION relation is ignored
because it does not consider the PROTEIN and is
less meaningful than the PO and PL relations. Based
on this simplification, and following the idea of
SRL, we take the PROTEIN name in the role of the
predicate (verb) and the ORGANISM/LOCATION
name as its argument candidates in question. Then
the problem of identifying the binary relations of PO
and PL has been reduced to the problem of argu-
ment classification problem given the predicate and
the argument candidates. The reason we pick PRO-
TEIN names as predicates is that we assume PRO-
TEIN names play a more central role in linking the
binary relations to the final ternary relations.

Compared to a corpus for the standard SRL task,
there are some differences in this task: first is the
relative position of PROTEIN names and ORGAN-
ISM/LOCATION names. Unlike the case in SRL,
where arguments locate either before or after the
predicate, in this application it is possible that one
NE is embedded in another. A second difference is
that a predicate in SRL scenario typically consists of
only one word; here a PROTEIN name can contain
up to 8 words.

We do not use PropBank data in our model at all.
All of our training data and test data is annotated by
domain expert biologists and parsed by Charniak-
Johnson’s parser (released in 2006). When there is
a misalignment between the NE and the constituent

in the parse tree, we insert a new NP parent node for
the NE.

3 System Description

Figure 3: High-level system architecture

Fig. 3 shows the system overview. The input to
our system consists of titles and abstracts that are
extracted from MEDLINE records. These extracted
sentences have been annotated with the NE infor-
mation (PROTEIN, ORGANISM and LOCATION).
The Syntactic Annotator parses the sentences and in-
serts the head information to the parse trees by using
the Magerman/Collins head percolation rules. The
main component of the system is our SRL-based
relation extraction module, where we first manu-
ally extract features along the path from the PRO-
TEIN name to the ORGANISM/LOCATION name
and then train a binary SVM classifier for the binary
relation extraction. Finally, we fuse the extracted
binary relations into a ternary relation. In contrast
with our discriminative model, a statistical parsing
based generative model (Shi et al., 2007) has been
proposed for a related task on this data set where the
NEs and their relations are extracted together and
used to identify which NEs are relevant in a particu-
lar sentence. Since our final goal is to facilitate the
biologists to generate the annotated corpus, in future
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• each word and its Part-of-Speech (POS) tag of PRO name

• head word (hw) and its POS of PRO name

• subcategorization that records the immediate structure that
expands from PRO name. Non-PRO daughters will be elim-
inated
• POS of parent node of PRO name

• hw and its POS of the parent node of PRO name

• each word and its POS of ORG name (in the case of “PO ”
relation extraction).
• hw and its POS of ORG name

• POS of parent node of ORG name

• hw and its POS of the parent node of ORG name

• POS of the word immediately before/after ORG name

• punctuation immediately before/after ORG name

• feature combinations: hw of PRO name hw of ORG name,
hw of PRO name POS of hw of ORG name, POS of hw of
PRO name POS of hw of ORG name
• path from PRO name to ORG name and the length of the
path
• trigrams of the path. We consider up to 9 trigrams

• lowest common ancestor node of PRO name and ORG
name along the path
• LCA (Lowest Common Ancestor) path that is from ORG
name to its lowest common ancestor with PRO name
• relative position of PRO name and ORG name. In parse
trees, we consider 4 types of positions that ORGs are relative
to PROs: before, after, inside, other

Table 1: Features adopted from the SRL task. PRO:
PROTEIN; ORG: ORGANISM

work we plan to take the relevant labeled NEs from
the generative model as our input.

Table 1 and Table 2 list the features that are used
in the system.

4 Experiments and Evaluation

4.1 Data set

Our experimental data set is derived from a small
expert-curated corpus, where the POL relations and
relevant PROTEIN, ORGANISM and LOCATION
NEs are labeled. It contains ∼150k words, 565 rela-
tion instances for POL, 371 for PO and 431 for PL.

4.2 Systems and Experimental Results

We built several models to compare the relative util-
ity of various types of rich syntactic features that
we can exploit for this task. For various represen-
tations, such as feature vectors, trees and their com-
binations, we applied different kernels in a Support
Vector Machine (SVM) learner. We use Joachims’

• subcategorization that records the immediate structure that
expands from ORG name. Non-ORG daughters will be elim-
inated
• if there is an VP node along the path as ancestor of ORG
name
• if there is an VP node as sibling of ORG name

• path from PRO name to LCA and the path length (L1)

• path from ORG name to LCA and the path length (L2)

• combination of L1 and L2

• sibling relation of PRO and ORG

• distance between PRO name and ORG name in the sen-
tence. ( 3 valued: 0 if nw (number of words) = 0; 1 if 0 <
nw <= 5; 2 if nw > 5)
• combination of distance and sibling relation

Table 2: New features used in the SRL-based rela-
tion extraction system.

SVM light1 with default linear kernel to feature vec-
tors and Moschetti’s SVM-light-TK-1.22 with the
default tree kernel. The models are:

Baseline1 is a purely word-based system, where
the features consist of the unigrams and bigrams
between the PROTEIN name and the ORGAN-
ISM/LOCATION names inclusively, where the stop-
words are selectively eliminated.

Baseline2 is a naive approach that assumes that any
example containing PROTEIN, LOCATION names
has the PL relation. The same assumption is made
for PO and POL relations.

PAK system uses predicate-argument structure ker-
nel (PAK) based method. PAK was defined in (Mos-
chitti, 2004) and only considers the path from the
predicate to the target argument, which in our set-
ting is the path from the PROTEIN to the ORGAN-
ISM or LOCATION names.

SRL is an SRL system which is adapted to use our
new feature set. A default linear kernel is applied
with SVM learning.

TRK system is similar to PAK system except that
the input is an entire parse tree instead of a PAK
path.

TRK+SRL combines full parse trees and manually
extracted features and uses the kernel combination.

1http://svmlight.joachims.org/
2http://ai-nlp.info.uniroma2.it/moschitti/TK1.2-

software/Tree-Kernel.htm
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Method PL PO POL
Measure Prec Rec F Acc Prec Rec F Acc Prec Rec F Acc
Baseline1 98.1 61.0 75.3 60.6 88.4 59.7 71.3 58.5 57.1 90.9 70.1 56.3
Baseline2 61.9 100.0 76.5 61.9 48.8 100.0 65.6 48.9 59.8 100.0 74.8 59.8

PAK 71.0 71.0 71.0 64.6 69.0 66.7 67.8 61.8 66.0 69.9 67.9 62.6
SRL 72.9 77.1 74.9 70.3 66.0 71.0 68.4 64.5 70.6 67.5 69.0 65.8
TRK 69.8 81.6 75.3 72.0 64.2 84.1 72.8 72.0 79.6 66.2 72.3 71.3

TRK+SRL 74.9 79.4 77.1 72.8 73.9 78.1 75.9 72.6 75.3 74.5 74.9 71.8
Table 3: Percent scores of Precision/Recall/F-score/Accuracy for identifying PL, PO and POL relations.

4.3 Fusion of Binary relations

We predict the POL ternary relation by fusing PL
and PO binary relations if they belong to the same
sentence and have the same PROTEIN NE. The pre-
diction is made by the sum of confidence scores
(produced by the SVM) of the PL and PO relations.
This is similar to the postprocessing step in SRL task
in which the semantic roles assigned to the argu-
ments have to realize a legal final semantic frame
for the given predicate.

4.4 Discussion

Table 3 shows the results using 5-fold cross valida-
tion. We report figures on ternary relation extraction
and extraction of the two binary relations. Compari-
son between the PAK model and SRL model shows
that manually specified features are more discrimi-
native for binary relation extraction; they boost pre-
cision and accuracy for ternary relation extraction.
In contrast to the SRL model for binary relation ex-
traction, the TRK model obtains lower recall but
higher precision. The combination of SRL with the
TRK system gives best overall accuracy of 71.8%
outperforming shallow word based features.

5 Conclusion
In this paper we explored the use of rich syntac-
tic features for the relation extraction task. In con-
trast with the previously used set of syntactic fea-
tures for this task, we use a large number of fea-
tures originally proposed for the Semantic Role La-
beling task. We provide comprehensive experiments
using many different models that use features from
parse trees. Using rich syntactic features by com-
bining SRL features with tree kernels over the en-
tire tree obtains 71.8% accuracy which significantly
outperforms shallow word-based features which ob-

tains 56.3% accuracy.
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Abstract 

Speaker name recognition plays an important 
role in many spoken language applications, 
such as rich transcription, information extrac-
tion, question answering, and opinion mining. 
In this paper, we developed an SVM-based 
classification framework to determine the 
speaker names for those included speech seg-
ments in broadcast news speech, called sound-
bites. We evaluated a variety of features with 
different feature selection strategies. Experi-
ments on Mandarin broadcast news speech 
show that using our proposed approach, the 
soundbite speaker name recognition (SSNR) 
accuracy is 68.9% on our blind test set, an ab-
solute 10% improvement compared to a base-
line system, which chooses the person name 
closest to the soundbite. 

1 Introduction 

Broadcast news (BN) speech often contains speech or 
interview quotations from specific speakers other than 
reporters and anchors in a show. Identifying speaker 
names for these speech segmentations, called soundbites 
(Maskey and Hirschberg, 2006), is useful for many 
speech processing applications, e.g., question answering, 
opinion mining for a specific person. This has recently 
received increasing attention in programs such as the 
DARPA GALE program, where one query template is 
about a person’s opinion or statement. 

Previous work in this line includes speaker role de-
tection (e.g., Liu, 2006; Maskey and Hirschberg, 2006) 
and speaker diarization (e.g., Canseco et al., 2005). In 
this paper, we formulate the problem of SSNR as a tra-
ditional classification task, and proposed an SVM-based 
identification framework to explore rich linguistic fea-
tures. Experiments on Mandarin BN speech have shown 

that our proposed approach significantly outperforms 
the baseline system, which chooses the closest name as 
the speaker for a soundbite.  

2 Related Work 

To our knowledge, no research has yet been conducted 
on soundbite speaker name identification in Mandarin 
BN domain. However, this work is related to some ex-
tent to speaker role identification, speaker diarization, 
and named entity recognition. 

Speaker role identification attempts to classify speech 
segments based on the speakers’ role (anchor, reporter, 
or others). Barzilay et al. (2000) used BoosTexter and 
the maximum entropy model for this task in English BN 
corpus, obtaining a classification accuracy of about 80% 
compared to the chance of 35%. Liu (2006) combined a 
generative HMM approach with the conditional maxi-
mum entropy method to detect speaker roles in Manda-
rin BN, reporting a classification accuracy of 81.97% 
against the baseline of around 50%. In Maskey and 
Hirschberg (2006), the task is to recognize soundbites 
(which make up of a large portion of the “other” role 
category in Liu (2006)). They achieved a recognition 
accuracy of 67.4% in the English BN domain. Different 
from their work, our goal is to identify the person who 
spoke those soundbites, i.e., associate each soundbite 
with a speaker name if any. 

Speaker diarization in BN aims to find speaker 
changes, group the same speakers together, and recog-
nize speaker names. It is an important component for 
rich transcription (e.g., in the DARPA EARS program). 
So far most work in this area has only focused on 
speaker segmentation and clustering, and not included 
name recognition. However, Canseco et al. (2005) were 
able to successfully use linguistic information (e.g., 
related to person names) to improve performance of BN 
speaker segmentation and clustering.  

This work is also related to named entity recognition 
(NER), especially person names. There has been a large 
amount of research efforts on NER; however, instead of 
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recognizing all the names in a document, our task is to 
find the speaker for a particular speech segment.  

3 Framework for Soundbite Speaker 
Name Recognition (SSNR) 

Figure 1 shows our system diagram. SSNR is conducted 
using the speech transcripts, assuming the soundbite 
segments are provided. After running NER in the tran-
scripts, we obtain candidate person names. For a sound-
bite, we use the name hypotheses from the region both 
before and after the soundbite. A ‘region’ is defined 
based on the turn and topic segmentation information. 
To determine which name among the candidates is the 
corresponding speaker for the soundbite, we recast this 
problem as a binary classification problem for every 
candidate name and the soundbite, which we call an 
instance. A positive tag for an instance means that the 
name is the soundbite speaker. Each instance has an 
associated feature vector, described further in the fol-
lowing section. Note that if a name occurs more than 
once, only one instance is created for it. 

 

Train Set Dev/Test Set

Preprocessing (word 
segmentation, NER)

Instance Creation 
for SSNR

Feature Vector 
Representation

Trained 
Model

Model Training 
and Optimizing

Conflict 
Resolution

Training Testing 

Output

 
Figure 1. System diagram for SSNR. 
 

Any classification approach can be used in this gen-
eral framework for SSNR. We choose to use an SVM 
classifier in our experiments because of its superior per-
formance in many classification tasks. 

3.1 Features  
The features that we have explored can be grouped into 
three categories.  

Positional Features (PF) 

• PF-1: the position of the candidate name relative to 
the soundbite. We hypothesize that names closer to 
a soundbite are more likely to be the soundbite 

speaker. This feature value can be ‘last’, ‘first’, 
‘mid’, or ‘unique’. For example, ‘last’ for a candi-
date before a soundbite means that it is the closest 
name among the hypotheses before the soundbite. 
‘Unique’ indicates that the candidate is the only 
person name in the region before or after the sound-
bite. Note that if a candidate name occurs more than 
once, the PF-1 feature corresponds to the closest 
name to the soundbite.  

• PF-2: the position of a name in its sentence. Typi-
cally a name appearing earlier in a sentence (e.g., a 
subject) is more likely to be quoted later.  

• PF-3: an indicator feature to show where the name 
has occurred, before, inside, or after the soundbite. 
We added this because it is rare that a name inside a 
soundbite is the speaker of that soundbite.  

• PF-4: an indicator to denote if a candidate is in the 
last sentence just before the soundbite turn, or is in 
the first sentence just after the soundbite turn. 

Frequency Features (Freq) 

We hypothesize that a name with more occurrences 
might be an important subject and thus more likely to be 
the speaker of the soundbite, therefore we include the 
frequency of a candidate name in the feature set.  

Lexical Features (LF) 

In order to capture the cue words around the soundbite 
speaker names in the transcripts, we included unigram 
features. For example, “pre_word+1=说/said” denotes 
that the candidate name is followed by the word ‘说
/said’, and that ‘pre’ means this happens in the region 
before the soundbite.  

3.2 Conflict Resolution 
Another component in the system diagram that is worth 
pointing out is ‘conflict resolution’. Since our approach 
treats each candidate name as a separate classification 
task, we need to post-process the cases where there are 
multiple or no positive hypotheses for a soundbite dur-
ing testing. To resolve this situation, we choose the in-
stance with the best confidence value from the classifier.  

4 Experiments 

4.1 Experimental Setup 
We use the TDT4 Mandarin broadcast news data in our 
experiment. The data set consists of about 170 hours 
(336 shows) of news speech from different sources. 
Speaker turns and soundbite segment information were 
annotated manually in the transcripts. Our current study 
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only uses the soundbites that have a human-labeled 
speaker name in the surrounding transcripts. There are 
1292 such soundbites in our corpus. We put aside 1/10 
of the data as the development set, another 1/10 as the 
test set, and used the rest as our training set. All the 
transcripts were automatically tagged with named enti-
ties using the NYU tagger (Ji and Grishman, 2005). For 
the classifier, we used the libSVM toolkit (Chang and 
Lin, 2001) and the RBF kernel in our experiments.  

A reasonable baseline for SSNR is to choose the 
closest person name before a soundbite as its speaker. 
We will compare our system performance to this base-
line approach.  

We used two performance metrics in our experi-
ments. First is the instance classification accuracy (CA) 
for the candidate names in the framework of the binary 
classification task. Second, we compute name recogni-
tion accuracy (RA) for the soundbites as follows: 

FilesinSoundbitesof
NamesCorrectwithSoundbitesofRA

#
#

=  

4.2 Effects of Different Manually Selected 
Feature Subsets 

We used 10-fold cross validation on the training set to 
evaluate the effect of different features and also for pa-
rameter optimization. Table 1 shows the instance classi-
fication results. “PF, Freq, LF” are the features 
described in Section 3.1. “LF-before” means the uni-
gram features before the soundbites. “All-before” de-
notes using all the features before the soundbites. 
 

Optimized Para. Feature 
Subsets C G 

CA 
(%) 

PF-1 0.125 2 83.48
+PF-2 2048 1.22e-4 85.62
+PF-3 2048 4.88e-4 85.79
+PF-4 2 0.5 86.18
+Freq 2 0.5 86.18
+LF-before 32 7.81e-3 88.44
+LF-after 
i.e., All features 8 0.0313 88.44

All-before 8 0.0313 88.03
Table 1. Instance classification accuracy (CA) using 
different feature sets. C and G are the optimized pa-
rameters in the SVM model. 
 

We notice that the system performance generally 
improves with incrementally expended feature sets, 
yielding an accuracy of 88.44% using all the features.  
Some features seem not helpful to system performance, 
such as “Freq” and “LF-after”. Using all the features 
before the soundbites achieves comparable performance 
to using all the features, indicating that the region before 
a soundbite contributes more than that after it. This is 

expected since the reporters typically have already men-
tioned the person’s name before a soundbite. In addition, 
we evaluated some compound features using our current 
feature definition, but adding those did not improve the 
system performance.  

4.3 Automatic Feature Selection 
We also performed automatic feature selection for the 
SVM model based on the F-score criterion (Chen and 
Lin, 2006). There are 6048 features in total in our sys-
tem. Figure 2 shows the classification performance in 
the training set using different number of features via 
automatic feature selection. 
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Figure 2. Instance classification accuracy (CA) using F-
score based feature selection. 
 
We can see that automatic feature selection further im-
proves the classification performance (2.36% higher 
accuracy than that in Table 1). Table 2 lists some of the 
top features based on their F-scores. Consistent with our 
expectation, we observe that position related features, as 
well as cue words, are good indicators for SSNR.  
 

Feature F-score 
Justbeforeturn (PF-4) 0.3543 
pre_contextpos=last (PF-1) 0.2857 
pre_senpos=unique (PF-2) 0.0631 
pre_word+1=“上午/morning” (LF) 0.0475 
pre_word+1= “说/said” (LF) 0.0399 
bool_pre=1 (PF-3) 0.0353 
Justafterturn (PF-4) 0.0349 
pre_contextpos=mid (PF-1) 0.0329 
post_contextpos=first (PF-1) 0.0323 
pre_word+1= “今天/today” (LF) 0.0288 
pre_word-1=“记者/reporter” (LF) 0.0251 
pre_word+1=“表示/express” (LF) 0.0246 

Table 2. Top features ordered by F-score values. 
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4.4 Performance on Development Set 
Up to now our focus has been on feature selection based 
on instance classification accuracy. Since our ultimate 
goal is to identify soundbite speaker names, we chose 
several promising configurations based on the results 
above to apply to the development set and evaluate the 
soundbite name recognition accuracy. Results using the 
two metrics are presented in Table 3. 

Feature Set CA (%) RA (%) 
Baseline 84.0 59.3 

PF 86.7 54.2 
PF+Freq 86.7 60.4 

PF+Freq+LF-before 87.8 63.5 
PF+Freq+LF-before 

+LF-after (ALL) 88.3 67.7 

Top 1512 by f-score 85.6 62.5 
Top 1839 by f-score 85.4 60.4 

Table 3. Results on the dev set using two metrics: in-
stance classification accuracy (CA), and soundbite name 
recognition accuracy (RA). The oracle RA is 79.1%.  
 

Table 3 shows that using all the features (ALL) 
performs the best, yielding an improvement of 4.3% and 
8.4% compared to the baseline in term of the CA and RA 
respectively. However, using the automatically selected 
feature sets (the last two rows in Table 3) only slightly 
outperforms the baseline. This suggests that the F-score 
based feature selection strategy on the training set may 
not generalize well. Interestingly, “Freq” and “LF-after” 
features show some useful contribution (the 4th and 6th 
row in Table 3) respectively on the development set, 
different from the results on the training set using 10-
fold cross validation. The results using the two metrics 
also show that they are not always correlated. 

Because of the possible NER errors, we also meas-
ure the oracle RA, defined as the percent of the sound-
bites for which the correct speaker name (based on NER) 
appears in the region surrounding the soundbite. The 
oracle RA on this data set is 79.1%. We also notice that 
8.3% of the soundbites do not have the correct name 
hypothesis due to an NER boundary error, and that 
12.5% is because of missing errors. 

We used the method as described in Section 3.2 to 
resolve conflicts for the results shown in Table 3. In 
addition, we evaluated another approach—we resort to 
the baseline (i.e., chose the name that is closest to the 
soundbite) for those soundbites that have multiple or no 
positive hypothesis. Our experiments on the develop-
ment set showed this approach degrades system per-
formance (e.g., RA of around 61% using all the features).  

4.5 Results on Blind Test Set 
Finally, we applied the all-feature configuration to our 
blind test data and obtained the results as shown in Ta-

ble 4. Using all the features significantly outperforms 
the baseline. The gain is slightly better than that on the 
development set, although the oracle accuracy is also 
higher on the test set. 

 CA (%) RA (oracle: 85.8%) 
Baseline 81.3 58.4 

All feature 85.1 68.9 
Table 4. Results on the test set.    

5 Conclusion 

We proposed an SVM-based approach for soundbite 
speaker name recognition and examined various linguis-
tic features. Experiments in Mandarin BN corpus show 
that our approach yields an identification accuracy of 
68.9%, significantly better than 58.4% from the baseline. 

Our future work will focus on exploring more useful 
features, such as part-of-speech and semantic features. 
In addition, we plan to test this framework using auto-
matic speech recognition output, speaker segmentation, 
and soundbite segment detection.  
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Abstract

We describe our linguistic rule-based tag-
ger IceTagger, and compare its tagging ac-
curacy to the TnT tagger, a state-of-the-
art statistical tagger, when tagging Ice-
landic, a morphologically complex lan-
guage. Evaluation shows that the average
tagging accuracy is 91.54% and 90.44%,
obtained by IceTagger and TnT, respec-
tively. When tag profile gaps in the lex-
icon, used by the TnT tagger, are filled
with tags produced by our morphological
analyser IceMorphy, TnT’s tagging accu-
racy increases to 91.18%.

1 Introduction

In this paper, we use a linguistic rule-based method
(LRBM) and a data-driven method (DDM) for tagg-
ing text in the morphologically complex Icelandic
language.

We present a novel LRBM. The tagger based on
this method, hereafter called IceTagger, uses about
175 local rules for initial disambiguation, and a set
of heuristics, to force feature agreement where ap-
propriate, for further disambiguation.

The average tagging accuracy of IceTagger is
91.54%, compared to 90.44% achieved by the TnT
tagger, a state-of-the-art statistical tagger (Brants,
2000). IceTagger makes 11.5% less errors than TnT.
On the other hand, when tag profile gaps in the lex-
icon, used by TnT, are filled with tags produced by

∗ The author is also affiliated with the Dept. of Computer
Science, University of Sheffield, Sheffield, S1 4DP, UK.

IceMorphy, our morphological analyser, TnT’s tagg-
ing accuracy increases to 91.18%. In that case, Ice-
Tagger makes 4.1% less errors than TnT.

The remainder of this paper is organised as fol-
lows: In Sect. 2, we describe the different tagging
methods in more detail. Sect. 3 briefly describes the
Icelandic language and the tagset. The components
of IceTagger are described in Sect. 4, and evaluation
results are presented in Sect. 5.

2 The tagging methods

DDMs use machine learning to automatically derive
a language model from, usually, hand-annotated cor-
pora. An advantage of the DDMs is their language
and tagset independence property. Their disadvan-
tage is that a tagged corpus is essential for training.
Furthermore, the limited window size used for dis-
ambiguation (e.g. three words) can be responsible
for some of the tagging errors.

One of the better known statistical data-driven
tagger is the TnT tagger (written in C). The tag-
ger uses a second order (trigram) Hidden Markov
model. The probabilities of the model are esti-
mated from a training corpus using maximum like-
lihood estimation. New assignments of part-of-
speech (POS) to words is found by optimising the
product of lexical probabilities (p(wi|tj)) and con-
textual probabilities (p(ti|ti−1, ti−2)) (where wi and
ti are the ith word and tag, respectively).

In contrast to DDMs, LRBMs are developed with
the purpose of tagging a specific language using a
particular tagset. The purpose of the rules is, usu-
ally, to remove illegitimate tags from words based on
context. The advantage of LRBMs is that they do not
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rely (to the same extent as DDMs) on the existence
of a tagged corpus, and rules can be written to refer
to words and tags in the entire sentence. The con-
struction of a linguistic rule-based tagger, however,
has been considered a difficult and time-consuming
task (Voutilainen, 1995).

One of the better known LRBMs is the Con-
straint Grammar (CG) framework (Karlsson et al.,
1995), in which both POS and grammatical func-
tions are tagged. The EngCG-2 tagger, developed
over several years and consisting of 3,600 rules, has
been shown to obtain high accuracy (Samuelsson
and Voutilainen, 1997).

The development time of our LRBM (written in
Java; including a tokeniser, IceMorphy and Ice-
Tagger) was 7 man-months, which can be consid-
ered a short development time for a LRBM. This is
mainly due to the emphasis on using heuristics (see
Sect. 4.3) for disambiguation, as opposed to writing
a large number of local rules.

3 The Icelandic language and its tagset

The Icelandic language is one of the Nordic lan-
guages. The language is morphologically rich,
mainly due to inflectional complexity. A thorough
description of the language can, for example, be
found in (Þráinsson, 1994).

The main Icelandic tagset, constructed in the
compilation of the tagged corpus Icelandic Fre-
quency Dictionary (IFD) (Pind et al., 1991), is large
(about 660 tags) compared to related languages. In
this tagset, each character in a tag has a particular
function. Table 1 shows the semantics of the noun
and the adjective tags.

To illustrate, consider the phrase “fallegu hes-
tarnir” (beautiful horses). The corresponding tag
for “fallegu” is “lkfnvf ”, denoting adjective, mascu-
line, plural, nominative, weak declension, positive;
and the tag for “hestarnir” is “nkfng” denoting noun,
masculine, plural, nominative with suffixed definite
article.

4 IceTagger

IceTagger consists of three main components: an
unknown word guesser, local rules for initial disam-
biguation and heuristics for further disambiguation.
Both the local rules and the heuristics have been de-

Char Category/ Symbol – semantics
# Feature
1 Word class n–noun, l–adjective
2 Gender k–masculine, v–feminine,

h–neuter, x–unspecified
3 Number e–singular, f–plural,
4 Case n–nominative, o–accusative,

þ–dative, e–genitive
5 Article g–with suffixed article
5 Declension s–strong, v–weak
6 Proper noun m–person, ö–place, s–other
6 Degree f–positive, m–comparative,

e–superlative

Table 1: The semantics of the noun and the adjective
tags.

veloped using linguistic knowledge and tuned using
a development corpus (described in Sect. 5).

4.1 The unknown word guesser

The purpose of our morphological analyser Ice-
Morphy, which is used as an unknown word guesser
by IceTagger, is to generate all appropriate tags
for a given word. It uses a familiar approach to
unknown word guessing, i.e. it performs mor-
phological/compound analysis and ending analysis
(Mikheev, 1997; Nakov et al., 2003). Additionally,
IceMorphy includes an important module for handl-
ing tag profile gaps (for a thorough description of
IceMorphy, consult (Loftsson, 2006a)).

A tag profile gap arises when a particular word,
listed in a lexicon derived from a corpus, has some
missing tags in its tag profile (set of possible tags).
The missing tag(s) might just not have been encoun-
tered during the derivation of the lexicon (e.g. dur-
ing training). For each noun, adjective or verb, of a
particular morphological class, IceMorphy is able to
fill in the gaps for the given word.

To illustrate, consider the word “konu” (woman),
and let us assume that only the tag “nveo” (denoting
noun, feminine, singular, accusative) is found in the
lexicon. Based on the “u” morphological suffix and
the accusative case of the tag, IceMorphy assumes
the word belongs to a particular morphological fem-
inine noun class, in which singular accusative, dative
and genitive cases have the same word form. Con-
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sequently, IceMorphy generates the correct missing
tags: “nveþ” and “nvee”.

4.2 Local rules

The purpose of a local rule is to eliminate inappro-
priate tags from words, based on a local context (a
window of 5 words; two words to the left and right
of the focus word). This reductionistic approach is
common in rule-based taggers. It is, for example,
used in the CG systems.

In principle, the local rules are unordered. The fir-
ing of a rule is, however, dependent on the order of
the words in a sentence. A sentence to be tagged is
scanned from left to right and all tags of each word
are checked in a sequence. Depending on the word
class (the first letter of the tag) of the focus word, the
token is sent to the appropriate disambiguation rou-
tine, which checks a variety of disambiguation con-
straints applicable to the particular word class and
the surrounding words. At each step, only tags for
the focus word are eliminated.

The format of a local rule is: If <condition>
eliminate tag t. A <condition> is a boolean
expression, whose individual components can re-
fer to lexical forms or individual characters (word
class/morphological features) of tags. The follow-
ing are examples of <condition> (L1/R1 and L2/R2

denote tokens one and two to the left/right of the fo-
cus word, F , respectively):
L1.isOnlyWordClass(x) AND L2.isOnlyWordClass(y)
R1.isWordClass(x) OR R2.isWordClass(y)
L1.isWordClass(x) AND t.isCase(y) AND t.isGender(z)
R1.lexeme.equals(x) AND F .isWordClass(y)

To exemplify, consider the sentence part: “við
vorum . . . ” (we were . . . ). The word “við” can
have the following five tags (“_” is used as a sep-
arator between tags): “ao_aþ_fp1fn_aa_nkeo”. For
illustration purposes, it is sufficient to point out
that the first two tags denote prepositions govern-
ing the accusative and the dative cases, respec-
tively. Since the following word is a verb (“vo-
rum”) and prepositions only precede nominals, a
rule, with <condition>=R1.isOnlyWordClass(Verb),
eliminates preposition tags in this context, leaving
only the tags “fp1fn_aa_nkeo”.

The current version of our tagger has 175 local
rules. The rules are written in a separate file and
compiled to Java code.

4.3 The heuristics

Once local disambiguation has been carried out,
each sentence is sent to a global heuristic mod-
ule, consisting of a collection of algorithmic proce-
dures. Its purpose is to perform grammatical func-
tion analysis, guess prepositional phrases (PPs) and
use the acquired knowledge to force feature agree-
ment where appropriate. We call these heuristics
global because, when disambiguating a particular
word, a heuristic can refer to a word which is not
in the nearest neighbourhood.

The heuristics repeatedly scan each sentence and
perform the following: 1) mark PPs, 2) mark verbs,
3) mark subjects, 4) force subject-verb agreement,
5) mark objects, 6) force subject-object agreement,
7) force verb-object agreement, 8) force nominal
agreement, and 9) force PP agreement. Lastly, the
default heuristic is simply to choose the most fre-
quent tag according to frequency information de-
rived from the IFD corpus. A detailed description of
all the heuristics can be found in (Loftsson, 2006b).

5 Evaluation

For evaluation, we used the pairs of ten training and
test corpora of the IFD corpus, produced by Helga-
dóttir (2004). We used the first nine of these test cor-
pora for evaluation, but the tenth one was set aside
and used as the development corpus for IceTagger.

For each test corpus (10% of the IFD) the corre-
sponding training corpus (90% of the IFD) was used
to deduce the lexicon(s) used by TnT, IceTagger and
IceMorphy. When testing the two taggers, we thus
made sure that the ratio of unknown words was (al-
most) the same.

The accuracy of a base tagger, which assigns each
known word its most frequent tag, and the most fre-
quent noun tag/proper noun tag to lower case/upper
case unknown words, is 76.27% (see table 2).

The average tagging accuracy of IceTagger for all
words is 91.54%, compared to 90.44% for TnT (see
table 2). IceTagger makes 11.5% less errors than
TnT1.

In order to improve the tagging accuracy of TnT,
we used the tag profile gap filling mechanism of Ice-

1TnT is very fast, it tags about 50,000 tokens/sec on a Dell
Optiplex GX620 Pentium 4, 3.20 GHz. IceTagger tags about
2,700 tokens/sec.
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Words Base TnT TnT* IceTagger
Unkn. 4.39% 71.68% 72.75% 75.09%
Known 81.84% 91.82% 92.53% 92.74%
All 76.27% 90.44% 91.18% 91.54%

Table 2: Average tagging accuracy of the various
taggers.

Morphy in the following manner. Each record in the
lexicon used by TnT consists of a word and the cor-
responding tags found in the training corpus. Addi-
tionally, to facilitate lexical probability calculations,
each tag is marked by its frequency (i.e. how of-
ten the tag appeared as a label for the given word).
We made IceMorphy generate a “filled” lexicon such
that each generated missing tag was marked with the
frequency 12. We call the resulting tagger TnT*. In-
deed, when testing TnT*, we obtained an overall av-
erage tagging accuracy of 91.18% (see table 2). Ice-
Tagger makes 4.1% less errors than TnT*.

The development of IceTagger/IceMorphy took 7
man-months, but it has been worth the effort. First,
IceTagger does make fewer errors than TnT, and its
accuracy can probably be increased by improving
its individual components. Secondly, we have used
IceTagger in various tagger combination methods to
further increase the tagging accuracy of Icelandic
text (Loftsson, 2006c).

6 Conclusion

In this paper, we have compared the tagging accu-
racy of our linguistic rule-based tagger, IceTagger,
to the accuracy of TnT, a state-of-the-art statistical
tagger.

IceTagger uses only about 175 local rules, but is
able to achieve high accuracy through the use of
global heuristics along with automatic tag profile
gap filling. The average tagging accuracy of Ice-
Tagger is 91.54%, compared to 90.44% obtained by
the TnT tagger. On the other hand, we were able to
obtain 91.18% accuracy using TnT along with the
tag profile gap filling mechanism of IceMorphy.

In future work, we would like to improve individ-
ual components of IceTagger and IceMorphy, with

2This seems logical since the missing tags were not found in
the training corpus and are, hence, infrequent.

the purpose of further increasing the tagging accu-
racy.
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Abstract

Entropy regularization is a straightforward
and successful method of semi-supervised
learning that augments the traditional con-
ditional likelihood objective function with
an additional term that aims to minimize
the predicted label entropy on unlabeled
data. It has previously been demonstrated
to provide positive results in linear-chain
CRFs, but the published method for cal-
culating the entropy gradient requires sig-
nificantly more computation than super-
vised CRF training. This paper presents
a new derivation and dynamic program
for calculating the entropy gradient that
is significantly more efficient—having the
same asymptotic time complexity as su-
pervised CRF training. We also present
efficient generalizations of this method
for calculating the label entropy of all
sub-sequences, which is useful for active
learning, among other applications.

1 Introduction

Semi-supervised learning is of growing importance
in machine learning and NLP (Zhu, 2005). Condi-
tional random fields (CRFs) (Lafferty et al., 2001)
are an appealing target for semi-supervised learning
because they achieve state-of-the-art performance
across a broad spectrum of sequence labeling tasks,
and yet, like many other machine learning methods,
training them by supervised learning typically re-
quires large annotated data sets.

Entropy regularization (ER) is a method of semi-
supervised learning first proposed for classification
tasks (Grandvalet and Bengio, 2004). In addition to
maximizing conditional likelihood of the available
labels, ER also aims to minimize the entropy of the
predicted label distribution on unlabeled data. By in-
sisting on peaked, confident predictions, ER guides
the decision boundary away from dense regions of
input space. It is simple and compelling—no pre-
clustering, no “auxiliary functions,” tuning of only
one meta-parameter and it is discriminative.

Jiao et al. (2006) apply this method to linear-
chain CRFs and demonstrate encouraging accuracy
improvements on a gene-name-tagging task. How-
ever, the method they present for calculating the
gradient of the entropy takes substantially greater
time than the traditional supervised-only gradient.
Whereas supervised training requires only classic
forward/backward, taking time O(ns2) (sequence
length times the square of the number of labels),
their training method takes O(n2s3)—a factor of
O(ns) more. This greatly reduces the practicality
of using large amounts of unlabeled data, which is
exactly the desired use-case.

This paper presents a new, more efficient entropy
gradient derivation and dynamic program that has
the same asymptotic time complexity as the gradient
for traditional CRF training, O(ns2). In order to de-
scribe this calculation, the paper introduces the con-
cept of subsequence constrained entropy—the en-
tropy of a CRF for an observed data sequence when
part of the label sequence is fixed. These meth-
ods will allow training on larger unannotated data
set sizes than previously possible and support active
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learning.

2 Semi-Supervised CRF Training

Lafferty et al. (2001) present linear-chain CRFs, a
discriminative probabilistic model over observation
sequences x and label sequences Y = 〈Y1..Yn〉,
where |x| = |Y | = n, and each label Yi has s differ-
ent possible discrete values. For a linear-chain CRF
of Markov order one:

pθ(Y |x) =
1

Z(x)
exp

(∑
k

θkFk(x, Y )

)
,

where Fk(x, Y ) =
∑

i fk(x, Yi, Yi+1, i),
and the partition function Z(x) =∑

Y exp(
∑

k θkFk(x, Y )). Given training
data D = 〈d1..dn〉, the model is trained by
maximizing the log-likelihood of the data
L(θ;D) =

∑
d log pθ(Y (d)|x(d)) by gradient

methods (e.g. Limited Memory BFGS), where the
gradient of the likelihood is:

∂

∂θk
L(θ;D) =

∑
d

Fk(x(d), Y (d))

−
∑

d

∑
Y

pθ(Y |x(d))Fk(x(d), Y ).

The second term (the expected counts of the features
given the model) can be computed in a tractable
amount of time, since according to the Markov as-
sumption, the feature expectations can be rewritten:∑

Y

pθ(Y |x)Fk(x, Y ) =∑
i

∑
Yi,Yi+1

pθ(Yi, Yi+1|x)fk(x, Yi, Yi+1).

A dynamic program (the forward/backward algo-
rithm) then computes in time O(ns2) all the needed
probabilities pθ(Yi, Yi+1), where n is the sequence
length, and s is the number of labels.

For semi-supervised training by entropy regular-
ization, we change the objective function by adding
the negative entropy of the unannotated data U =
〈u1..un〉. (Here Gaussian prior is also shown.)

L(θ;D,U) =
∑

n

log pθ(Y (d)|x(d)) −
∑

k

θk

2σ2

+ λ
∑

u

pθ(Y (u)|x(u)) log pθ(Y (u)|x(u)).

This negative entropy term increases as the decision
boundary is moved into sparsely-populated regions
of input space.

3 An Efficient Form of the Entropy
Gradient

In order to maximize the above objective function,
the gradient for the entropy term must be computed.
Jiao et al. (2006) perform this computation by:

∂

∂θ
− H(Y |x) = covpθ(Y |x)[F (x, Y )]θ,

where

covpθ(Y |x)[Fj(x, Y ), Fk(x, Y )] =

Epθ(Y |x)[Fj(x, Y ), Fk(x, Y )]

− Epθ(Y |x)[Fj(x, Y )]Epθ(Y |x)[Fk(x, Y )].

While the second term of the covariance is easy
to compute, the first term requires calculation of
quadratic feature expectations. The algorithm they
propose to compute this term is O(n2s3) as it re-
quires an extra nested loop in forward/backward.

However, the above form of the gradient is not
the only possibility. We present here an alternative
derivation of the gradient:

∂

∂θk
−H(Y |x) =

∂

∂θk

X
Y

pθ(Y |x) log pθ(Y |x)

=
X
Y

„
∂

∂θk
pθ(Y |x)

«
log pθ(Y |x)

+ pθ(Y |x)

„
∂

∂θk
log pθ(Y |x)

«
=
X
Y

pθ(Y |x) log pθ(Y |x)

×

 
Fk(x, Y )−

X
Y ′

pθ(Y
′|x)Fk(x, Y ′)

!

+
X
Y

pθ(Y |x)

 
Fk(x, Y )−

X
Y ′

pθ(Y
′|x)Fk(x, Y ′)

!
.

Since
∑

Y pθ(Y |x)
∑

Y ′ pθ(Y ′|X)Fk(x, Y ′) =∑
Y ′ pθ(Y ′|X)Fk(x, Y ′), the second summand can-

cels, leaving:

∂

∂θ
−H(Y |x) =

X
Y

pθ(Y |x) log pθ(Y |x)Fk(x, Y )

−

 X
Y

pθ(Y |x) log pθ(Y |x)

! X
Y ′

pθ(Y
′|x)Fk(x, Y ′)

!
.

Like the gradient obtained by Jiao et al. (2006),
there are two terms, and the second is easily com-
putable given the feature expectations obtained by
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forward/backward and the entropy for the sequence.
However, unlike the previous method, here the first
term can be efficiently calculated as well. First,
the term must be further factored into a form more
amenable to analysis:∑

Y

pθ(Y |x) log pθ(Y |x)Fk(x, Y )

=
∑
Y

pθ(Y |x) log pθ(Y |x)
∑

i

fk(x, Yi, Yi+1, i)

=
∑

i

∑
Yi,Yi+1

fk(x, Yi, Yi+1, i)∑
Y−(i..i+1)

pθ(Y |x) log pθ(Y |x).

Here, Y−(i..i+1) = 〈Y1..(i−1)Y(i+2)..n〉. In order
to efficiently calculate this term, it is sufficient
to calculate

∑
Y−(i..i+1)

pθ(Y |x) log pθ(Y |x) for all
pairs yi, yi+1. The next section presents a dynamic
program which can perform these computations in
O(ns2).

4 Subsequence Constrained Entropy

We define subsequence constrained entropy as

Hσ(Y−(a..b)|ya..b, x) =
∑

Y−(a..b)

pθ(Y |x) log pθ(Y |x).

The key to the efficient calculation for all subsets
is to note that the entropy can be factored given a
linear-chain CRF of Markov order 1, since Yi+2 is
independent of Yi given Yi+1.∑
Y−(a..b)

pθ(Y−(a..b), ya..b|x) log pθ(Y−(a..b), ya..b|x)

=
∑

Y−(a..b)

pθ(ya..b|x)pθ(Y−(a..b)|ya..b, x)×

(
log pθ(ya..b|x) + log pθ(Y−(a..b)|ya..b, x)

)
=pθ(ya..b|x) log pθ(ya..b|x)

+ pθ(ya..b|x)Hσ(Y−(a..b)|ya..b, x)

=pθ(ya..b|x) log pθ(ya..b|x)
+ pθ(ya..b|x)Hα(Y1..(a−1)|ya, x)

+ pθ(ya..b|x)Hβ(Y(b+1)..n|yb, x).

Given the Hα(·) and Hβ(·) lattices, any sequence
entropy can be computed in constant time. Figure 1

H (0|y6)H (Y6|y5)H (0|y1) H (Y1|y2)

y4y3

α α β β

Figure 1: Partial lattice shown for com-
puting the subsequence constrained entropy:P

Y p(Y−(3..4), y3, y4) log p(Y−(3..4), y3, y4). Once the
complete Hα and Hβ lattices are constructed (in the direction
of the arrows), the entropy for each label sequence can be
computed in linear time.

illustrates an example in which the constrained se-
quence is of size two, but the method applies to
arbitrary-length contiguous label sequences.

Computing the Hα(·) and Hβ(·) lattices is easily
performed using the probabilities obtained by for-
ward/backward. First recall the decomposition for-
mulas for entropy:

H(X, Y ) = H(X) + H(Y |X)

H(Y |X) =
∑

x

P (X = x)H(Y |X = x).

Using this decomposition, we can define a dynamic
program over the entropy lattices similar to for-
ward/backward:

Hα(Y1..i|yi+1, x)
=H(Yi|yi+1, x) + H(Y1..(i−1)|Yi, yi+1, x)

=
∑
yi

pθ(yi|yi+1, x) log pθ(yi|yi+1, x)

+
∑
yi

pθ(yi|yi+1, x)Hα(Y1..(i−1)|yi).

The base case for the dynamic program is
Hα(∅|y1) = p(y1) log p(y1). The backward entropy
is computed in a similar fashion. The conditional
probabilities pθ(yi|yi−1, x) in each of these dynamic
programs are available by marginalizing over the
per-transition marginal probabilities obtained from
forward/backward.

The computational complexity of this calcula-
tion for one label sequence requires one run of for-
ward/backward at O(ns2), and equivalent time to
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calculate the lattices for Hα and Hβ . To calculate
the gradient requires one final iteration over all label
pairs at each position, which is again time O(ns2),
but no greater, as forward/backward and the en-
tropy calculations need only to be done once. The
complete asymptotic computational cost of calcu-
lating the entropy gradient is O(ns2), which is the
same time as supervised training, and a factor of
O(ns) faster than the method proposed by Jiao et
al. (2006).

Wall clock timing experiments show that this
method takes approximately 1.5 times as long as
traditional supervised training—less than the con-
stant factors would suggest.1 In practice, since the
three extra dynamic programs do not require re-
calculation of the dot-product between parameters
and input features (typically the most expensive part
of inference), they are significantly faster than cal-
culating the original forward/backward lattice.

5 Confidence Estimation

In addition to its merits for computing the entropy
gradient, subsequence constrained entropy has other
uses, including confidence estimation. Kim et al.
(2006) propose using entropy as a confidence esti-
mator in active learning in CRFs, where examples
with the most uncertainty are selected for presenta-
tion to humans labelers. In practice, they approxi-
mate the entropy of the labels given the N-best la-
bels. Not only could our method quickly and ex-
actly compute the true entropy, but it could also be
used to find the subsequence that has the highest un-
certainty, which could further reduce the additional
human tagging effort.

6 Related Work

Hernando et al. (2005) present a dynamic program
for calculating the entropy of a HMM, which has
some loose similarities to the forward pass of the
algorithm proposed in this paper. Notably, our algo-
rithm allows for efficient calculation of entropy for
any label subsequence.

Semi-supervised learning has been used in many
models, predominantly for classification, as opposed
to structured output models like CRFs. Zhu (2005)

1Reporting experimental results with accuracy is unneces-
sary since we duplicate the training method of Jiao et al. (2006).

provides a comprehensive survey of popular semi-
supervised learning techniques.

7 Conclusion

This paper presents two algorithmic advances. First,
it introduces an efficient method for calculating
subsequence constrained entropies in linear-chain
CRFs, (useful for active learning). Second, it
demonstrates how these subsequence constrained
entropies can be used to efficiently calculate the
gradient of the CRF entropy in time O(ns2)—
the same asymptotic time complexity as the for-
ward/backward algorithm, and a O(ns) improve-
ment over previous algorithms—enabling the prac-
tical application of CRF entropy regularization to
large unlabeled data sets.
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Abstract

Document representation has a large im-
pact on the performance of document re-
trieval and clustering algorithms. We
propose a hybrid document indexing
scheme that combines the traditional bag-
of-words representation with spectral em-
bedding. This method accounts for the
specifics of the document collection and
also uses semantic similarity information
based on a large scale statistical analysis.
Clustering experiments showed improve-
ments over the traditionaltf-idf represen-
tation and over the spectral methods based
solely on the document collection.

1 Introduction

Capturing semantic relations between words in a
document representation is a difficult problem. Dif-
ferent approaches tried to overcome the term inde-
pendence assumption of the bag-of-words represen-
tation (Salton and McGill, 1983) for example by us-
ing distributional term clusters (Slonim and Tishby,
2000) and expanding the document vectors with
synonyms, see (Levow et al., 2005). Since content
words can be combined into semantic classes there
has been a considerable interest in low-dimensional
term and document representations.

Latent Semantic Analysis (LSA) (Deerwester et
al., 1990) is one of the best known dimensionality
reduction algorithms. In the LSA space documents
are indexed with latent semantic concepts. LSA

showed large performance improvements over the
traditional tf-idf representation on small document
collections (Deerwester et al., 1990) but often does
not perform well on large heterogeneous collections.

LSA maps all words to low dimensional vectors.
However, the notion of semantic relatedness is de-
fined differently for subsets of the vocabulary. In ad-
dition, the numerical information, abbreviations and
the documents’ style may be very good indicators of
their topic. However, this information is no longer
available after the dimensionality reduction.

We use a hybrid approach to document indexing
to address these issues. We keep the notion of la-
tent semantic concepts and also try to preserve the
specifics of the document collection. We use a low-
dimensional representation only for nouns and rep-
resent the rest of the document’s content astf-idf
vectors.

The rest of the paper is organized as follows. Sec-
tion 2 discusses our approach. Section 3 reports the
experimental results. We conclude in section 4.

2 Hybrid Document Indexing

This section gives the general idea of our approach.
We divide the vocabulary into two sets: nouns and
the rest of the vocabulary. We use a method of spec-
tral embedding, as described below and compute a
low-dimensional representation for documents using
only the nouns. We also compute atf-idf represen-
tation for documents using the other set of words.
Since we can treat each latent semantic concept in
the low-dimensional representation as part of the vo-
cabulary, we combine the two vector representations
for each document by concatenating them.
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2.1 Spectral Embedding

Spectral methods comprise a family of algorithms
that use a matrix of pair-wise similaritiesS and per-
form its spectral analysis, such as the eigenvalue de-
composition, to embed terms and documents in a
low-dimensional vector space.S = UΣUT , where
the columns ofU are its eigenvectors andΣ is a di-
agonal matrix with the eigenvalues.

If we have a matrix of pair-wise word similarities
S, its first k eigenvectorsUk will be used to repre-
sent the words in the latent semantic space. Seman-
tically related words will have high association with
the same latent concepts and their corresponding
vectors will be similar. Moreover, the vector similar-
ity between the word vectors will optimally preserve
the original similarities (Cox and Cox, 2001).

We use two approaches to compute spectral em-
bedding for nouns. Latent Semantic Analysis
(LSA) (Deerwester et al., 1990) and Generalized La-
tent Semantic Analysis (GLSA) (Matveeva et al.,
2005). For both we used the eigenvalue decomposi-
tion as the embedding step. The difference is in the
similarities matrix which we are trying to preserve.

2.2 Distributional Term Similarity

LSA and GLSA begin with a matrix of pair-wise
term similaritiesS, compute its eigenvectorsU and
use the firstk of them to represent terms and doc-
uments, for details see (Deerwester et al., 1990;
Matveeva et al., 2005). The main difference in our
implementation of these algorithms is the matrix of
pair-wise word similarities. Since our representation
will try to preserve them it is important to have a ma-
trix of similarities which is linguistically motivated.

LSA uses the matrix of pair-wise similarities
which is based on document vectors. For two words
wi andwj in the document collection containingn
documentsdk, the similarity is computed as

S(wi, wj) =
∑

k=1:n

tf(wi, dk)idf(wi) ∗ tf(wj , dk)idf(wj),

where tf(wi, dk) is the term frequency forwi in
dk and idf(wi) is the inverse document frequency
weight forwi. LSA is a special case of spectral em-
bedding restricted to one type of term similarities
and dimensionality reduction method.

GLSA (Matveeva et al., 2005) generalizes the
idea of latent semantic space. It proposes to use
different types of similarity matrix and spectral em-
bedding methods to compute a latent space which is
closer to true semantic similarities. One way to do
so is to use a more appropriate similarities matrixS.

PMI We use point-wise mutual information (PMI)
to compute the matrixS. PMI between random vari-
ables representing the wordswi andwj is computed
as

PMI(wi, wj) = log
P (Wi = 1,Wj = 1)

P (Wi = 1)P (Wj = 1)
.

Thus, for GLSA,S(wi, wj) = PMI(wi, wj).

Co-occurrence Proximity An advantage of PMI
is the notion of proximity. The co-occurrence statis-
tics for PMI are typically computed using a sliding
window. Thus, PMI will be large only for words
that co-occur within a small fixed context. Our ex-
periments show that this is a better approximation to
true semantic similarities.

2.3 Document Indexing

We have two sets of the vocabulary terms: a set of
nouns,N , and the other words,T . We computetf-idf
document vectors indexed with the words inT :

~di = (αi(w1), αi(w2), ..., αi(w|T |)),

whereαi(wt) = tf(wt, di) ∗ idf(wt).
We also compute ak-dimensional representation

with latent conceptsci as a weighted linear combi-
nation of LSA or GLSA term vectors~wt:

~di = (c1, ..., ck) =
∑

t=1:|T |

αi(wt) ∗ ~wt,

We concatenate these two representations to gener-
ate a hybrid indexing of documents:

~di = (αi(w1), ..., αi(w|T |), c1, ...ck)

3 Experiments

We performed document clustering experiments to
validate our approach.
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Subset m-n #topics min #d max #d av. #d
5-10 19 6 10 8.2
50-150 21 55 150 94.7
500-1000 2 544 844 694.0
1000-5000 3 1367 2083 1792.3

Table 1: TDT2 topic subsets containing between m
and n documents: the number of topics per subset,
the minimum, the maximum and the average number
of documents per topic in each subset.

Indexing
All words Nouns Hybrid
tf-idf, LSA tf-idfN
GLSA,GLSA local GLSAN tf-idf+GLSAN

Table 2: Indexing schemes: with full vocabulary
(All), only nouns (Nouns) and the combination.

Data We used the TDT2 collection1 of news arti-
cles from six news agencies in 1998. We used only
10,329 documents that are assigned to one topic.
TDT2 documents are distributed over topics very
unevenly. We used subsets of the TDT2 topics that
contain betweenm andn documents, see Table 1.
We used the Lemur toolkit2 with stemming and stop
words list for thetf-idf indexing, Bikel’s parser3 to
obtain the set of nouns and the PLAPACK pack-
age (Bientinesi et al., 2003) to compute the eigen-
value decomposition.

Global vs. Local Similarity To obtain the PMI
values for GLSA we used the TDT2 collection, de-
noted asGLSAlocal. Since co-occurrence statistics
based on larger collections gives a better approxima-
tion to linguistic similarities, we also used 700,000
documents from the English GigaWord collection,
denoted as GLSA and GLSAN . We used a window
of size 8.

Representations For each document we com-
puted 7 representations, see Table 2. The vocabulary
size we used with thetf-idf indexing was 114,127.
For computational reasons we used the set of words
that occurred in at least 20 documents with our spec-
tral methods. We used 17,633 words for index-

1http://nist.gov/speech/tests/tdt/tdt98/
2http://www.lemurproject.org/
3http://www.cis.upenn.edu/ dbikel/software.html

ing with LSA andGLSAlocal and 17,572 words for
GLSA. We also indexed documents using only the
15,325 nouns:tf-idfN andGLSAN . The hybrid rep-
resentation was computed using thetf-idf indexing
without nouns and theGLSAN nouns vectors.

Evaluation We used the minimum squared
residue co-clustering algorithm4. We report two
evaluation measures: accuracy and the F1-score.
The clustering algorithm assigns each document to
a cluster. We map the cluster id’s to topic labels
using the Munkres assignment algorithm (Munkres,
1957) and compute the accuracy as the ratio of the
correctly assigned labels.

The F1 score for clusterci labeled with topicti is
computed usingF1 = 2(p∗r)

(p+r) wherep is precision
and r is recall. For clustersC = (c1, ..., cn) and
topicsT = (t1, ..., tn) we compute the total score:

F1(C, T ) =
∑

t∈T

Nt

N
max
c∈C

F1(c, t).

Nt is the number of documents belonging to the
topic t andN is the total number of documents. This
measure accounts for the topic size and also corrects
the topic assignments to clusters by using the max.

4 Results and Conclusion

Table 3 shows that the spectral methods outperform
the tf-idf representations and have smaller variance.
We report the performance for four subsets. The
subset5−10 has a large number of topics, each with
a similar number of documents. The subset50−150
has a large number of topics with a less even distri-
bution of documents.500 − 1000 and1000 − 5000
have a couple of large topics. We ran the clustering
over 30 random initializations. To eliminate the ef-
fect of the initial conditions on the performance we
also used one document per cluster to seed the initial
assignment for the5 − 10 subset.

All methods have the worst performance for the
5−10 subset. The best performance is for the subset
500−1000. LSA andGLSAlocal indexing are com-
puted based on the TDT2 collection.GLSAlocal has
better average performance which confirms that the
co-occurrence proximity is important for distribu-
tional similarity. The GLSA indexing computed us-
ing a large corpus performs significantly worse than

4http://www.cs.utexas.edu/users/dml/Software/cocluster.html
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All words LSA GLSAlocal GLSA onlyN GLSAN Hybrid

5-10 acc 0.56(0.11) 0.69(0.07) 0.78(0.05) 0.60(0.05) 0.63(0.05) 0.76(0.05) 0.82(0.05)
F1 0.60(0.09) 0.73(0.05) 0.81(0.04) 0.64(0.05) 0.67(0.05) 0.80(0.04) 0.85(0.04)

50-150 acc 0.75(0.05) 0.73(0.06) 0.80(0.05) 0.70(0.04) 0.68(0.04) 0.80(0.04) 0.87(0.04)
F1 0.80(0.04) 0.78(0.05) 0.84(0.04) 0.75(0.04) 0.75(0.03) 0.84(0.04) 0.90(0.03)

500-1000 acc 0.95(0.03) 0.98(0.00) 0.99(0.00) 0.97(0.00) 0.97(0.00) 0.99(0.00) 1.00(0.00)
F1 0.95(0.03) 0.98(0.00) 0.99(0.00) 0.97(0.00) 0.97(0.00) 0.99(0.00) 1.00(0.00)

1000-5000 acc 0.86(0.11) 0.88(0.04) 0.88(0.13) 0.92(0.08) 0.82(0.06) 0.92(0.00) 0.96(0.07)
F1 0.88(0.07) 0.88(0.03) 0.90(0.09) 0.93(0.06) 0.82(0.04) 0.92(0.00) 0.97(0.05)

5-10s acc 0.932 0.919 0.986 0.932 0.980 0.980 0.992
F1 0.933 0.927 0.986 0.932 0.979 0.979 0.992

Table 3: Clustering accuracy (first row) and F1 score (secondrow) for each indexing scheme. The measures
are averaged over 30 random initiations of the clustering algorithm, the standard deviation is shown in
brackets. For the last experiment, 5-10s, we used one document per cluster as the initial assignment.

GLSAlocal on the heterogeneous5−10 and50−150
subsets and performs similarly for the other two. It
supports our intuition that the document’s style and
word distribution within the collection are important
and may get lost, especially if we use a document
collection with a different word distribution to esti-
mate the similarities matrixS.

The tf-idf indexing with nouns only,onlyN , has
good performance compared to the all-words index-
ing. The semantic similarity between nouns seems
to be collection independent. TheGLSAN index-
ing is significantly better thanonlyN and tf-idf in
most cases and performs similar toGLSAlocal. By
using GLSAN we computed the embedding for
more nouns that we could keep in theGLSAlocal

andGLSA representations. Nouns convey impor-
tant topic membership information and it is advan-
tageous to use as many of them as possible.

We observed the same performance relation when
we used labels to make the initial cluster assign-
ment, see5 − 10s in Table 3.tf-idf, GLSA and LSA
performed similarly,GLSAlocal andGLSAN per-
formed better with the hybrid scheme being the best.

The hybrid indexing significantly outperformstf-
idf, LSA and GLSA on three subsets. This shows the
benefits of using the spectral embedding to discover
the semantic relations between nouns and keeping
the rest of the document content astf-idf representa-
tion to preserve other indicators of its topic member-
ship. By combining two representations the hybrid
indexing scheme defines a more complex notion of

similarity between documents. For nouns it uses the
semantic proximity in the space of latent semantic
classes and for other words it uses term-matching.
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Abstract

This paper presents a way to perform
speaker adaptation for automatic speech
recognition using the stream weights in a
multi-stream setup, which included acous-
tic models for “Articulatory Features”
such as ROUNDED or VOICED. We
present supervised speaker adaptation ex-
periments on a spontaneous speech task
and compare the above stream-based ap-
proach to conventional approaches, in
which the models, and not stream com-
bination weights, are being adapted. In
the approach we present, stream weights
model the importance of features such as
VOICED for word discrimination, which
offers a descriptive interpretation of the
adaptation parameters.

1 Introduction

Almost all approaches to automatic speech recogni-
tion (ASR) using Hidden Markov Models (HMMs)
to model the time dependency of speech are also
based on phones, or context-dependent sub-phonetic
units derived from them, as the atomic unit of speech
modeling. In phonetics, a phone is a shorthand no-
tation for a certain configuration of underlying artic-
ulatory features (AFs) (Chomsky and Halle, 1968):
/p/ is for example defined as the unvoiced, bi-labial
plosive, from which /b/ can be distinguished by its
VOICED attribute. In this sense, instead of describ-
ing speech as a single, sequential stream of sym-
bols representing sounds, we can also look at speech

as the result of a process involving several paral-
lel streams of information, each of which describes
some linguistic or articulatory property as being ei-
ther absent or present.

A multi-stream architecture is a relatively simple
approach to combining several information sources
in ASR, because it leaves the basic structure of
the Hidden Markov Model and its computational
complexity intact. Examples combining different
observations are audio-visual speech recognition
(Potamianos and Graf, 1998) and sub-band based
speech processing (Janin et al., 1999). The same
idea can also be used to combine different classi-
fiers on the same observation. In a multi-stream
HMM setup, log-linear interpolation (Beyerlein,
2000) can be derived as a framework to integrat-
ing several independent acoustic models given as
Gaussian Mixture Models (GMMs) into the speech
recognition process: given a “weight” vector Λ =
{λ0, λ1, · · · , λM}, a word sequence W , and an
acoustic observation o, the posterior probability
p(W |o) one wants to optimize is written as:

p(W |o) = C exp

{
M∑
i=0

λi log pi(W |o)

}

C is a normalization constant, which can be ne-
glected in practice, as long as normalization Σiλi =
const is observed. It is now possible to set
p(W |o) ∝ p(o|W ) (Beyerlein, 2000) and write a
speech recognizer’s acoustic model p(o|W ) in this
form, which in logarithmic representation reduces
to a simple weighted sum of so-called “scores” for
each individual stream. The λi represent the “im-
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portance” of the contribution of each individual in-
formation source.

Extending Kirchhoff’s (Kirchhoff, 1999) ap-
proach, the log-likelihood score combination
method to AF-based ASR can be used to combine
information from M different articulatory features
while at the same time retaining the “standard”
acoustic models as stream 0. As an example
using M = 2, the acoustic score for /z/ would
be computed as a weighted sum of the scores for
a (context-dependent sub-)phonetic model z, the
score for FRICATIVE and the score for VOICED,
while the score for /s/ would be computed as a
weighted sum of the scores for a (context-dependent
sub-) phonetic model s, the score for FRICA-
TIVE and the score for NON VOICED. The free
parameters λi can be global (G), or they can be
made state-dependent (SD) during the optimization
process, thus changing the importance of a feature
given a specific phonetic context, as long as overall
normalization is observed. (Metze, 2005) discusses
this stream setup in more detail.

2 Experiments

To investigate the performance of the proposed AF-
based model, we built acoustic models for 68 ar-
ticulatory features on 32h of English Spontaneous
Scheduling Task ESST data from the Verbmobil
project (Wahlster, 2000), and integrated them with
matching phone-based acoustic models.

For training robust baseline phone models, 32h
from the ESST corpus were merged with 66h Broad-
cast News ’96 data, for which manually annotated
speaker labels are available. The system is trained
using 6 iterations of ML training and uses 4000 con-
text dependent (CD) acoustic models (HMM states),
32 Gaussians per model with diagonal covariance
matrices and a global semi-tied covariance matrix
(STC) in a 40-dimensional MFCC-based feature
space after LDA. The characteristics of the training
and test sets used in the following experiments are
summarized in Table 1.

The ESST test vocabulary contains 9400 words
including pronunciation variants (7100 base forms)
while the language model perplexity is 43.5 with an
out of vocabulary (OOV) rate of 1%. The language
model is a tri-gram model trained on ESST data

Data Set Train Test
1825 ds2 xv2

Duration 98h 2h25 1h26 0h59
Utterances 39100 1825 1150 675
Recordings 8681 58 32 26
Speakers 423 16 9 7

Table 1: Data sets used in this work: The ESST test
set 1825 is the union of the development set ds2
and the evaluation set xv2.

containing manually annotated semantic classes for
most proper names (persons, locations, numbers).
Generally, systems run in less than 4 times real-time
on Pentium 4-class machines. The baseline Word
Error Rate is reported as adaptation “None” in Ta-
ble 2; the system parameters were optimized on the
ds2 data set. As the stream weight estimation pro-
cess can introduce a scaling factor for the acoustic
model, we verified that the baseline system can not
be improved by widening the beam or by readjust-
ing the weight of the language model vs. the acous-
tic model. The baseline system can also not be im-
proved significantly by varying the number of pa-
rameters, either by increasing the number of Gaus-
sians per codebook or by increasing the number of
codebooks.

2.1 MMI Training of Stream Weights

To arrive at an optimal set of stream weights, we
used the iterative update rules presented in (Metze,
2005) to generate stream weights λi using the Max-
imum Mutual Information (MMI) criterion (Bahl et
al., 1986).

Results after one iteration of stream weight esti-
mation on the 1825 and ds2 data sets using step
size ε = 4 · 10−8, initial stream weight λ0

i6=0 =
3 · 10−3, and lattice density d = 10 are shown in
Table 2 in rows “AF (G) on 1825” and “AF (G) on
ds2”: As there are only 68 stream weights to es-
timate, adaptation works only slightly better when
adapting and testing on the same corpus (“cheat-
ing experiment”: 22.6% vs. 22.8% word error rate
(WER) on ds2). There is no loss in WER (24.9%)
on xv2 when adapting the weights on ds2 instead
of 1825, which has no overlap with xv2, so gen-
eralization on unseen test data is good for global
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stream weights, i.e. weights which do not depend
on state or context.

2.2 Speaker-specific Stream Weights

The ESST test 1825 set is suitable to test speaker-
specific properties of articulatory features, because it
contains 16 speakers in 58 different recordings. As
1825 provides between 2 and 8 dialogs per speaker,
it is possible to adapt the system to individual speak-
ers in a “round-robin” or “leave-one-out” experi-
ment, i.e. to decode every test dialog with weights
adapted on all remaining dialogs from that speaker
in the 1825 test set. Using speaker-specific, but
global (G), weights computed with the above set-
tings, the resulting WER is 21.5% (row “AF (G) on
speaker” in Table 2).

Training parameters were chosen to display im-
provements after the first iteration of training with-
out convergence in further iterations. Consequently,
training a second iteration of global (i.e. context
independent) weights does not improve the perfor-
mance of the speaker adapted system. In our ex-
periments we reached best results when comput-
ing state-dependent (SD) feature weights on top of
global weights using the experimentally determined
smaller learning rate of εSD = 0.2 · ε. In this case,
speaker and state dependent AF stream weights fur-
ther reduce the word error rate to 19.8% (see bottom
row of Table 2).

2.3 ML Model Adaptation

When training speaker-dependent articulatory fea-
ture weights in Section 2.2, we were effectively per-
forming supervised speaker adaptation (on separate
adaptation data) with articulatory feature weights.
To compare the performance of AFs to other ap-
proaches to speaker adaptation, we adapted the
baseline acoustic models to the test data using
supervised maximum likelihood linear regression
(MLLR) (Leggetter and Woodland, 1994) and con-
strained MLLR, which is also known as “feature-
space adaptation” (FSA) (Gales, 1997).

The ESST data has very little channel variation
so that the performance of models that were trained
on both ESST and BN data can be improved slightly
on ESST test dialogs by using FSA, while MLLR
already leads to over-specialization (Table 2, rows
“FSA/ MLLR on ds2). The results in Table 2

Adaptation Test corpus
type and corpus 1825 ds2 xv2

None 25.0% 24.1% 26.1%
FSA on ds2 22.5% 25.4%
FSA on speaker 22.8% 21.6% 24.3%
MLLR on ds2 16.3% 26.4%
MLLR on speaker 20.9% 19.8% 22.4%
MMI-MAP on ds2 14.4% 26.2%
MMI-MAP on speaker 20.5% 19.5% 21.7%
AF (G) on 1825 23.7% 22.8% 24.9%
AF (G) on ds2 22.6% 24.9%
AF (SD) on ds2 22.5% 26.5%
AF (G) on speaker 21.5% 20.1% 23.6%
AF (SD) on speaker 19.8% 18.6% 21.7%

Table 2: Word error rates on the ESST test sets us-
ing different kinds of adaptation. See Table 1 for a
description of data sets.

show that AF adaptation performs as well as FSA in
the case of supervised adaptation on the ds2 data
and better by about 1.3% absolute in the speaker
adaptation case, despite using significantly less pa-
rameters (69 for the AF case vs. 40*40=1.6k for
the FSA case). While supervised FSA is equiva-
lent to AF adaptation when adapting and decoding
on the ds2 data in a “cheating experiment” for di-
agnostic purposes (22.5% vs 22.6%, rows “FSA/
AF (G) on ds2” of Table 2), supervised FSA only
reaches a WER of 22.8% on 1825 when decod-
ing every ESST dialog with acoustic models adapted
to the other dialogs available for this speaker (row
“FSA on speaker”). AF-based adaptation reaches
21.5% for the global (G) case and 19.8% for the
state dependent (SD) case (last two rows). The AF
(SD) case has 68*4000=276k free parameters, but
decision-tree based tying using a minimum count re-
duces these to 4.3k per speaker. Per-speaker MLLR
uses 4.7k parameters in the transformation matrices
on average per speaker, but performs worse than AF-
based adaptation by about 1% absolute.

2.4 MMI Model Adaptation

In a non-stream setup, discriminative speaker adap-
tation approaches have been published using condi-
tional maximum likelihood linear regression (CM-
LLR) (Gunawardana and Byrne, 2001) and MMI-
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MAP (Povey et al., 2003). In supervised adapta-
tion experiments on the Switchboard corpus, which
are similar to the experiments presented in the pre-
vious section, CMLLR reduced word error rate
over the baseline, but failed to outperform conven-
tional MLLR adaptation (Gunawardana and Byrne,
2001), which was already tested in Section 2.3. We
therefore compared AF-based speaker adaptation to
MMI-MAP as described in (Povey et al., 2003).

The results are given in Table 2: using a com-
parable number of parameters for adaptation as in
the previous section, AF-based adaptation performs
slightly better than MMI-MAP (19.8% WER vs.
20.5%; rows “MMI-MAP/ AF (SD) on speaker”).
When testing on the adaptation data ds2 as a di-
agnostic experiment, MMI-MAP as well as MLLR
outperform AF based adaptation, but the gains do
not carry over to the validation set xv2, which we
attribute to over-specialization of the acoustic mod-
els (rows “MLLR/ MMI-MAP/ AF (SD) on ds2).

3 Summary and Conclusion

This paper presented a comparison between two
approaches to discriminative speaker adaptation:
speaker adaptation using articulatory features (AFs)
in the multi-stream setup presented in (Metze, 2005)
slightly outperformed model-based discriminative
approaches to speaker adaptation (Gunawardana and
Byrne, 2001; Povey et al., 2003), however at the
cost of having to evaluate additional codebooks in
the articulatory feature streams during decoding. In
our experiments, we used 68 AFs, which requires
the evaluation of 68 models for “feature present”
and 68 models for “feature absent” for each frame
during decoding, plus the computation necessary for
stream combination. In this setup however, the adap-
tation parameters, which are given by the stream
combination weights, have an intuitive meaning, as
they model the importance of phonological features
such as VOICED or ROUNDED for word discrimina-
tion for this particular speaker and phonetic context.
Context-dependent stream weights can also model
feature asynchrony to some extent, so that this ap-
proach not only improves automatic speech recogni-
tion, but might also be an interesting starting point
for future work in speaker clustering, speaker iden-
tification, or other applications in speech analysis.
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Abstract 

 Contemporary parser research is, to a 
large extent, focused on statistical parsers 
and deep-unification-based parsers. This 
paper describes an alternative, hybrid ar-
chitecture in which an ATN-like parser, 
augmented by many preference tests, 
builds on the results of a fast chunker. 
The combination is as efficient as most 
stochastic parsers, and accuracy is close 
and continues to improve.  These results 
raise questions about the practicality of 
deep unification for symbolic parsing. 

1 Introduction 

The original goals of the RH parser were to obtain 
accurate parses where (a) application speed was 
needed, and (b) large amounts of annotated mate-
rial for a subject idiom were not available.  Addi-
tional goals that evolved were (c) that parses for 
particular documents could be brought to an almost 
arbitrary level of correctness for research purposes, 
by grammar correction, and (d) that information 
collected during parsing could be modified for an 
application with a modest amount of effort. Goal 
(a) ruled out the use of unification-based symbolic 
parsers, because deep unification is a relatively 
slow operation, no matter what amount of compu-
tational sophistication is employed. Until very re-
cently, goal (b) ruled out stochastic parsers, but 
new results (McClosky et al. 2006) suggest this 
may no longer be the case.  However, the "addi-
tional" goals still favor symbolic parsing.  

To meet these goals, the RH parser combines a 
very efficient shallow parser with an overlay parser 
that is "retro", in that the grammar is related to 
Augmented Transition Networks (Woods, 1970), 
operating on the shallow-parser output.  A major 
"augmentation" is a preference-scoring component.  

Section 2 below reviews the shallow parser 
used, and Section 3 describes the overlay parser.  
Some current results are presented in section 4.  

Section 5 examines some closely-related work, and 
Section 6 discusses some implications. 

2 The XIP Parser for English  

XIP is a robust parser developed by Xerox 
Research Center Europe.  It is actually a full parser 
that produces a tree of chunks, plus identification 
of (sometimes alternative) typed dependencies 
among the chunk heads  (Ait-Mokhtar et al. 2002, 
Gala 2004). But because the XIP dependency 
analyzer for English was incomplete when RH 
work began, and because classic parse trees are 
more convenient for discourse-related applications, 
we focused on the chunk output.  

XIP is astonishingly fast, contributing very little 
to RH parse time.  It consists of the XIP engine, 
plus language-specific grammars, each consisting 
of: (a) a finite state lexicon producing alternative 
tags and morphological analyses for each token, 
together with subcategorization, control and 
(some) semantic class features, (b) a part of speech 
tagger, and (c) conveniently expressed, layered 
rule sets that perform the following functions: 
- Lexicon extension, which adds words and 

adds or overrides feature information, 
- Lexical disambiguation (including use of the 

tagger to provide default assignments)   
- Multi-word identification for named entities, 

dates, short constructions, etc. 
- Chunking, obtaining basic chunks such as 

basic adjective, adverbial, noun and 
prepositional phrases. 

- Dependency Analysis (not used in RH)   
All rule sets have been extended within RH 

development except for the dependency rule sets..  

3   Overlay Parser 

The overlay parser builds on chunker output to 
produce a single tree (figure 1) providing syntactic 
categories and functions, heads, and head features.   
The output tree requires further processing to ob-
tain long distance dependency information, and 
make some unambiguous coordination adjustments 
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Figure 1. Output Parse Tree. * indicates head.  Mouseover shows head features

Some of this has already been done in a post-parse 
phase. The feasibility of such post-parse deepening 
(for a statistical parser) is demonstrated by Cahill 
et al (2004). 

The major parser components are a control, the 
ATN-like grammar networks, and collections of 
tests.  The control is invoked recursively to build 
non-chunk constituents by following grammar 
network paths and creating output networks. 

Figure 2 shows the arcs of an excerpt from a 
grammar network used to build a noun phrase. The 
Test labels on the arcs resemble specialized cate-
gories. The MetaOps (limited in the illustration to 
Prolog-like cuts) expedite processing by permitting 
or barring exploration of further ordered arcs 
originating at the same state. 

An output network, illustrated in figure 3, 
mirrors the full paths traversed in a grammar net- 

 
From 
 

To 
 

Test Syn 
fun 

Fin
al? 

Meta 
Op 

S1 S1 PREADV PRE No cut 
S1 S2 PRON HEAD Yes cut 
S1 S3 PROPER HEAD Yes cut 
S1 S4 

S7 
BASENP HEAD Yes cut 

//After pronoun 
S2 - REFL REFL Yes cut 
S2 - PEOPLE APPS Yes cut 

Figure 2. Some arcs of grammar network for GNP 
 

From To Cat Synfun Ref 
OSa OSb NP HEAD NPChunk 

(The park) 
OSb OSc PP NMOD Final state of 

 PP net for 
(in Paris) 

States Score Final? 
Osa 0 No 
Osb 0 Yes 
OSc 1 Yes 

Figure 3. Output network for "The park in Paris" 

work by one invocation of the control. The arcs 
refer either to chunks or to final states of other out-
put networks. Output networks do not contain cy-
cles or converging arcs, so states represent unique 
paths. They carry head and other path information, 
and a preference score.  The final parser output is a 
single tree, derived from a highest scoring path of a 
topmost output network.  Ties are broken by low 
attach considerations.  

Each invocation of the control is given a 
grammar network entry state and a desired 
constituent category. After initializing a new 
output network, the arcs from the given entry state 
are followed. Processing an arc may begin with an 
optional pretest. If that succeeds, or there is no 
pretest, a constructive test follows.  The tests are 
indexed by grammar network test labels, and are 
expressed as blocks of procedural code, for initial 
flexibility in determining the necessary checks.  

Pretests include fast feasibility checks, and con-
texted checks of consistency of the potential new 
constituent with the current output network path. 
Constructive tests can make additional feasibility 
checks.  If these checks succeed, either a chunk is 
returned, or the control is reentered to try to build a 
subordinate output network. Results are cached, to 
avoid repeated testing. 

After a chunk or subordinate network ON' is 
returned from a constructive test, one new arc Ai is 
added to the current output network ON to 
represent each full path through ON'.  All added 
arcs have the same origin state in ON, but unique 
successor states and associated preference scores.   
The preference score is the sum of the score at the 
common origin state, plus the score of the repre-
sented path in ON', plus a contexted score for the 
alternative within ON.  The latter is one of <-1, 0, 
+1>, and expresses the consistency of Ai with the 
current path with respect to dependency, coordina-
tion and apposition. Structural and punctuation 
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aspects are also considered. Preference tests are 
indexed by syntactic category or syntactic func-
tion, and are organized for speed.  Most tests are 
independent of Ai length, and can be applied once 
and the results assumed for all Ai.   

Before a completed output network is returned, 
paths ending at those lower scoring final states 
which cannot ultimately be optimal are pruned. 
Such pruning is critical to efficiency. 

4 Indicative Current Results 

To provide a snapshot of current RH parser 
performance, we compare its current speed and 
accuracy directly to those of a widely used 
statistical parser, Collins model 3 (Collins, 1999), 
and indirectly to two other parsers.  Wall Street 
Journal section 23 of the Penn Treebank (Marcus 
et al. 1994) was used in all experiments. 

"Training" of the RH parser on  the Wall Street 
Journal area (beyond general RH development) 
occupied about 8 weeks, and involved testing and 
(non-exhaustively) correcting the parser using two 
WSJ texts: (a) section 00, and (b) 700 sentences of 
section 23 used as a dependency bank by King et 
al. (2003).  The latter were used early in RH devel-
opment, and so were included in the training set. 

4.1 Comparative Speed 

Table 1 compares RH parser speed with Collins 
model 3, using the same CPU, showing the elapsed 
times for the entire 2416-line section 23.   

The results are then extrapolated to two other 
parsers, based on published comparisons with 
Collins. The extrapolation to XLE, a mature 
unification-based parser that uses a disambiguating 
statistical post-processor, is drawn from Kaplan et 
al. (2004).  Results are given for both the full 
grammar and a reduced version that omits less 
likely rules.  The second comparison is with the 
fast stochastic parser by Sagae and Lavie (2005).  

Summarizing these results, RH is much faster 
than Collins model 3 and the reduced version of 
XLE, but a bit slower than Sagae-Lavie. 

The table also compares coverage, as percent-
ages of non-parsed sentences. For RH this was 
10% for the test set discussed below, which did not 
contain any training sentences, and was 10.4% for 
the full section 23.  This is reasonable for a sym-
bolic parser with limited training on an idiom, and 
better than the 21% reported for XLE English.  

 Time No full parse 
Sagae/ Lavie ~ 4 min 1.1% 
RH parser 5 min 10%  
Collins m3 16 min  .6% 
XLE full ~80 minutes ~21% 
XLE reduced ~24 minutes unknown 
Table 1: Speeds and Extrapolated speeds 

 
 Fully 

accurate 
F-score Avg 

cross  
brackets 

Sagae/Lavie unknwn 86% unknwn 
Collins Lbl 33.6% 88.2% 1.05 
CollinsNoLbl 35.4% 89.4 % 1.05 
RH NoLbl 46% 86 % .59 
Table 2. Accuracy Comparison    

4.2 Comparative Acccuracy 

Table 2 primarily compares the accuracy of the 
Collins model 3 and RH parsers.  The entries show 
the proportion of fully accurate parses, the f-score 
average of bracket precision and recall, and 
average crossing brackets,  as obtained by EVALB 
(Sekine and Collins, 1997). The RH f-score is 
currently somewhat lower, but the proportion of 
fully correct parses is significantly higher. 

This data may be biased toward RH, because, of 
necessity, the test set used is smaller, and a 
different bracketing method is used. For Collins 
model 3, the entries show both labeled and 
unlabeled results for all of WSJ section 23.  The 
Collins results were generated from the bracketed 
output and Penn Treebank gold standard files 
provided in a recent Collins download.  

But because RH does not generate treebank style 
tags, the RH entries reflect a test only on a random 
sample of 100 sentences from the 1716 sentences 
of section 23 not used as "training" data, using a 
different, available, gold standard creation and 
bracketing method. In that method (Newman, 
2005), parser results are produced in a "TextTree" 
form, initially developed for fast visual review of 
parser output, and then edited to obtain gold 
standard trees. Both sets of trees are then bracketed 
by a script to obtain, e.g., 

{An automatic transformation 
          {of parse trees}  
          {to text trees}} 
{can expedite  
           {parser output reviews}} 

123



For non-parsed sentences in the parser outputs, 
brackets are applied to the chunks.  EVALB is then 
used to compare the two sets of bracketed results.  

Accuracy for XLE is not given, because the 
results reported by Kaplan et al. (2004) compare 
labeled functional dependencies drawn from LFG 
f-structures with equivalents derived automatically 
from Collins outputs. (All f-scores are <= 80%). 

5 Related Work 

Several efforts combine a chunker with a 
dependency analyzer operating on the chunks, 
including XIP itself. The XIP dependency analyzer 
is very fast, but we do not have current coverage or 
accuracy data for XIP English.   

Other related hybrids do not build on chunks, 
but, rather, adjust full parsers to  require or prefer 
results consistent with chunk boundaries. Daum et 
al. (2003) use chunks to constrain a WCDG 
grammar for German, reducing parse times by 
about 2/3 (but the same results are obtained using a 
tagger alone). They estimate that an ideal chunker 
would reduce times by about 75%. No absolute 
numbers are given. Also, Frank et al. (2003) use a 
German topological field identifier to constrain an 
HPSG  parser.  They show speedups of about 2.2 
relative to a tagged baseline, on a corpus whose 
average sentence length is about 9 words. 

6 Discussion 

We have shown that the RH hybrid can compete 
with stochastic parsers in efficiency and, with only 
limited "training" on an idiom, can approach them 
in accuracy.  Also, the test organization prevents 
speed from degrading as the parser is improved.  

The method is significant in itself, but also leads 
to questions about the advantages of deep-
unification-based parsers for practical NLP. These 
parsers are relatively slow, and their large numbers 
of results require disambiguation, e.g., by corpus-
trained back-ends.  They do provide more informa-
tion than RH, but there is much evidence that the 
additional information can be obtained by rapid 
analysis of a single best parse.  Also, it has never 
been shown that their elegant notations actually 
facilitate grammar development and maintenance. 
Finally, while unification grammars are reversible 
for use in generation, good generation methods 
remain an open research problem.  

References 

Salah Aït-Mokhtar, Jean-Pierre Chanod, and 
Claude Roux. 2002. Robustness beyond shallowness: 
incremental deep parsing, Natural Language Engi-
neering 8:121-144, Cambridge University Press. 

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef 
van Genabith, and Andy Way. 2004. Long-Distance 
Dependency Resolution in Automatically Acquired 
Wide-Coverage PCFG-Based LFG Approximations, 
In Proc ACL'04. Barcelona  

Michael Collins. 1999. Head-Driven Statistical Models 
for Natural Language Parsing.  Ph.D. thesis, Univer-
sity of Pennsylvania. 

Michael A. Daum, Kilian A. Foth, and Wolfgang 
Menzel. 2003. Constraint-based integration of deep 
and shallow parsing techniques. In Proc EACL'03, 
Budapest 

Anette Frank, Markus Becker, Berthold Crysmann, 
Bernd Kiefer and Ulrich Schaefer. 2003. Integrated 
Shallow and Deep Parsing: TopP Meets HPSG. In 
Proc ACL'2003, Sapporo 

Nuria Gala. 2004. Using a robust parser grammar to 
automatically generate UNL graphs. In Proc Work-
shop on Robust Methods for Natural Language Data 
at COLING'04, Geneva 

Ronald M. Kaplan, Stephan Riezler, Tracy H. King, 
John T. Maxwell, Alex Vasserman. 2004. Speed and 
accuracy in shallow and deep stochastic parsing. In 
Proc HLT/NAACL'04, Boston, MA.  

Tracy H. King, Richard Crouch, Stefan Riezler, Mary 
Dalrymple, and Ronald M. Kaplan. 2003. The PARC 
700 dependency bank. In Proc Workshop on Linguis-
tically Interpreted Corpora, (LINC’03), Budapest 

David McClosky, Eugene Charniak, and Mark Johnson. 
2006. Reranking and Self-Training for Parser Adap-
tation. In Proc ACL'06. Sydney 

Paula Newman. 2005. TextTree Construction for Parser 
and Grammar Development.  In Proc. Workshop on 
Software at ACL'05  Ann Arbor, MI.  Available at 
http://www.cs.columbia.edu/nlp/acl05soft/ 

Satoshi Sekine and Michael Collins. 1997. EvalB. 
Available at http://nlp.cs.nyu.edu/evalb 

Kenji Sagae and Alon Lavie. 2005.  A classifier-based 
parser with linear run-time complexity. In Proc. 9th 
Int'l Workshop on Parsing Technologies. Vancouver 

William Woods. 1970. Transition network grammars for 
natural language analysis. Communications of the 
ACM 13(10), 591-606 

124



Proceedings of NAACL HLT 2007, Companion Volume, pages 125–128,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Subtree Mining for Relation Extraction from Wikipedia

Dat P.T. Nguyen
University of Tokyo

7-3-1 Hongo, Bunkyo-ku
Tokyo 113-8656, Japan

nptdat@mi.ci.i.u-tokyo.ac.jp

Yutaka Matsuo
National Institute of Advanced

Industrial Science and Technology
Sotokanda 1-18-13

Tokyo 101-0021, Japan
y.matsuo@aist.go.jp

Mitsuru Ishizuka
University of Tokyo

7-3-1 Hongo, Bunkyo-ku
Tokyo 113-8656, Japan
ishizuka@i.u-tokyo.ac.jp

Abstract

In this study, we address the problem of extract-
ing relations between entities from Wikipedia’s
English articles. Our proposed method first an-
chors the appearance of entities in Wikipedia’s
articles using neither Named Entity Recognizer
(NER) nor coreference resolution tool. It then
classifies the relationships between entity pairs
using SVM with features extracted from the
web structure and subtrees mined from the
syntactic structure of text. We evaluate our
method on manually annotated data from ac-
tual Wikipedia articles.

1 Introduction
Wikipedia (www.wikipedia.org) has emerged as the
world’s largest online encyclopedia. Because the ency-
clopedia is managed by the Wikipedia Foundation, and
because numerous collaborators in the world continu-
ously develop and edit its articles, its contents are be-
lieved to be quite reliable despite its openness.

This study is intended to deal with the problem of
extracting binary relations between entity pairs from
Wikipedia’s English version. A binary relation is defined
as a triple (ep, rel, es) in which ep and es are entities and
rel indicates a directed relationship of ep and es. Current
experiment limits entities and relations to a reasonable
size in that an entity is classifiable as person, organiza-
tion, location, artifact, year, month or date; and a rela-
tion can be founder, chairman, CEO, COO, president,
director, vice chairman, spouse, birth date, birth place,
foundation, product and location.

To our knowledge, only one recent work has at-
tempted relation extraction on Wikipedia: (Culotta et al.,
2006) presents a probabilistic model to integrate extrac-
tion and mining tasks performed on biographical text of
Wikipedia. Some other works (Brin, 1998; Agichtein and
Gravano, 2000; Ravichandran and Hovy, 2002) rely on
the abundance of web data to obtain easy patterns and
learn such patterns based mostly on lexical information.
Rather than analyzing dependency path between entity
pair proposed in (Bunescu and Mooney, 2006; Cui et al.,

2005), our method analyzes a subtree derived from the
dependency structure. Such subtree contains more evi-
dence of the entities’ inter-relation than the path in some
cases. We propose a new feature obtained from the sub-
tree by using a subtree-mining technique.

In addition, we also make use of the characteristics of
Wikipedia to allocate the mentions of entities and further
identify their types to help the relation extraction process.

2 Wikipedia’s Article Characteristics
Due to the encyclopedic style, each Wikipedia article
mainly provides information for a specific entity and fur-
ther mentions other entities related to it. Culotta et al.
(2006) defines the entities as principal entity and sec-
ondary entity respectively. We predict only relationships
between the principal entity and each mentioned sec-
ondary entity that contains a link to its descriptive article.

We put some assumptions in this study: a relation-
ship can be expressed completely in one sentence. Fur-
thermore, a relationship between an entity pair might be
expressed with the implication of the principal entity in
some cases. Thus, for an article, only sentences contain-
ing at least a secondary entity are necessarily analyzed.

An interesting characteristic of Wikipedia is the cate-
gory hierarchy that is used to classify articles according to
their content. Additionally, those articles for famous en-
tities provide summary sections on their right side, which
are created by human editors. Finally, the first sentence
of an article often defines the principal entity.

3 Proposed Method
Figure 1 delineates our framework for relation extrac-
tion. First, Wikipedia articles are processed to remove
HTML tags and to extract hyperlinks that point to other
Wikipedia articles. Raw text is submitted to a pipeline
including a Sentence Splitter, a Tokenizer and a Phrase
Chunker supplied by the OpenNLP 1 tool set. The in-
stances of the principal entity and secondary entities are
then anchored in the articles. The Secondary Entity De-
tector simply labels the appropriate surface texts of the
hyperlinks to other Wikipedia articles, which are proper

1http://opennlp.sourceforge.net/
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Figure 1: System framework

nouns as secondary entities. The Principal Entity Detec-
tor will be explained in the following subsection.

After the entities are anchored, sentences that include
at least one mention of secondary entities will be selected
by a Sentence Detector. Each mention of the secondary
entities is considered as a relation candidate between the
underlying entity and the principal entity. Secondary en-
tities are always explicit, although the principal entity is
sometimes implicit in sentences containing no mention.

Keywords that provide clues for each relation label will
be identified by a Keyword Extractor. Parallely, an Entity
Classifier module classifies the entities into types. The
Relation Extractor extracts subtree feature from a pair of
the principal entity and a mention of secondary entity. It
then incorporates subtree feature together with entity type
feature into a feature vector and classifies relations of the
entity pair using SVM-based classifiers.

3.1 Principal Entity Detector
This module detects all referring expressions of the prin-
cipal entity in an article. All occurrences of identified
expressions are labeled as mentions of the principal en-
tity. We adopt (Morton, 2000) to classify the expressions
into three types: (1) personal pronoun (2) proper noun
(3) common nouns. Based on chunking information, we
propose a simple technique to identify a set of referring
expressions of the principal entity, denoted as F:

(i) Start with F = {}.

(ii) Select the first two chunks for F: the proper chunk
(nounphase with at least one proper noun) of the article
title and the first proper chunk in the first sentence of the
article, if any. If F is still empty, stop.

(iii) For each remaining proper chunk p in the article, if
p is derived from any expressions selected in (ii), then
F ← p. Proper chunk p1 is derived from proper chunk p2
if all its proper nouns appear in p2.

(iv) In the article, select c as the most frequent subjective
pronouns, find c’ as its equivalent objective pronoun and
add them to F.

(v) For each chunk p with the pattern [DT N1 . . . Nk]
where DT is a determiner and Nk’s are a common nouns,
if p appears more frequently than all the selected pro-
nouns in (iv), then F ← p.

Table 1: Sample extracted referring expressions
Article Referring expressions Step

[NP Bill/NNP Gates/NNP ] (ii)
[NP William/NNP H./NNP Gates/NNP ] (ii)

Bill Gates [NP Gates/NNP ] (iii)
[NP The/DT Gates/NNP ] (iii)
[NP he/PRP ] (iv)
[NP him/PRP ] (iv)
[NP Microsoft/NNP ] (ii)
[NP The/DT Microsoft/NNP Corporation/NNP ] (ii)

Microsoft [NP that/DT Microsoft/NNP ] (iii)
[NP It/PRP ] (iv)
[NP the/DT company/NN ] (v)
[NP Microsoft/NNP Windows/NNP ] (ii)

Microsoft [NP Microsoft/NNP ] (iii)
Windows [NP Windows/NNP ] (iii)

[NP the/DT Windows/NNP ] (iii)
[NP it/PRP ] (iv)

Table 2: List of relations and their keywords
Relation Keywords
CEO CEO, chief, executive, officer
Chairmans chairman
COO coo, chief, operating, officer
Director director
Founder found, founder, founded, establish, form, foundation, open
President president
Vice
chairman

vice, chairman

Birth date born, bear, birth, birthday
Birth
place

born, bear

Foundation found, establish, form, founded, open, create, formed, estab-
lished, foundation, founding, cofounder, founder

Location headquartered, based, locate, headquarter, base, location, situate,
located

Product product, include, release, produce, service, operate, provide,
market, manage, development, focus, manufacture, provider,
launch, make, sell, introduce, producer, supplier, possess, re-
tailer, design, involve, production, offering, serve, sale, supply

Spouse marry, wife, married, husband, marriage

Table 1 shows some extracted referring expressions.
The third column indicates in which step the expressions
are selected. Supported by the nature of Wikipedia, our
technique provides better results than those of the coref-
erence tool in LingPipe library 2 and OpenNLP tool set.

3.2 Entity Classifier
Entity type is very useful for relation extraction. For in-
stance, the relation label between a person and an orga-
nization should be founder, chairman, etc., but cannot
be spouse, product, etc. We first identify year, month
and date entities by directly examining their surface text.
Types of other entities are identified by classifying their
corresponding articles. We develop one SVM-based clas-
sifier for each remaining type using the following fea-
tures: category feature (categories collected when trac-
ing from the article upto k level of its category structure),
pronoun feature (the most frequent subjective pronoun
in the article) and singular noun feature (singular nouns
of the first sentence of the article).

3.3 Keyword Extractor
Our hypothesis in this research is that there exist some
keywords that provide clues for the relationship between

2http://www.alias-i.com/lingpipe/index.html
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Figure 2: Dependency trees in (a) & (b); core trees with respect to CEO relationship in (c) & (d); new representation
of the core trees in (e) & (f); common subtree in (g). The red phrase EP denotes the principal entity; the blue phrase
ES denotes the secondary entity.

a pair. For example, to express the founder relation, a
sentence should contain one keyword such as: found,
founder, founded, co-founders, or establish, etc. We iden-
tify such keywords by using a semi-automatic method.
First, we automatically extract some true relations from
summary sections of Wikipedia articles. Then, we map
entities in such relations to those in sentences to build
sample sentences for each relationship . Tf-idf model is
exploited to measure the relevance of words to each re-
lationship for those on the dependency path between the
entity pair. Finally, we choose the keywords manually
from lists of candidates ranked by relevance score with
respect to each relation. Table 2 shows our result selected
from ranked lists of total 35,820 keyword candidates us-
ing only one hour of human labor.

3.4 Subtree Feature from Dependency Path

In this subsection, we will describe how to obtain effi-
cient features for extracting relation using subtree min-
ing. We extend the idea of Bunescu et al. (Bunescu and
Mooney, 2006) suggesting the analysis of dependency
path between the entities for extracting relation, in that
paths between the secondary entity and the keywords of r
will be added to the dependency path between the entities
to create a tree. The expanded tree is defined as core tree
of r because it attempts to capture the clues for r. Steps to
extract the core tree C of a relationship r from a sentence
s are described as follows:

(i)] Initialize the core tree C as blank.

(ii) Derive the dependency tree D from s.

(iii) Label the group of nodes corresponding to words of
secondary entity by an ES node in D.

(iv) If the principal entity appears in s, apply (iii) to re-
place principal entity with EP. Then extract P0 as shortest
path from ES to EP in D and add P0 →C.

(v) For each keyword w of r, extract Pw as the shortest

path from ES to node of w and add Pw →C.
Figures 2c & 2d present exemplary core trees of CEO

relationship derived from the dependency trees in Figures
2a & 2b. To analyze both words and relations of a core
tree uniformly, we transform it into a uniform graph for-
mat (Figures 2e & 2f) in which core tree words and rela-
tions are also represented as graph nodes.

We define a basic element of a relationship r as a key
pattern that commonly appears in various core trees of r.
As an example, the core trees in Figures 2e & 2f share
a common pattern in Figure 2g. Intuitively, this subtree
shares the core trees of sentences that express the idea of
”joined the company as CEO” or ”joined the company
and do something as CEO”.

We denote T = (V , E) as a directed tree, in which
V is a set of nodes and E is a set of directed edges.
Node y is an ancestor of node x, denoted by x ≺ y,
if (x,y) ∈ E or ∃i1, ..., ik (k ∈ N and k ≥ 1) such that
(x, i1),(i1, i2), ...,(ik−1, ik),(ik,y) ∈ E. We define that a
tree S = (VS, ES) is a subtree of T if and only if: (i) VS ⊂V ,
and (ii) ∀(x,y) ∈ ES, we have x≺ y in T .

We use a subtree as a feature for relation extraction.
From a set of training sentences with respect to a relation-
ship r, we derive the core trees. A frequent tree-mining
algorithm (Zaki, 2002) is used to generate subtrees from
that set of core trees to form the feature space. Each
mined subtree corresponds to a value of the feature.

4 Experiments and Evaluations

In this experiment, 5,975 articles are selected, in which
45 articles are for testing and 5,930 articles for train-
ing. We apply the framework in Figure 1 on the train-
ing articles to extract keywords and select relation candi-
dates. Subsequently, 3,833 positive instances (each con-
tains at least one relation) and 805 negative instances (the
ones containing no relation) from the candidates are an-
notated to train the Relation Extractor. Among 39,467
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Table 3: Compare our proposed system and baselines
Precision(%) Recall(%) F1(%)

B0 8.70 22.26 12.51
B1 9.88 25.31 14.21

DepTree 29.07 53.86 37.76

Table 4: Result of Entity Classifier with various levels (k
value) of exploited category structure

Depth k(%) Accuracy(%)
1 64.0
2 69.5
3 81.0
4 81.5
5 79.5
6 77.5
7 77.0
8 78.0
9 75.0
10 74.5

entities collected from all principal and secondary enti-
ties, we randomly select 3,300 entities and manually an-
notate their types for the Entity Classifier. Finally, we use
3,100 entities for training and 200 entities for testing.

We develop two baseline systems to evaluate our
method, which use bag-of-words model. The second sys-
tem (B1 in Table 3) works like the Keyword Extractor
on training instances in that it calculates tf-idf scores for
words on the dependency path between the entities with
respect to each relation. During testing, it accumulates
tf-idf scores of words on the path and chooses the relation
label that gives the highest score for the entity pair. The
only difference between the two baseline systems is that
the first one (B0 in Table 3) focuses on all the words be-
tween the entities in sentence text, not dependency path.

In our experiments, dependency graphs are obtained
by Minipar parser (Lin, 1998), classifiers are trained by
SVM Light (Joachims, 1999) with 2nd- order polynomial
kernel, subtrees are mined by FREQT 3 tree miner.

On the basis of preliminary experiments, we report the
performance of our system compared with those of base-
line systems in Table 3. The result shows that our pro-
posed method gives a substantial improvement over the
baselines. Although the recall is quite adequate, preci-
sion is low. Data analysis reveals that although the mined
subtrees capture key features for relationships, they also
generate many irrelevant features which degrade the per-
formance. It is necessary to carry out feature selection
step for subtree feature. One more reason of the poor
precision is that our system suffers from the error accu-
mulation in a long pipeline of entity detection, entity clas-
sification, dependency parsing and relation classification.

Table 4 shows the effectiveness of different values of k
parameter in Entity Classifier. The classifier works best
when we trace four levels on category system. An inter-
esting fact is that Wikipedia can be used as an external

3http://chasen.org/t̃aku/software/freqt/

knowledge source for Named Entity Recognition.

5 Conclusions and Future Works
We have presented a method to extract relations between
entities from Wikipedia articles by incorporating infor-
mation from the Wikipedia structure and by the analysis
of Wikipedia text. The key features of our method in-
clude: (1) an algorithm to build the core syntactic tree
that reflects the relation between a given entity pair more
accurately; (2) the use of a tree-mining algorithm to iden-
tify the basic elements of syntactic structure of sentences
for relationships; (3) method to make use of the nature of
Wikipedia for entity allocation and entity classification.
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ABSTRACT 

This paper describes the CMU/InterACT effort in 

developing an Arabic Automatic Speech Recognition 

(ASR) system for broadcast news and conversations 

within the GALE 2006 evaluation. Through the span of 

9 month in preparation for this evaluation we improved 

our system by 40% relative compared to our legacy 

system. These improvements have been achieved by 

various steps, such as developing a vowelized system, 

combining this system with a non-vowelized one, 

harvesting transcripts of TV shows from the web for 

slightly supervised training of acoustic models, as well 

as language model adaptation, and finally fine-tuning 

the overall ASR system. 

Index Terms— Speech recognition, Vowelization, 

GALE, Arabic, Slightly supervised training, web data. 

 

1. INTRODUCTION 

The goal of the GALE (Global Autonomous Language 

Exploitation) program is to develop and apply computer 

software technologies to absorb, analyze and interpret 

huge volumes of speech and text in multiple languages 

and make them available in English. In a long run this 

requires to combine techniques from text 

summarization, information retrieval, machine 

translation, and automatic speech recognition.  NIST 

will perform regular evaluations and the first evaluation 

took place recently. This paper describes improvements 

in the CMU Modern Standard Arabic (MSA) system 

through the span of 9 months in preparation for this 

evaluation.  

One of the language characteristics and challenges of 

Arabic is that some vowels are omitted in the written 

form. These vowels carry grammatical case information 

and may change the meaning of a word. Modeling the 

vowels in the pronunciation dictionary was found to 

give improvements over un-vowelized pronunciations 

[4].  In this paper we achieved another significant 

improvement by combining a vowelized with a non-

vowelized system. Furthermore, we got gains by 

collecting and utilizing web transcripts from TV show, 

which include broadcast conversations.  

 

2. SYSTEM DESCRIPTION 

Our MSA speech recognition system is based on the 

Janus Recognition Toolkit JRTk [9] and the IBIS 

decoder [10].  

Before decoding the audio, an automatic segmentation 

step and a speaker clustering step is performed. The 

segmentation step aims at excluding those segments that 

contain no speech, such as music or background noise.  

The remaining segments are clustered into speaker 

clusters such that all adaptation and normalization steps 

can be processed on clusters as batches. 

 

From the incoming 16 kHz audio signal we extract for 

each segment power spectral features using a FFT with 

a 10ms frame-shift and a 16ms Hamming window. From 

these we compute 13 Mel-Frequency Cepstral 

Coefficients (MFCC) per frame and perform a cepstral 

mean as well as variance normalization on a cluster 

basis. To incorporate dynamic features we concatenate 

15 adjacent MFCC frames (±7) and project these 195 

dimensional features into a 42 dimensional space using 

a transform found by linear discriminate analysis 

(LDA). We use the context-dependent codebooks as 

classes for finding the LDA transform [2]. On top of the 

LDA we apply a single maximum likelihood trained 

Semi-Tied-Covariance (STC) matrix. 

 

The general decoding setup employs a first pass in 

which a speaker independent acoustic model without 

vocal tract length normalization (VTLN) and no 

adaptation is used. The hypotheses of a cluster from the 

first pass are then used to estimate the VTLN warping 

factors to warp the power spectrum using the maximum 

likelihood approach described in [8]. After the VTLN 

factors are found, the same hypotheses are considered to 

estimate a feature space adaptation (FSA) using a 

constrained MLLR (CMLLR) transform. Then a model 

space adaptation is performed using maximum 

likelihood linear regression with multiple regression 

classes. The regression classes are found through 

clustering of the Gaussians in the acoustic model. The 

second pass decoding uses a speaker adaptive trained 
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acoustic model, in which the adaptation was performed 

using a single CMLLR transform per speaker. 

For the non-vowelized system, we applied a grapheme-

to-phoneme approach to automatically generate the 

pronunciation dictionary. For the vowelized system we 

used the same phoneme set as in the non-vowelized 

system but extended it with the 3 short vowels, which 

do not appear in the writing system. Both systems are 2-

pass system as described above and employ Cepstral 

Mean Normalization (CMN), MLLR, Semi-tied 

covariance (STC), and Feature space adaptation (FSA).  

 

For the development of context dependent acoustic 

models we applied an entropy-based polyphone 

decision tree clustering process using context questions 

of maximum width ±2, resulting in shared quin-phones. 

In addition we included word-boundary tags into the 

pronunciation dictionary, which can be asked for in the 

decision tree can ask for word-boundary tags. The non-

vowelized system uses 4000 phonetically-tied quin-

phones with a total of 305,000 Gaussians. The non-

vowelized system has 5000 codebooks with a total of 

308,000 Gaussians.  

In total we used 190 hours for acoustic training. 

These consist of 40 hours Broadcast news (BN) from 

manually transcribed FBIS data, 50 hours BN LDC-

TDT4 selected from 85 hours using a slightly 

supervised approach as described in [3], and 30 hours 

Broadcast conversation (BC) recorded from Al-jazeera 

TV, and 70 hours (40hrs BN, 30hrs BC) from LDC-

GALE data. For quality reasons we removed some of 

the most recent GALE data from acoustic model 

training.  

4. LANGUAGE MODELING 
The Arabic Giga word corpus distributed by LDC is 

currently the major Arabic text resource for language 

modeling. Since this corpus only covers broadcast news, 

we spidered the web to cover broadcast conversational 

data. We found transcripts for Arabic talk shows on the 

Al-jazeera web site www.al-jazeera.net and collected all 

data available from 1998 to 2005. We excluded all 

material from 2006 to comply the evaluation rules 

which prohibit the use of any data starting February 

2006. In addition to the mentioned data we collected 

BN data from the following source: Al-Akhbar 

(Egyptian daily newspaper 08/2000 to 12/2005) and 

Akhbar Elyom (Egyptian weekly newspaper 08/2000 to 

12/2005). Furthermore, we used unsupervised training 

transcripts from 750 hours BN created and shared by 

IBM. 

 

For language modeling building we used the SRILM 

tool kit from SRI [5]. Since we have 2 kinds of data, 

Broadcast News and Conversation, we built various 

individual 4-grams language models. 11 models were 

then interpolated to create one language model. The 

interpolation weights were selected based on a held out 

data set from BN and BC sources. We found that the 

data from Al-jazeera (both BN & BC) has the highest 

weight comparing to other sources. The resulting final 

language model uses a total number of n-grams is 126M 

and a vocabulary of 219k words. The perplexity of the 

language model is 212 on a test set containing BC and 

BN data. 

5. TV WEB TRANSCRIPTS 

Most of our acoustic and language model training data 

comes from broadcast news. However, since GALE 

targets broadcast news as well as conversations we 

looked for an effective method to increase the training 

data for Arabic BC. We made use of the fact that some 

Arabic TV stations place transcripts for their program 

on the web. These transcripts lack time stamp but 

include acceptable quality of the transcription. 

However, one challenge is that the transcriptions are not 

complete in that they do not include transcripts of 

commercials or any news break that may interrupt the 

show.  In total we recorded 50 hours of Broadcast 

conversation shows from Al-jazeera and used them in 

our acoustic model and language model training by 

performing the following procedures:  

• We manually selected shows from Al-jazeera TV 

• We used a scheduler to automatically start the 

recording of the selected shows.  

• We spidered the web to collect corresponding show 

transcripts from their web site www.aljazeera.net.  

• We automatically processed the transcripts to 

convert the html files to text, convert numbers to 

words and remove any non-Arabic words in the 

shows.  

• We added these shows to our LM data with high 

weight, built a biased LM, and used this LM to 

decode the recorded shows.  

• We aligned the reference (transcripts without time 

stamps) with the decoder output that may contain 

speech recognition errors.  

• We selected only the portions that are correct; we 

did not select any portion with number of words 

less than 3 correct consecutive words.  

• Based on the above criteria we finally selected 30 

hours out of the total 40 hours recordings. 

• We clustered utterances based on BIC criteria 

approach described in [7]. 

  

As a result, we managed to project the time stamp in the 

original transcript such that it can be used for training. 

Using these 30 hours of data resulted in a 7% relative 

improvement on RT04. Since RT04 is broadcast news, 

we expect even higher gains on broadcast 

conversational data. It is worth mentioning that we 
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applied the same slightly supervised approach to the 

TDT4 data which is a low quality quick transcription. 

We selected 50 out of 80 hours and achieved an 

improvement of 12% relative. The gain was higher 

since at the time of these experiments we had only 40 

hours of training from FBIS data, therefore more than 

doubled the amount of training data by adding TDT4. 

 

6. NON-VOWELIZED SYSTEM 

Arabic spelling is mostly phonemic; there is a close 

letter-to-sound correspondence. We used a grapheme-

to-phoneme approach similar to [1]. Our phoneme set 

contains 37 phonemes plus three special phonemes for 

silence, non-speech events, and non-verbal effects, such 

as hesitation. 

 We preprocessed the text by mapping the 3 shapes of 

the grapheme for glottal stops to one shape at the 

beginning of the word since these are frequently miss-

transcribed. This preprocessing step leads to 20% 

reduction in perplexity of our language model and 0.9% 

improvements in the final WER performance on RT04. 

Preprocessing of this kind appears to be appropriate 

since the target of the project is not transcription but 

speech translation and the translation community 

applies the same pre-processing. We used a vocabulary 

of 220K words selected by including all words 

appearing in the acoustic transcripts and the most 

frequent words occurring in the LM. The OOV rate is 

1.7% on RT04. Table 1 shows the performance of our 

Speaker-Independent (SI) and Speaker-Adaptive (SA) 

non-vowelized system on the RT04 set. 

 

   Table 1: Non-vowelized System Results 

            System     WER on RT04 (%) 

Non-Vowelized         (SI)           25.3 

Non-Vowelized         (SA)           20.8 

 

7. VOWELIZED SYSTEM 

Written MSA lacks vowels, thus native speakers add 

them during reading. Vowels are written only in 

children books or traditional religious books. To restore 

vowels for a 129K vocabulary [4], we performed the 

following steps:   

• Buckwalter morphological analyzer (BMA) (found 

106K out of 129K entries). 

• If a word is not vowelized by the analyzer, we 

check for its vowelization in the LDC Arabic Tree-

Bank (additional 5k entries found). 

• If the word did not appear in any of those, we used 

the written non-vowelized word form.  

In total 11k entries could not be resolved by either the 

BMA or the Treebank. 

This vowelization step resulted in 559,035 

pronunciations for the 129k words in our vocabulary, 

i.e. we have on average 5 pronunciations per word. To 

reduce the number of pronunciation variants we 

performed a forced alignment and excluded 

pronunciations which did not occur in the training 

corpus. This results in 407,754 pronunciations, which is 

a relative reduction of about 27%. For system training 

we used the same vocabulary and applied the same 

training procedure as in the non-vowelized system for 

acoustic model training.  

As Table 2 shows, we achieved a very good gain of 

1.3% absolute on the SI pass and 1.5% on the SA pass, 

both benchmarked on RT04 (compare Table 1). We 

envision to seeing even higher improvements after 

estimating and applying probability priors to multiple 

pronunciation and after vowelizing the remainder 11k 

words that had not been covered by BMA or the Tree-

Bank.  

 

   Table2: Vowelized System Results 

           System  WER on RT04 (%) 

Vowelized         (SI)        24.0 

Vowelized         (SA)       19.3 

 

8. COMBINING VOWELIZED & NON-

VOWELIZED SYSTEM 

After seeing significant improvements by vowelization, 

we investigated the performance gain through cross-

adapting the vowelized system with the non-vowelized 

system. The vowelized system cross adapted with the 

SA non-vowelized gave us 1.3 over the vowelized 

system  adapted on the SI vowelized system. We used a 

3-pass decoding strategy, in which the first pass uses the 

speaker independent (SI) vowelized system, the second 

pass uses the speaker adaptive (SA) non-vowelized 

system, and the third, final pass, uses the speaker 

adaptive vowelized system.  Some challenges for the 

cross-adaptations had to be overcomed, for instance to 

cross adapt the non-vowelized system on the vowelized 

system, we had to remove the vowels to have a non-

vowelized transcript. Since the phoneme set of the non-

vowelized system is a subset of the phoneme set of the 

vowelized system, we could simply exclude the vowel 

phonemes from the vowelized system.  Furthermore, the 

search vocabulary is the same and so is the language 

model.  

The main changes are the pronunciation dictionary and 

the decision tree. We tried different combination 

schemes, e.g. by starting with the non-vowelized 

system, then the vowelized, and then the non-vowelized 

but found that none outperforms the combination 

reported here in terms of WER. In addition starting with 

the non-vowelized SI pass is much faster than the 

vowelized SI system (4.5RT compared to 9RT). 
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 Table 3: Non-vowelized & vowelized System 

Combination 

            System    WER on RT04 (%) 

Vowelized         (SI)           24.0 

Non-Vowelized (SA)           19.9 

Vowelized         (SA)           18.3 

 

9.  ACOUSTIC MODEL PARAMETER TUNING 

We started our legacy system with 40 hours and until it 

reached 90 hours we were using the same number of 

codebooks (3000) and same number of Gaussians (64) 

per codebook. With the increase of training data from 

90 hours to 190 hours we investigated the effect of 

increasing the number of codebooks and Gaussians. 

Also, we were using merge and split training (MAS) 

and STC only for the adapted pass; we furthermore 

investigated the effect of using it for the SI pass. We 

found that using MAS & STC on the SI pass gave us a 

gain of 5% relative on the SI pass. In addition we found 

that the ideal number of codebooks is 5000 for the non-

vowelized system resulting in a gain of 5.3% relative on 

the SI pass.  We expect to see further gains on the SA 

pass. Table 4 summarizes the system performance using 

different parameter sizes and training schemes.  

 

Table 4: System Performance vs.Model Size  
#codebooks MAS #Gausians Voc System WER(%) 

3K - 64K 129 Non-

vow(NV) 

29.6 

3K Mas 64K 129      NV 28.3 

5K Mas 64K 129      NV 27.9 

5K Mas 100K 129      NV 27.6 

5K Mas 100K 200 nv+tv 

TRANS 

26.3 

3K Mas 100K 200 vow+ 
tvTRANS 

24.0 

 

10. SYSTEM EVOLUTION 

Table 5 shows the gains we achieved at major milestone 

stages while building the system. The key improvements 

are due to adding data collected from the web, 

Vowelization, and combining the vowelized and non-

vowelized systems. Tuning the acoustic models 

parameters gave us a good gain and finally the 

interpolation of different language model for different 

sources gave additional improvements. The real-time 

behavior of the system improved from 20RT to 10 RT 

while loosing only 0.2% which is in acceptable trade-

off. Recently, we gained 3.5% relative applying 

discriminative training (MMIE).  

 

11. CONCLUSION 

We presented the CMU 2006 GALE ASR Arabic 

system. It can be seen that we achieved 40% 

improvements over our legacy system. 

Table 5: System Progress WER (%) 

LEGACY SYSTEM  32.7 

STC+VTLN 30.1 

SPEED FROM 20RT TO 10RT 30.3 

FROM 3 TO 4GM+BETTER 

SEGMENTATION 

28.4 

TDT4 TRANSCIPTS SELECTION 

REFINEMENT 

26.3 

CLUSTERING REFINEMENT & 

RETRAINING 

25.5 

MORE LM DATA +INTERPOLATING 11 LMS 24.2 

ADDITION Q3 OF LDC DATA 23.6 

ACOUSTIC MODEL PARAMETER TUNING 20.7 

MMIE 20.0 

COMBINED SYSTEMS (VOW+NON-VOW) 18.3 

 

We combined a vowelized and a non-vowelized system 

and achieved 4.0% relative over the vowelized system. 

Also, we managed to use TV web transcript as a method 

to cover the shortage of training data specially the 

broadcast conversation. Currently, we are exploring 

more on the vowelized system by adding weights to 

different multiple pronunciations and adding 

vowelization to words not covered by the morphological 

analyzer or the tree-bank. 
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Abstract

The aim of this work is to show the abil-
ity of finite-state transducers to simultane-
ously translate speech into multiple lan-
guages. Our proposal deals with an ex-
tension of stochastic finite-state transduc-
ers that can produce more than one out-
put at the same time. These kind of de-
vices offer great versatility for the inte-
gration with other finite-state devices such
as acoustic models in order to produce a
speech translation system. This proposal
has been evaluated in a practical situation,
and its results have been compared with
those obtained using a standard mono-
target speech transducer.

1 Introduction

Finite-state models constitute an important frame-
work both in syntactic pattern recognition and in
language processing. Specifically, stochastic finite-
state transducers (SFSTs) have proved to be useful
for machine translation tasks within restricted do-
mains; they usually offer high speed during the de-
coding step and they provide competitive results in
terms of error rates (Mohri et al., 2002). Moreover,
SFSTs have proved to be versatile models, which
can be easily integrated with other finite-state mod-
els (Pereira and Riley, 1997).

The article (Casacuberta and Vidal, 2004) ex-
plored an automatic method to learn an SFST from a
bilingual set of samples for machine translation pur-
poses, the so-called GIATI (Grammar Inference and

Alignments for Transducers Inference). It described
how to learn both the structural and the probabilistic
components of an SFST making use of underlying
alignment models.

A multi-target SFST is a generalization of stan-
dard SFSTs, in such a way that every input string
in the source language results in a tuple of output
strings each being associated to a different target
language. An extension of GIATI that allowed to in-
fer a multi-target SFST from a multilingual corpus
was proposed in (González and Casacuberta, 2006).
A syntactic variant of this method (denoted as GI-
AMTI) has been used in this work in order to infer
the models from training samples as it is summa-
rized in section 3.

On the other hand, speech translation has been al-
ready carried out by integrating acoustic models into
a SFST (Casacuberta et al., 2004). Our main goal
in this work is to extend and assess these method-
ologies to accomplish spoken language multi-target
translation. Section 2 deals with this proposal by
presenting a new integrated architecture for speech-
input multi-target translation. Under this approach
spoken language can be simultaneously decoded and
translated into m languages using a unique network.
In section 4, the performance of the system has
been experimentally evaluated over a trilingual task
which aims to translate TV weather forecast into two
languages at the same time.

2 An integrated architecture for
speech-input multi-target translation

The classical architecture for spoken language
multi-target translation involves a speech recogni-
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tion system in a serial architecture with m decoupled
text-to-text translators. Thus, the whole process in-
volves m + 1 searching stages, a first one for the
speech signal transcription into the source language
text string, and further m for the source language
translation into the m target languages. If we re-
placed the m translators by the multi-target SFST,
the problem would be reduced to 2 searching stages.
Nevertheless, in this paper we propose a natural way
for acoustic models to be integrated in the same net-
work. As a result, the input speech-signal can be
simultaneously decoded and translated into m target
languages just in a single searching stage.

Given the acoustic representation (x) of a speech
signal, the goal of multi-target speech translation
is to find the most likely m target strings (tm);
that is, one string (ti) per target language involved
(i ∈ {1, . . . ,m}). This approach is summarized
in eq. (1), where the hidden variable s can be in-
terpreted as the transcription of the speech signal:

t̂m = arg max
tm

P (tm|x) = arg max
tm

∑
s

P (tm, s|x)

(1)
Making use of Bayes’ rule, the former expression

turns into:

t̂m = arg max
tm

∑
s

P (tm, s)P (x|tm, s) (2)

Empirically, there is no loss of generality if we as-
sume that the acoustic signal representation depends
only on the source string: i.e., that P (x|tm, s) is in-
dependent of tm. In this sense, eq. (2) can be rewrit-
ten as:

t̂m = arg max
tm

∑
s

P (tm, s)P (x|s) (3)

Equation (3) combines a standard acoustic model,
P (x|s), and a multi-target translation model,
P (tm, s), both of whom can be integrated on the fly
during the searching routine. Nevertheless, the outer
maximization is computationally very expensive to
search for the optimal tuple of target strings tm in
an effective way. Thus we make use of the so called
Viterbi approximation, which finds the best path.

3 Inference

Given a multilingual corpus, that is, a finite set of
multilingual samples (s, t1, . . . , tm) ∈ Σ∗ × ∆∗

1 ×

· · · × ∆∗
m, where ti denotes the translation of the

source sentence s (formed by words of the input vo-
cabulary Σ) into the i-th target language, which, in
its turn, has a vocabulary ∆i, the GIAMTI method
can be outlined as follows:

1. Each multilingual sample is transformed into a
single string from an extended vocabulary (Γ ⊆
Σ×∆∗

1× · · · ×∆∗
m) using a labelling function

(Lm). This transformation searches an ade-
quate monotonous segmentation for each of the
m source-target language pairs. A monotonous
segmentation copes with monotonous align-
ments, that is, j < k ⇒ aj < ak following
the notation of (Brown et al., 1993). Each
source word is then joined with a target phrase
of each language as the corresponding segmen-
tation suggests. Each extended symbol consists
of a word from the source language plus zero
or more words from each target language.

2. Once the set of multilingual samples has been
converted into a set of single extended strings
(z ∈ Γ∗), a stochastic regular grammar can be
inferred.

3. The extended symbols associated with the
transitions of the automaton are transformed
into one input word and m output phrases
(w/p̃1/ . . . /p̃m) by the inverse labeling func-
tion (L−m), leading to the required transducer.

In this work, the first step of the algorithm (as
described above), which is the one that handles
the alignment and segmentation routines, relies on
statistical alignments obtained with GIZA++ (Och,
2000). The second step was implemented us-
ing our own language modeling toolkit, which
learns stochastic k-testable in the string-sense gram-
mars (Torres and Varona, 2001), and allows for
back-off smoothing.

4 Experimental results

4.1 Task and corpus
We have implemented a highly practical application
that could be used to translate on-line TV weather
forecasts into several languages, taking the speech
of the presenter as the input and producing as output
text-strings, or sub-titles, in several languages. For
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this purpose, we used the corpus METEUS (see Ta-
ble 1) which consists of a set of trilingual sentences,
in English, Spanish and Basque, as extracted from
weather forecast reports that had been published on
the Internet. Basque language is a minority lan-
guage, spoken in a small area of Europe and also
within some small American communities (such as
that in Boise, Idaho). In the Basque Country it has
an official status along with Spanish. However both
languages differs greatly in syntax and in semantics.
The differences in the size of the vocabulary (see
Table 1), for instance, are due to the agglutinative
nature of the Basque language.

With regard to the speech test, the input consisted
of the speech signal recorded by 36 speakers, each
one reading out 50 sentences from the test-set in Ta-
ble 1. That is, each sentence was read out by at least
three speakers. The input speech resulted in approx-
imately 3.50 hours of audio signal. Needless to say,
the application that we envisage has to be speaker-
independent if it is to be realistic.

Spanish Basque English

Tr
ai

ni
ng

Sentences 14,615
Different Sent. 7,225 7,523 6,634
Words 191,156 187,462 195,627
Vocabulary 702 1,147 498
Average Length 13.0 12.8 13.3

Te
st

Different Sent. 500
Words 8,706 8,274 9,150
Average Length 17.4 16.5 18.3
Perplexity (3grams) 4.8 6.7 5.8

Table 1: Main features of the METEUS corpus.

4.2 System evaluation

The experimental setup was as follows: the multi-
target SFST was learned from the training set in Ta-
ble 1 using the GIAMTI algorithm described in sec-
tion 1; then, the speech test was translated, and the
output provided by the system in each language was
compared to the corresponding reference sentence.
Additionally, two mono-target SFST were inferred
from the same training set with their outputs for the
aforementioned test to be taken as baseline.

4.2.1 Computational cost
The expected searching time and the amount of

memory that needs to be allocated for a given model
are two key parameters to bear in mind in speech-

input machine translation applications. These values
can be objectively measured based on the size and on
the average branching factor of the model displayed
in Table 2.

multi-target mono-target
S2B S2E

Nodes 52,074 35,034 20,148
Edges 163,146 115,526 69,690
Braching factor 3.30 3.13 3.46

Table 2: Features of multi-target model and the two
decoupled mono-target models (one for Spanish to
Basque translation, referred to as S2B, and the sec-
ond for Spanish to English, S2E).

Adding the states and the edges up for the two
mono-target SFSTs that take part in the decoupled
architecture (see Table 2), we conclude that the de-
coupled model needs a total of 185, 216 edges to be
allocated in memory, which represents an increment
of 13% in memory-space with respect to the multi-
target model.

On the other hand, the multi-target approach of-
fers a slightly smaller branching factor than each
mono-target approach. As a result, fewer paths have
to be explored with the multi-target approach than
with the decoupled one, which means that searching
for a translation can be faster. In fact, experimental
results in Table 3 show that the mono-target archi-
tecture works %11 more slowly than the multi-target
one.

multi-target mono-target
S2B S2E S2B+S2E

Time (s) 30,514 24,398 9,501 33,899

Table 3: Time needed to translate the speech-test
into two languages.

Summarizing, in terms of computational cost
(space and time), a multi-target SFST performs bet-
ter than the mono-target decoupled system.

4.2.2 Performance
So far, the capability of the systems have been as-

sessed in terms of time and spatial costs. However,
the quality of the translations they provide is, doubt-
less, the most relevant evaluation criterion. In order
to assess the performance of the system in a quan-
titative manner, the following evaluation parameters
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were computed for each scenario: bilingual evalua-
tion under study (BLEU), position independent er-
ror rate (PER) and word error rate (WER).

As can be derived from the Speech-input trans-
lation results shown in Table 4, slightly better re-
sults are obtained with the classical mono-target SF-
STs, compared with the multi-target approach. From
Spanish into English the improvement is around
3.4% but from Spanish into Basque, multi-target ap-
proach works better with an improvement of a 0.8%.

multi-target mono-target
S2B S2E S2B S2E

BLEU 39.5 59.0 39.2 61.1
PER 42.2 25.3 41.5 23.6
WER 51.5 33.9 50.5 31.9

Table 4: Speech-input translation results for Spanish
into Basque (S2B) and Spanish into English (S2E)
using a multi-target SFST or two mono-target SF-
STs.

The process of speech signal decoding is itself
introducing some errors. In an attempt to measure
these errors, the text transcription of the recognized
input signal was extracted and compared to the input
reference in terms of WER as shown in Table 5.

multi-target mono-target
S2B S2E

WER 10.7 9.3 9.1

Table 5: Spanish speech decoding results for the
multi-target SFST and the two mono target SFSTs.

5 Concluding remarks and further work

A fully embedded architecture that integrates the
acoustic model into the multi-target translation
model for multiple speech translation has been pro-
posed. Due to the finite-state nature of this model,
the speech translation engine is based on a Viterbi-
like algorithm. The most significant feature of this
approach is its ability to carry out both the recogni-
tion and the translation into multiple languages inte-
grated in a unique model.

In contrast to the classical decoupled systems,
multi-target SFSTs enable the translation from one
source language simultaneously into several target

languages with lower computational costs (in terms
of space and time) and comparable qualitative re-
sults.

In future work we intend to make a deeper study
on the performance of the multi-target system as the
amount of targets increase, since the amount of pa-
rameters to be estimated also increases.
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Abstract

In the framework of the Tc-Star project,
we analyze and propose a combination of
two Statistical Machine Translation sys-
tems: a phrase-based and an N -gram-based
one. The exhaustive analysis includes a
comparison of the translation models in
terms of efficiency (number of translation
units used in the search and computational
time) and an examination of the errors in
each system’s output. Additionally, we
combine both systems, showing accuracy
improvements.

1 Introduction

Statistical machine translation (SMT) has evolved
from the initial word-based translation models to
more advanced models that take the context sur-
rounding the words into account. The so-called
phrase-based and N -gram-based models are two ex-
amples of these approaches (Zens and Ney, 2004;
Mariño et al., 2006).

In current state-of-the-art SMT systems, the
phrase-based or the N -gram-based models are usu-
ally the main features in a log-linear framework, rem-
iniscent of the maximum entropy modeling approach.

Two basic issues differentiate the N -gram-based
system from the phrase-based one: the training data
is sequentially segmented into bilingual units; and
the probability of these units is estimated as a bilin-
gual N -gram language model. In the phrase-based
model, no monotonicity restriction is imposed on the
segmentation and the probabilities are normally es-
timated simply by relative frequencies.

This paper extends the analysis of both systems
performed in (Crego et al., 2005a) by additionally
performing a manual error analysis of both systems,
which were the ones used by UPC and RWTH in the
last Tc-Star evaluation.

Furthermore, we will propose a way to combine
both systems in order to improve the quality of trans-
lations.

Experiments combining several kinds of MT sys-
tems have been presented in (Matusov et al., 2006),
based only on the single best output of each system.
Recently, a more straightforward approach of both
systems has been performed in (Costa-jussà et al.,
2006) which simply selects, for each sentence, one of
the provided hypotheses.

This paper is organized as follows. In section 2,
we briefly describe the phrase and the N -gram-based
baseline systems. In the next section we present the
evaluation framework. In Section 4 we report a struc-
tural comparison performed for both systems and, af-
terwards, in Section 5, we analyze the errors of both
systems. Finally, in the last two sections we rescore
and combine both systems, and the obtained results
are discussed.

2 Baseline Systems

2.1 Phrase-based System

The basic idea of phrase-based translation is to seg-
ment the given source sentence into units (here called
phrases), then translate each phrase and finally com-
pose the target sentence from these phrase transla-
tions.

In order to train these phrase-based models, an
alignment between the source and target training
sentences is found by using the standard IBM mod-
els in both directions (source-to-target and target-
to-source) and combining the two obtained align-
ments. Given this alignment an extraction of con-
tiguous phrases is carried out, specifically we extract
all phrases that fulfill the following restrictions: all
source (target) words within the phrase are aligned
only to target (source) words within the phrase.

The probability of these phrases is normally esti-
mated by relative frequencies, normally in both di-
rections, which are then combined in a log-linear way.
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2.2 N-gram-based System

In contrast with standard phrase-based approaches,
the N -gram translation model uses tuples as bilin-
gual units whose probabilities are estimated as an
N -gram language model (Mariño et al., 2006). This
model approximates the joint probability between
the source and target languages by using N -grams.

Given a word alignment, tuples define a unique
and monotonic segmentation of each bilingual sen-
tence, building up a much smaller set of units
than with phrases and allowing N -gram estimation
to account for the history of the translation pro-
cess (Mariño et al., 2006).

2.3 Feature functions

Both baseline systems are combined in a log-linear
way with several additional feature functions: a tar-
get language model, a forward and a backward lex-
icon model and a word bonus are common features
for both systems. The phrase-based system also in-
troduces a phrase bonus model.

3 Evaluation framework

The translation models presented so far were the ones
used by UPC and RWTH in the second evaluation
campaign of the Tc-Star project. The goal of this
project is to build a speech-to-speech translation sys-
tem that can deal with real life data.

The corpus consists of the official version of the
speeches held in the European Parliament Plenary
Sessions (EPPS), as available on the web page of the
European Parliament. Table 1 shows some statistics.

The following tools have been used for building
both systems: Word alignments were computed us-
ing GIZA++ (Och, 2003), language models were es-
timated using the SRILM toolkit (Stolcke, 2002), de-
coding was carried out by the free available MARIE
decoder (Crego et al., 2005b) and the optimization
was performed through an in-house implementation
of the simplex method (Nelder and Mead, 1965).

Spanish English

Train Sentences 1.2M
Words 32M 31M

Vocabulary 159K 111K

Dev Sentences 1 122 699
Words 26K 21K

Test Sentences 1 117 894
Words 26K 26K

Table 1: Statistics of the EPPS Corpora.

4 Structural comparison

Both approaches aim at improving accuracy by in-
cluding word context in the model. However, the
implementation of the models are quite different and
may produce variations in several aspects.

Table 2 shows the effect on decoding time intro-
duced through different settings of the beam size.
Additionally, the number of available translation
units is shown, corresponding to number of avail-
able phrases for the phrase-based system and 1gram,
2gram and 3gram entries for the N -gram-based sys-
tem. Results are computed on the development set.

Task Beam Time(s) Units

50 2,677
es→en 10 852 537k

5 311
50 2,689

en→es 10 903 594k
5 329

50 1,264
es→en 10 281 104k 288k 145k

5 138
50 1,508

en→es 10 302 118k 355k 178k
5 155

Table 2: Impact on efficiency of the beam size in PB
(top) and NB system (bottom).

As it can be seen, the number of translation units
is similar in both tasks for both systems (537k ∼
537k for Spanish to English and 594k ∼ 651k for
English to Spanish) while the time consumed in de-
coding is clearly higher for the phrase-based system.
This can be explained by the fact that in the phrase-
based approach, the same translation can be hypoth-
esized following several segmentations of the input
sentence, as phrases appear (and are collected) from
multiple segmentations of the training sentence pairs.
In other words, the search graph seems to be over-
populated under the phrase-based approach.

Table 3 shows the effect on translation accuracy
regarding the size of the beam in the search. Results
are computed on the test set for the phrase-based
and N -gram-based systems.

Results of the N -gram-based system show that de-
creasing the beam size produces a clear reduction
of the accuracy results. The phrase-based system
shows that accuracy results remain very similar un-
der the different settings. The reason is found on
how translation models are used in the search. In
the phrase-based approach, every partial hypothesis
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Task Beam BLEU NIST mWER

50 51.90 10.53 37.54
es→en 10 51.93 10.54 37.49

5 51.87 10.55 37.47
50 47.75 9.94 41.20

en→es 10 47.77 9.96 41.09
5 47.86 10.00 40.74

50 51.63 10.46 37.88
es→en 10 51.50 10.45 37.83

5 51.39 10.45 37.85
50 47.73 10.08 40.50

en→es 10 46.82 9.97 41.04
5 45.59 9.83 41.04

Table 3: Impact on accuracy of the beam size in PB
(top) and NB system (bottom).

is scored uncontextualized, hence, a single score is
used for a given partial hypothesis (phrase). In the
N -gram-based approach, the model is intrinsically
contextualized, which means that each partial hy-
pothesis (tuple) depends on the preceding sequence
of tuples. Thus, if a bad sequence of tuples (bad
scored) is composed of a good initial sequence (well
scored), it is placed on top of the first stacks (beam)
and may cause the pruning of the rest of hypotheses.

5 Error analysis

In order to better asses the quality and the differ-
ences between the two systems, a human error anal-
ysis was carried out. The guidelines for this error
analysis can be found in (Vilar et al., 2006). We
randomly selected 100 sentences, which were evalu-
ated by bilingual judges.

This analysis reveals that both systems produce
the same kind of errors in general. However some dif-
ferences were identified. For the English to Spanish
direction the greatest problem is the correct genera-
tion of the right tense for verbs, with around 20% of
all translation errors being of this kind. Reordering
also poses an important problem for both phrase and
N-gram-based systems, with 18% or 15% (respec-
tively) of the errors falling into this category. Miss-
ing words is also an important problem. However,
most of them (approximately two thirds for both sys-
tems) are filler words (i.e. words which do not con-
vey meaning), that is, the meaning of the sentence
is preserved. The most remarkable difference when
comparing both systems is that the N -gram based
system produces a relatively large amount of extra
words (approximately 10%), while for the phrase-
based system, this is only a minor problem (2% of
the errors). In contrast the phrase-based system has

more problems with incorrect translations, that is
words for which a human can find a correspondence
in the source text, but the translation is incorrect.

Similar conclusions can be drawn for the inverse di-
rection. The verb generating problem is not so acute
in this translation direction due to the much simpli-
fied morphology of English. An important problem
is the generation of the right preposition.

The N -gram based system seems to be able to pro-
duce more accurate translations (reflected by a lower
percentage of translation errors). However, it gener-
ates too many additional (and incorrect words) in
the process. The phrase-based system, in contrast,
counteracts this effect by producing a more direct
correspondence with the words present in the source
sentence at the cost of sometimes not being able to
find the exact translation.

6 System Rescoring and

Combination

Integration of both output translations in the search
procedure is a complex task. Translation units of
both models are quite different and generation his-
tories pose severe implementation difficulties. We
propose a method for combining the two systems at
the level of N -best lists.

Some features that are useful for SMT are too com-
plex for including them directly in the search pro-
cess. A clear example are the features that require
the entire target sentence to be evaluated, as this is
not compatible with the pruning and recombination
procedures that are necessary for keeping the target
sentence generation process manageable. A possible
solution for this problem is to apply sentence level
re-ranking by using N -best lists.

6.1 Rescoring Criteria

The aim of the rescoring procedure is to choose the
best translation candidate out of a given set of N

possible translations. In our approach this transla-
tion candidates are produced independently by both
of the systems and then combined by a simple con-
catenation1. In order for the hypothesis to have a
comparable set of scores, we perform an additional
“cross-rescoring” of the lists.

Given an N -best list of the phrase-based (N -gram-
based) system, we compute the cost of each target
sentence of this N -best list for the N -gram-based
(phrase-based) system. However this computation
is not possible in all cases. Table 4 shows the per-
centage of target sentences that the N -gram-based

1With removal of duplicates.
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(phrase-based) system is able to produce given an N -
best list of target sentences computed by the phrase-
based (N -gram-based) system. This percentage is
calculated on the development set.

The vocabulary of phrases is bigger than the vo-
cabulary of tuples, due to the fact that phrases are
extracted from multiple segmentations of the train-
ing sentence pairs. Hence, the number of sentences
reproduced by the N -gram-based system is smaller
than the number of sentences reproduced by the
phrase-based system. Whenever a sentence can not
be reproduced by a given system, the cost of the
worst sentence in the N -best list is assigned to it.

Task N -best % NB % PB

es→en 1000 37.5 57.5
en→es 1000 37.2 48.6

Table 4: Sentences (%) produced by each system.

6.2 Results

Table 5 shows results of the rescoring and system
combination experiments on the test set. The first
two rows include results of systems non-rescored and
PB (NB) rescored by NB (PB). The third row corre-
sponds to the system combination. Here, PB (NB)
rescored by NB (PB) are simply merged and ranked
by rescored score.

System N -best BLEU NIST mWER
Spanish-to-English
PB 1 51.90 10.54 37.50
PB 1000 52.55 10.61 37.12
NB 1 51.63 10.46 37.88
NB 1000 52.25 10.55 37.43
PB+NB 2 51.77 10.49 37.68
PB+NB 2000 52.31 10.56 37.32
English-to-Spanish
PB 1 47.75 9.94 41.2
PB 1000 48.46 10.13 39.98
NB 1 47.73 10.09 40.50
NB 1000 48.33 10.15 40.13
PB+NB 2 48.26 10.05 40.61
PB+NB 2000 48.54 10.16 40.00

Table 5: Rescoring and system combination results.

7 Discussion

The structural comparison has shown on the one
hand that the N -gram-based system outperforms
the phrase-based in terms of search time efficiency
by avoiding the overpopulation problem presented

in the phrase-based approach. On the other hand
the phrase-based system shows a better performance
when decoding under a highly constrained search.

A detailed error analysis has also been carried out
in order to better determine the differences in per-
formance of both systems. The N -gram based sys-
tem produced more accurate translations, but also a
larger amount of extra (incorrect) words when com-
pare to the phrase-based translation system.

In section 6 we have presented a system combina-
tion method using a rescoring feature for each SMT
system, i.e. the N -gram-based feature for the phrase-
based system and vice-versa. For both systems, con-
sidering the feature of the opposite system leads to
an improvement of BLEU score.
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Abstract 

Texts exhibit subtle yet identifiable mo-
dality about writers’ estimation of how 
true each statement is (e.g., definitely true 
or somewhat true). This study is an analy-
sis of such explicit certainty and doubt 
markers in epistemically modalized 
statements for a written news discourse. 
The study systematically accounts for five 
levels of writer’s certainty (ABSOLUTE, 
HIGH, MODERATE, LOW CERTAINTY and 
UNCERTAINTY) in three news pragmatic 
contexts: perspective, focus, and time. 
The study concludes that independent 
coders’ perceptions of the boundaries be-
tween shades of certainty in epistemically 
modalized statements are highly subjec-
tive and present difficulties for manual 
annotation and consequent automation for 
opinion extraction and sentiment analysis. 
While stricter annotation instructions and 
longer coder training can improve inter-
coder agreement results, it is not entirely 
clear that a five-level distinction of cer-
tainty is preferable to a simplistic distinc-
tion between statements with certainty 
and statements with doubt.  

1 Introduction 

1.1 Epistemic Modality, or Certainty 

Text conveys more than just a writer’s proposi-
tional context of assertions (Coates, 1987), e.g., X 
is true. Text can also transfer the writers’ attitudes 
to the propositions, assessments of possibilities, 

and the writer’s certainty, or lack thereof, in the 
validity of the truth of the statements, e.g., X must 
be true, Y thinks that X is true, or perhaps X is 
true. A statement is qualified in such a way (be-
yond its mere referential function) is modal, or 
epistemically modalized (Coates, 1987; Westney, 
1986).  
    CERTAINTY, or EPISTEMIC MODALITY, concerns 
a linguistic expression of an estimation of the like-
lihood that a certain state of affairs is, has been, or 
will be true (Nuyts, 2001). Pragmatic and dis-
course literatures are abundant in discussions of 
epistemic modality (Coates, 1987; Nuyts, 2001); 
mood (Palmer, 1986); evidentiality and evidentials 
(Mushin, 2001); expressions of doubt and certainty 
(Holmes, 1982; Hoye, 1997) and hedging 
(Lackoff, 1972) and hedging in news writing 
(Hyland, 1999; Zuck & Zuck, 1986). Little at-
tempt, however, has been made in natural language 
computing literature to manually annotate and con-
sequently automate identification of statements 
with an explicitly expressed certainty or doubt, or 
shades of epistemic qualifications in between. This 
lack is possibly due to the complexity of comput-
ing epistemic interpretations in different pragmatic 
contexts; and due to unreliability of variety of lin-
guistic expressions in English that could explicitly 
qualify a statement. Another complication is a lack 
of agreed-upon and easily identifiable discrete 
categories on the continuum from certainty to 
doubt. Several annotation projects have success-
fully addressed closely related subjective issues 
such as private states in news writing (Wiebe, Wil-
son, & Cardie, 2005) and hedging in scientific 
writing (Light, Qiu, & Srinivasan, 2004; Mercer, 
DiMarco, & Kroon, 2004). Having access to the 
opinion holder’s evaluation of how true a state-
ment is valuable in predicting reliability of argu-
ments and claims, and stands to benefit the tasks of 
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opinion and sentiment analysis and extraction in 
natural language computing.     

1.2 Certainty Level Scales 

While there is an on-going discussion in pragmatic 
literature on whether epistemic modality markers 
should be arranged on a continuum or in discrete 
categories, there seems to be an agreement that 
there are at least three articulated points on a pre-
sumed continuum from certainty to doubt. Hoye 
(1997) suggested an epistemic trichotomy of CER-
TAINTY, PROBABILITY, and POSSIBILITY, consistent 
with Holmes’ (1982) scale of certainty of asser-
tions and negations where the writer asserts WITH 
CERTAINTY that a proposition is true or not true; or 
that the proposition is PROBABLY or POSSIBLY true 
or not true. In attitude and affect computational 
analysis literature, the context of extracting opin-
ions from news article corpora, Rubin and col-
leagues (2004; 2005) extended Hoye-Holmes 
models by adding two extremes on the epistemic 
continuum scales: ABSOLUTE CERTAINTY (defined 
as a stated unambiguous indisputable conviction or 
reassurance) and UNCERTAINTY (defined as hesi-
tancy or stated lack of clarity or knowledge), and 
re-defined the middle categories as HIGH CER-
TAINTY (i.e., high probability or firm knowledge), 
MODERATE CERTAINTY (i.e., estimation of an aver-
age likelihood or reasonable chances), and LOW 
CERTAINTY (i.e., distant possibility, see Fig. 1). 

   

 
Figure 1. Revised Explicit Certainty Categorization 

Model (redrawn from Rubin, 2006). 
 
While Rubin’s (2006) model is primarily con-
cerned with identification of certainty levels en-
coded in explicit certainty markers in propositions, 

it also takes into account three contextual dimen-
sions relevant to news discourse. Perspective at-
tributes explicit certainty either to the writer or two 
types of reported sources – direct participants and 
experts in a field. Focus separates certainty in facts 
and opinions. Time is an organizing principle of 
news production and presentation, and if relevant, 
is separated into past, present, or future. 

2 Methodology 

This study uses the above-described conceptual 
certainty categorization model to annotate a news 
dataset, and produce a typology of syntactic, se-
mantic and lexical classes of certainty markers that 
map statements into 5 levels of certainty ranging 
from absolutely certain to uncertain.  
    The dataset consisted of 80 randomly selected 
articles (from the AQUAINT Corpus of English 
Texts, distributed by The New York Times Ser-
vices in 2000). It constituted a total of 2,243 sen-
tences, with 866 sentences in the editorials and 
1377 sentence in the news reports (Rubin, 2006). A 
subset of 10 articles (272 sentences, about 12% of 
the full dataset) was analyzed by 4 independently 
trained annotators (excluding the author). The 
agreement results were evaluated in 2 consecutive 
intercoder reliability experiments.  

2.1 Annotation Process 

The manual annotation scheme was defined in the 
codebook instructions that specified the procedures 
for determining certainty-qualified statements, the 
order of assigning categories, and exemplified each 
certainty category (Rubin, 2006). In Experiment 1, 
three coders received individual one-hour training 
regarding the use of the annotation scheme, and 
were instructed to use the original codebook writ-
ten in a general suggestive tone. In Experiment 2, 
the fourth annotator went through a more thorough 
five-hour training and used a revised, more rigidly-
specified codebook with an alphabetized key-word 
index mapped certainty markers into 5 levels. 

Each statement in a news article (be it a sentence 
or its constituent part such as a clause) was a po-
tential locus of explicit certainty. In both experi-
ments coders were asked to decide if a sentence 
had an explicit indication of a certainty level. If so, 
they then looked for explicit certainty markers that 
contributed to that indication. If a sentence con-
tained a certainty marker, the annotators were in-
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structed to consider such a sentence certainty-
qualified. The statement was assigned a certainty 
level and placed in its pragmatic context (i.e., into 
one of the categories) within the perspective, fo-
cus, and time dimensions (see D2 – D4, Fig. 1) 
relevant to the news discourse. Each marker was 
only assigned one category from each dimension.  

2.2 Intercoder Agreement Measures. 

Each pair of coders were evaluated on whether 
they agreed regarding 1) the sentences that contai-
ned explicit certainty markers; 2) the specific cer-
tainty markers within agreed upon certainty-
qualified sentences; and 3) classification of the 
agreed upon markers into one of the categories 
within each dimension (i.e., level, perspective, fo-
cus and time). The sentence and marker agreement 
measures were calculated with percent agreement. 
Partial word string matches were considered a 
marker match but were weight-adjusted. The 
agreed-upon marker category assignments were 
assessed in each pair of independent coders with 
Cohen’s kappa statistic (Cohen, 1960), averaged, 
and compared to the author’s annotation.  

3 Results and Discussion 

3.1 Typology of Certainty Markers 

The content analysis of the dataset generated a 
group of 1,330 explicitly certainty-qualified sen-
tences with 1,727 occurrences of markers. The 
markers were grouped into a typology of 43 syn-
tactico-lexical classes; each class is likely to occur 
within one of the 5 levels of certainty. The typol-
ogy will become a basis for an automated certainty 
identification algorithm. Among the most fre-
quently used certainty markers are central modal 
auxiliary verbs (e.g., must, could), gradable adjec-
tives in their superlative degree, and adverbial in-
tensifiers (e.g., much and so), while adjectival 
downtoners (e.g., feeble + NP) and adverbial 
value disjuncts (e.g., annoyingly, rightly) are 
rarely used to express explicit certainty. 

3.2 Intercoder Reliability Test Results 

In Experiment 1, 1) three coders agreed on whether 
a sentences was modalized by an explicit certainty 
marker or not 71% of the time with 0.33 Cohen’s 

kappa, on average. 2) Within agreed-upon cer-
tainly-qualified sentences, three coders agreed on 
actual certainty markers 54% of the time, on aver-
age, based on a combined count of the full and 
weight-adjusted partial matches. 3) In the categori-
zation task for the agreed-upon markers, the three 
coders, on average, were able to reach a slight 
agreement in the level and focus dimensions (0.15 
and 0.13 kappa statistics, respectively), and a fair 
agreement in perspective and time dimensions 
(0.44 and 0.41 kappa) according to the Landis and 
Koch (1977) agreement interpretation scale. 

The subsequent Experiment 2 showed promising 
results in agreement on explicit certainty markers 
(67%) and overall ability to distinguish certainty-
qualified statements from unmarked statements 
(0.51 kappa), and in the relatively intuitive catego-
rization of the perspective dimension (0.65 kappa).  

Although stricter instructions may have imposed 
a more orderly way of looking at the epistemic 
continuum, the 5 level certainty boundaries are still 
subject to individual perceptions (0.41 kappa) and 
may present difficulties in automation. In spite of 
its large inventory of certainty markers, English 
may not be precise enough to reliably distinguish 
multiple epistemic shades between certainty and 
doubt. Alternatively, people might be using same 
expressions but underlying categorization systems 
for different individuals do not overlap accurately. 
Recent pragmatic, discourse, and philosophy of 
language studies in mood and modality call for 
more comprehensive and truer to natural language 
description of epistemic modality in English refer-
ence grammar materials (Hoye, 2005). The latest 
modality scholarship will undoubtedly contribute 
to natural language applications such as opinion 
extraction and sentiment analysis. 

Time categorization in the context of certainty 
remained a challenge in spite of more vigorous 
training in Experiment 2 (0.31 kappa). The inter-
pretation of the reference point of “the present” in 
the reported speech and nested events can be am-
biguous in the certainty identification task. Distin-
guishing facts versus opinions in combination with 
certainty identification also presented a particularly 
puzzling cognitive task (0.16 kappa), possibly due 
to necessity to evaluate closely related facets of a 
statement: whether the statement is purely factual, 
and how sure the author is about the proposition. 
The possibility of epistemically modalized facts is 
particularly intriguing. 

143



4 Conclusions and Applications 

This study reported the results of the manual an-
notation of texts in written news discourse, and 
identified the most prominent patterns and regu-
larities in explicitly stated markers occurrences in 
modalized statements. The linguistic means of ex-
pressing varying levels of certainty are docu-
mented and arranged into the typology of 
syntactico-semantic classes. This study implies that 
boundaries between shades of certainty in epis-
temically modalized statements (such as probabil-
ity and possibility) are highly subjective and 
present difficulties in manual annotation. This con-
clusion may warrant a simplification of the exist-
ing 5 certainty levels to a basic binary distinction 
between certainty and doubt. A baseline for future 
attempts to improve the calibration of levels and 
their boundaries was established. These modest 
intercoder reliability results attest to the complex-
ity of the automation of the epistemically modal-
ized statements ranging from certainty to doubt.  

In the future studies, I intend to revise the num-
ber of the discrete categories on the epistemic con-
tinuum and further re-define certainty levels 
conceptually. I plan to further validate the collec-
tion of agreed-upon certainty markers on a much 
larger dataset and by using the typology as input 
data to machine learning algorithms for certainty 
identification and extraction.  
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Abstract

We present a joint morphological-lexical language 
model (JMLLM) for use in statistical machine trans-
lation (SMT) of language pairs where one or both of 
the languages are morphologically rich. The pro-
posed JMLLM takes advantage of the rich morphol-
ogy to reduce the Out-Of-Vocabulary (OOV) rate, 
while keeping the predictive power of the whole 
words. It also allows incorporation of additional 
available semantic, syntactic and linguistic informa-
tion about the morphemes and words into the lan-
guage model. Preliminary experiments with an
English to Dialectal-Arabic SMT system demon-
strate improved translation performance over trigram 
based baseline language model.

1 Introduction

Statistical machine translation (SMT) methods have 
evolved from using the simple word based models 
(Brown et al., 1993) to phrase based models (Marcu and 
Wong, 2002; Koehn et al., 2004; Och and Ney, 2004). 
More recently, there is a significant effort focusing on 
integrating richer knowledge, such as syntactic parse trees 
(Huang and Knight, 2006) within the translation process 
to overcome the limitations of the phrase based models.  
The SMT has been formulated as a noisy channel model 
in which the target language sentence, e is seen as dis-
torted by the channel into the foreign language f :

)()|(argmax)|(argmaxˆ
ee

ePefPfePe 

where P(f | e) is the translation model and P(e) is lan-
guage model of the target language. The overwhelming 
proportion of the SMT research has been focusing on im-
proving the translation model. Despite several new studies 
(Kirchhoff and Yang, 2004; Schwenk et al., 2006), lan-
guage modeling for SMT has not been receiving much 
attention.  Currently, the state-of-the-art SMT systems 
have been using the standard word n-gram models.  Since 
n-gram models learn from given data, a severe drop in 
performance may be observed if the target domain is not 
adequately covered in  the training data. The   coverage 

problem is aggravated for morphologically rich lan-
guages. Arabic is such a language where affixes are 
appended to the beginning or end of a stem to generate 
new words that indicate case, gender, tense etc. associ-
ated with the stem. Hence, it is natural that this leads to 
rapid vocabulary growth, which is accompanied by 
worse language model probability estimation due to 
data sparsity and high Out-Of-Vocabulary (OOV) rate. 

Due to rich morphology, one would suspect that 
words may not be the best lexical units for Arabic, and 
perhaps morphological units would be a better choice. 
Recently, there have been a number of new methods 
using the morphological units to represent lexical items 
(Ghaoui et al., 2005; Xiang et al., 2006; Choueiter et al., 
2006). Factored Language Models (FLMs) (Kirchhoff 
and Yang, 2004) share the same idea to some extent but 
here words are decomposed into a number of features 
and the resulting representation is used in a generalized 
back-off scheme to improve the robustness of probabil-
ity estimates for rarely observed word n-grams.

In this study we propose a tree structure called Mor-
phological-Lexical Parse Tree (MLPT) to combine the 
information provided by a morphological analyzer with 
the lexical information within a single Joint Morpho-
logical-Lexical Language Model (JMLLM). The MLPT 
allows us to include available syntactic and semantic 
information about the morphological segments1 (i.e. 
prefix/stem/suffix), words or group of words. The 
JMLLM can also be used to guide the recognition for 
selecting high probability morphological sentence seg-
mentations. 

The rest of the paper is organized as follows. Section 
2 provides a description of the morphological segmenta-
tion method. A short overview of Maximum Entropy 
modeling is given in Section 3. The proposed JMLLM 
is presented in Section 4. Section 5 introduces the SMT 
system and Section 6 describes the experimental results 
followed by the conclusions in Section 7.

2 Morphological Segmentation

Applying the morphological segmentation to data 
improves  the  coverage  and  reduces the OOV rate.  In

                                                          
1 We use “Morphological Segment” and “Morpheme” inter-
changeably.
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this study we use a rule-based morphological segmenta-
tion algorithm for Iraqi-Arabic (Afify et. al., 2006). This 
algorithm analyzes a given surface word, and generates 
one of the four possible segmentations: {stem, pre-
fix+stem, suffix+stem, prefix+stem+suffix}. Here, stem
includes those words that do not have any affixes. We use 
the longest prefixes (suffixes).  Using finer affixes re-
duces the n-gram language model span, and leads to poor 
performance for a fixed n-gram size. Therefore, we prede-
fine a set of prefixes and suffixes and perform blind word 
segmentation. In order to minimize the illegitimate seg-
mentations we employ the following algorithm. Using the 
given set of prefixes and suffixes, a word is first blindly 
chopped to one of the four segmentations mentioned 
above. This segmentation is accepted if the following 
three rules apply:

(1) The resulting stem has more than two characters.
(2) The resulting stem is accepted by the Buckwalter 

morphological analyzer (Buckwalter, 2002).
(3) The resulting stem exists in the original dictionary.

The first rule eliminates many of the illegitimate segmen-
tations. The second rule ensures that the word is a valid 
Arabic stem, given that the Buckwalter morphological 
analyzer covers all words in the Arabic language. Unfor-
tunately, the fact that the stem is a valid Arabic stem does 
not always imply that the segmentation is valid. The third 
rule, while still not offering such guarantee, simply pre-
fers keeping the word intact if its stem does not occur in 
the lexicon. In our implementation we used the following 
set of prefixes and suffixes for dialectal Iraqi:

 Prefix list: {chAl, bhAl, lhAl, whAl, wbAl, wAl, bAl, 
hAl, EAl, fAl, Al, cd, ll, b, f, c, d, w}.

 Suffix list: {thmA, tynA, hmA, thA, thm, tkm, tnA, 
tny,whA, whm, wkm, wnA, wny, An, hA, hm, hn, km, 
kn, nA, ny, tm, wA, wh, wk, wn, yn, tk, th, h, k, t, y}.

These affixes are selected based on our knowledge of 
their adequacy for dialectal Iraqi Arabic. In addition, we 
found in preliminary experiments that keeping the top-N 
frequent decomposable words intact led to better per-
formance. A value of N=5000 was experimentally found 
to work well in practice. Using this segmentation method 
will produce prefixes and suffixes on the SMT output that 
are glued to the following or previous word to form mean-
ingful words. 

3 Maximum Entropy Modeling

The Maximum Entropy (MaxEnt) method is an effec-
tive method to combine multiple information sources 
(features) in statistical modeling and has been used widely 
in many areas of natural language processing (Berger et 
al.,, 2000). The MaxEnt modeling produces a probability 
model that is as uniform as possible while matching em-
pirical feature expectations exactly:


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which describes the probability of a particular outcome 
(e.g. one of the morphemes) given the history (h) or 
context. Notice that the denominator includes a sum 
over all possible outcomes, o', which is essentially a 
normalization factor for probabilities to sum to 1. The 

indicator functions
i

f  or features are “activated” when 

certain outcomes are generated for certain context. The 
MaxEnt model is trained using the Improved Iterative 
Scaling algorithm.

4 Joint Morphological-Lexical Language 
Modeling

The purpose of morphological analysis is to split a 
word into its constituting segments.  Hence, a set of 
segments can form a meaningful lexical unit such as a 
word. There may be additional information for words or 
group of words, such as part-of-speech (POS) tags, syn-
tactic (from parse tree) and semantic information, or 
morpheme and word attributes. For example, in Arabic 
and to a certain extent in French, some words can be 
masculine/feminine or singular/plural. All of these in-
formation sources can be represented using a -what we 
call- Morphological-Lexical Parse Tree (MLPT).  
MLPT is a tree structured joint representation of lexical, 
morphological, attribute, syntactic and semantic content 
of the sentence.  An example of a MLPT for an Arabic 
sentence is shown in Fig. 1. The leaves of the tree are 
morphemes that are predicted by the language model. 
Each morphological segment has one of the three attrib-
utes: {prefix, stem, suffix} as generated by the morpho-
logical analysis mentioned in Sec. 2. Each word can 
take three sets of attributes: {type, gender, number}.
Word type can be considered as POS, but here we con-
sider only nouns (N), verbs (V) and the rest are labeled 
as “other” (O). Gender can be masculine (M) or femi-
nine (F). Number can be singular (S), plural (P) or dou-
ble (D) (this is specific to Arabic).  For example, NMP 
label for the first2 word, شباب, shows that this word is a 
noun (N), male (M), plural (P).  Using the information 
represented in MLPT for Arabic language modeling 
provides a back-off for smooth probability estimation 
even for those words that are not seen before. 

The JMLLM integrates the local morpheme and 
word n-grams, morphological dependencies and attrib-
ute information associated with morphological segments 
and words, which are all represented in the MLPT using 
the MaxEnt framework. We  trained JMLLM  for Iraqi-
                                                          
2 In Arabic text is written (read) from right-to-left. 
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Arabic speech recognition task (Sarikaya et al., 2007),
and obtained significant improvements over word and 
morpheme based trigram language models.

We can construct a single probability model that mod-
els the joint probability of all of the available information 
sources in the MLPT. To compute the joint probability of 
the morpheme sequence and its MLPT, we use features 
extracted from MLPT. Even though the framework is 
generic to jointly represent the information sources in the 
MLPT, in this study we limit ourselves to using only lexi-
cal and morphological content of the sentence, along with 
the morphological attributes simply because the lexical 
attributes are not available yet and we are in the process 
of labeling them. Therefore, the information we used from 
MLPT in Fig. 1 uses everything but the second row that 
contains lexical attributes (NFS, VFP, NFS, and NMP).

Using the morphological segmentation improves the 
coverage, for example, splitting the word, بالقھوة as بال
(prefix) and قھوة (stem) as in Fig. 1, allows us to decode 
other combinations of this stem with the prefix and suffix 
list provided in Sec.2.  These additional combinations 
certainly cover those words that are not seen in the un-
segmented training data. 

The first step in building the MaxEnt model is to rep-
resent a MLPT as a sequence of morphological segments, 
morphological attributes, words, and word attributes using 
a bracket notation. Converting the MLPT into a text se-
quence allows us to group the semantically related mor-
phological segments and their attributes. In this notation, 
each morphological segment is associated (this associa-
tion is denoted by “=") with an attribute (i.e. pre-
fix/stem/suffix) and the lexical items are represented by 
opening and closing tokens, [WORD and WORD] respec-
tively. The parse tree given in Fig. 1 can be converted into 
a token sequence in text format as follows:

[!S! [NMP شباب=stem NMP] [NFS [المنطقة  stem=منطقة prefix=ال
 [یقعدون suffix=ون stem=قعد prefix=ي  یقعدون]  NFS] [VFP [المنطقة
VFP]  [NFS [بالقھوة [!NFS] !S [بالقھوة  stem=بالقھوة prefix=بال

This representation uniquely defines the MLPT given in 
Fig. 1. Given the bracket notation of the text, JMLLM can 
be trained in two ways with varying degrees of “tightness 
of integration”. A relatively “loose integration”  involves 
using only the leaves of the MLPT as the model output 
and estimating P(M|MLPT), where M is the morpheme 
sequence. In this case JMLLM predicts only morphemes.  
A tight integration method would require every token in 
the bracket representation to be an outcome of the joint 
model.  In our preliminary experiments we chose the 
loose integration method, simply because the model 
training time was significantly faster than that for the tight 
integration. segment. The JMLLM can employ any type 
of questions one can derive from MLPT for predicting the 
next morphological segment. In addition to regular tri-
gram questions about previous morphological segments, 
questions about the attributes of the  previous morpho-

Fig 1. Morphological-Lexical Parse Tree.

logical segments, parent lexical item and attributes of 
the parent lexical item can be used. Obviously joint 
questions combining these information sources are also 
used. Obviously joint questions combining these infor-
mation sources are also used. These questions include 

(1) previous morpheme 1im and current active parent 

word ( iw ) (2) ii
wm ,

1 and previous morpheme attribute

( 1ima ). (3) iii
wmama ,,

21  ,lexical attribute ( iwa ) and 

21
,  ii
mm . 

The history given in )|( hoP consists of answers to 
these questions. In our experiments, we have not ex-
haustively searched for the best feature set but rather 
used a small subset of these features which we believed 
to be helpful in predicting the next morpheme. The lan-
guage model score for a given morpheme using JMLLM 
is conditioned not only on the previous morphemes but 
also on their attributes, and the lexical items and their 
attributes. As such, the language model scores are 
smoother compared to n-gram models especially for 
unseen lexical items. 

5 Statistical Machine Translation System

Starting from a collection of parallel sentences, we 
trained word alignment models in two translation direc-
tions, from English to Iraqi Arabic and from Iraqi Ara-
bic to English, and derived two sets of Viterbi
alignments. By combining word alignments in two di-
rections using heuristics (Och and Ney, 2003), a single 
set of static word alignments was then formed. All 
phrase pairs which respect to the word alignment 
boundary constraint were identified and pooled together 
to build phrase translation tables with the Maximum 
Likelihood criterion. The maximum number of words in 
Arabic phrases was set to 5.

Our decoder is the phrase-based multi-stack imple-
mentation of log-linear models similar to Pharaoh 
(Koehn et al, 2004). Like most other MaxEnt-based 
decoders, active features in our decoder include transla-
tion models in two directions, lexicon weights in two

!S!

یقعدون المنطقة

منطقةشباب

NMPNFSVFP

stem prefix stem

بالقھوة

NFS

ونقعدال قھوةي بال

suffix prefixstemstem prefix
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directions, language model, distortion model, and sen-
tence length penalty. 

6 Experiments

The parallel corpus has 459K utterance pairs with 90K 
words (50K morphemes). The Iraqi-Arabic language 
model training data is slightly larger than the Iraqi-Arabic 
side of the parallel corpus and it has 2.8M words with 
98K unique lexical items. The morphologically analyzed 
training data has 2.6M words with 58K unique vocabulary 
items. A statistical trigram language model using Modi-
fied Knesser-Ney smoothing has been built for the mor-
phologically segmented data.  The test data consists of 
2242 utterances (3474 unique words). The OOV rate for 
the unsegmented test data is 8.7%, the corresponding 
number for the morphologically analyzed data is 7.4%. 
Hence, morphological segmentation reduces the OOV 
rate by 1.3% (15% relative), which is not as large reduc-
tion as compared to training data (about 40% relative re-
duction). We believe this would limit the potential 
improvement we could get from JMLLM, since JMLLM 
is expected to be more effective compared to word n-
gram models, when the OOV rate is significantly reduced 
after segmentation. 

We measure translation performance by the BLEU 
score (Papineni et al, 2002) with one reference for each
hypothesis. In order to evaluate the performance of the 
JMLLM, a translation N-best list (N=10) is generated 
using the baseline Morpheme-trigram language model.
First, on a heldout development data all feature weights
including the language model weight are optimized to 
maximize the BLEU score using the downhill simplex 
method (Och and Hey, 2002). These weights are fixed 
when the language models are used on the test data.  The 
translation BLEU (%) scores are given in Table 1. The 
first entry (37.59) is the oracle BLEU score for the N-best 
list. The baseline morpheme-trigram achieved 29.63, 
word-trigram rescoring improved the BLEU score to 
29.91. The JMLLM achieved 30.20 and log-linear inter-
polation with the morpheme-trigram improved the BLEU 
score to 30.41.  

7 Conclusions

We presented a new language modeling technique called 
Joint Morphological-Lexical Language Modeling 
(JMLLM) for use in SMT. JMLLM allows joint modeling 
of lexical, morphological and additional information
sources about morphological  segments,  lexical  items  
and sentence. The translation results demonstrate that 
joint modeling provides encouraging improvement over 
morpheme  based language  model. Our future work 
will be directed towards tight integration of all available 

Table 1.  SMT N-best list rescoring.

LANGUAGE MODELS BLEU (%)

N-best Oracle 37.59
Morpheme-trigram 29.63

Word-trigram 29.91
JMLLM 30.20

JMLLM + Morpheme-Trigram 30.41

information by predicting the entire MLPT (besides 
leaves).
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Abstract

This paper investigates the problem of boot-
strapping a statistical dialogue manager with-
out access to training data and proposes a new
probabilistic agenda-based method for simu-
lating user behaviour. In experiments with a
statistical POMDP dialogue system, the simu-
lator was realistic enough to successfully test
the prototype system and train a dialogue pol-
icy. An extensive study with human subjects
showed that the learned policy was highly com-
petitive, with task completion rates above 90%.

1 Background and Introduction

1.1 Bootstrapping Statistical Dialogue Managers

One of the key advantages of a statistical approach to Dia-
logue Manager (DM) design is the ability to formalise de-
sign criteria as objective reward functions and to learn an
optimal dialogue policy from real dialogue data. In cases
where a system is designed from scratch, however, it is
often the case that no suitable in-domain data is available
for training the DM. Collecting dialogue data without a
working prototype is problematic, leaving the developer
with a classic chicken-and-egg problem.

Wizard-of-Oz (WoZ) experiments can be carried out to
record dialogues, but they are often time-consuming and
the recorded data may show characteristics of human-
human conversation rather than typical human-computer
dialogue. Alternatively, human-computer dialogues can
be recorded with a handcrafted DM prototype but neither
of these two methods enables the system designer to test
the implementation of the statistical DM and the learn-
ing algorithm. Moreover, the size of the recorded corpus
(typically � 103 dialogues) usually falls short of the re-
quirements for training a statistical DM (typically� 104

dialogues).

1.2 User Simulation-Based Training

In recent years, a number of research groups have inves-
tigated the use of a two-stage simulation-based setup. A
statistical user model is first trained on a limited amount
of dialogue data and the model is then used to simulate
dialogues with the interactively learning DM (see Schatz-
mann et al. (2006) for a literature review).

The simulation-based approach assumes the presence
of a small corpus of suitably annotated in-domain dia-
logues or out-of-domain dialogues with a matching dia-
logue format (Lemon et al., 2006). In cases when no such
data is available, handcrafted values can be assigned to
the model parameters given that the model is sufficiently
simple (Levin et al., 2000; Pietquin and Dutoit, 2005) but
the performance of dialogue policies learned this way has
not been evaluated using real users.

1.3 Paper Outline

This paper presents a new probabilistic method for simu-
lating user behaviour based on a compact representation
of the user goal and a stack-like user agenda. The model
provides an elegant way of encoding the relevant dialogue
history from a user’s point of view and has a very small
parameter set so that manually chosen priors can be used
to bootstrap the DM training and testing process.

In experiments presented in this paper, the agenda-
based simulator was used to train a statistical POMDP-
based (Young, 2006; Young et al., 2007) DM. Even with-
out any training of its model parameters, the agenda-
based simulator was able to produce dialogue behaviour
realistic enough to train a competitive dialogue policy.
An extensive study1 with 40 human subjects showed that
task completion with the learned policy was above 90%
despite a mix of native and non-native speakers.

1This research was partly funded by the EU FP6 TALK
Project. The system evaluation was conducted in collabora-
tion with O. Lemon, K. Georgila and J. Henderson at Edinburgh
University and their work is gratefully acknowledged.
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2 Agenda-Based Simulation

2.1 User Simulation at a Semantic Level

Human-machine dialogue can be formalised on a seman-
tic level as a sequence of state transitions and dialogue
acts2. At any time t, the user is in a state S, takes ac-
tion au, transitions into the intermediate state S′, receives
machine action am, and transitions into the next state S′′

where the cycle restarts.

S → au → S′ → am → S′′ → · · · (1)

Assuming a Markovian state representation, user be-
haviour can be decomposed into three models: P (au|S)
for action selection, P (S′|au, S) for the state transition
into S′, and P (S′′|am, S′) for the transition into S′′.

2.2 Goal- and Agenda-Based State Representation

Inspired by agenda-based methods to dialogue manage-
ment (Wei and Rudnicky, 1999) the approach described
here factors the user state into an agenda A and a goal G.

S = (A,G) and G = (C,R) (2)

During the course of the dialogue, the goal G ensures that
the user behaves in a consistent, goal-directed manner.
G consists of constraints C which specify the required
venue, eg. a centrally located bar serving beer, and re-
quests R which specify the desired pieces of information,
eg. the name, address and phone number (cf. Fig. 1).

The user agenda A is a stack-like structure containing
the pending user dialogue acts that are needed to elicit the
information specified in the goal. At the start of the dia-
logue a new goal is randomly generated using the system
database and the agenda is initially populated by convert-
ing all goal constraints into inform acts and all goal re-
quests into request acts. A bye act is added at the bottom
of the agenda to close the dialogue.

As the dialogue progresses the agenda and goal are dy-
namically updated and acts are selected from the top of
the agenda to form user acts au. In response to incom-
ing machine acts am, new user acts are pushed onto the
agenda and no longer relevant ones are removed. The
agenda thus serves as a convenient way of tracking the
progress of the dialogue as well as encoding the rele-
vant dialogue history. Acts can also be temporarily stored
when actions of higher priority need to be issued first,
hence providing the simulator with a simple model of
user memory3.

2In this paper, the terms dialogue act and dialogue action
are used interchangeably. The notation act(a=x, b=y,...) is used
to represent a dialogue act of a given type act (such as inform
or request with items a = x, b = y, etc.

3See Fig. 1, turns 1-3, for an example: System turn 1 “What
pricerange?” triggers the user act inform(pricerange=cheap)
to be pushed onto the agenda but it is not executed until turn 3
because negate(drinks=beer) is issued first.

C0 =

[
type = bar
drinks = beer
area = central

]

R0 =

[
name =
addr =
phone =

]
Sys 0 Hello, how may I help you?

A1 =

⎡
⎢⎢⎢⎢⎢⎣

inform(type = bar)
inform(drinks = beer)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

⎤
⎥⎥⎥⎥⎥⎦

Usr 1 I’m looking for a nice bar serving beer.

Sys 1 Ok, a wine bar. What pricerange?

A2 =

⎡
⎢⎢⎢⎢⎢⎣

negate(drinks = beer)
inform(pricerange = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

⎤
⎥⎥⎥⎥⎥⎦

Usr 2 No, beer please!

Sys 2 A bar serving beer, correct?

A3 =

⎡
⎢⎢⎢⎢⎢⎣

affirm()
inform(pricerange = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

⎤
⎥⎥⎥⎥⎥⎦

Usr 3 Yeah something cheap in the town centre.

Sys 3 Murphy’s on Main Square serves cheap beer.

A4 =

[
request(phone)
bye()

]
Usr 4 Ok, and what’s the phone number?

Sys 4 The number is 796 69 94.

A5 =
[

bye()
]

Usr 5 Thanks, goodbye!

Figure 1: Sample dialogue and agenda sequence

2.3 User Act Selection

At any time during the dialogue, the updated agenda of
length N contains all dialogue acts the user intends to
convey to the system. Since the agenda is ordered ac-
cording to priority, with A[N ] denoting the top and A[1]
denoting the bottom item, selecting the next user act sim-
plifies to popping n items off the top of the stack. Hence,
letting au[i] denote the ith item in the user act au

au[i] := A[N − n + i] ∀i ∈ [1..n], 1 ≤ n ≤ N. (3)

Using A[N−n+1..N ] as a Matlab-like shorthand nota-
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tion for the top n items on A, the action selection model
becomes a Dirac delta function

P (au|S) = P (au|A,G) = δ(au, A[N− n+1..N ]) (4)

where the random variable n corresponds to the level
of initiative taken by the simulated user. In a statistical
model the probability distribution over integer values for
n should be conditioned on A and learned from dialogue
data. For the purposes of bootstrapping the system, n can
be assumed independent of A and any distribution P (n)
that places the majority of its probability mass on small
values of n can be used.

2.4 State Transition Model

The factorisation of S into A and G can now be ap-
plied to the state transition models P (S′|au, S) and
P (S′′|am, S′). Letting A′ denote the agenda after select-
ing au (as explained in the previous subsection) and using
N ′ = N − n to denote the size of A′, we have

A′[i] := A[i] ∀i ∈ [1..N ′]. (5)

Using this definition of A′ and assuming that the goal
remains constant when the user executes au, the first state
transition depending on au simplifies to

P (S′|au, S) = P (A′, G′|au, A,G)
= δ(A′, A[1..N ′])δ(G′, G). (6)

Using S = (A,G), the chain rule of probability, and rea-
sonable conditional independence assumptions, the sec-
ond state transition based on am can be decomposed into
goal update and agenda update modules:

P (S′′|am, S′)
= P (A′′|am, A′, G′′)︸ ︷︷ ︸

agenda update

P (G′′|am, G′)︸ ︷︷ ︸
goal update

. (7)

When no restrictions are placed on A′′ and G′′, the space
of possible state transitions is vast. The model parame-
ter set is too large to be handcrafted and even substantial
amounts of training data would be insufficient to obtain
reliable estimates. It can however be assumed that A′′ is
derived from A′ and that G′′ is derived from G′ and that
in each case the transition entails only a limited number
of well-defined atomic operations.

2.5 Agenda Update Model for System Acts

The agenda transition from A′ to A′′ can be viewed as a
sequence of push-operations in which dialogue acts are
added to the top of the agenda. In a second ”clean-up”
step, duplicate dialogue acts, null() acts, and unnecessary
request() acts for already filled goal request slots must
be removed but this is a deterministic procedure so that it

can be excluded in the following derivation for simplicity.
Considering only the push-operations, the items 1 to N ′

at the bottom of the agenda remain fixed and the update
model can be rewritten as follows:

P (A′′|am, A′, G′′)
= P (A′′[1..N ′′]|am, A′[1..N ′], G′′) (8)

= P (A′′[N ′+1..N ′′]|am, G′′)
· δ(A′′[1..N ′], A′[1..N ′]). (9)

The first term on the RHS of Eq. 9 can now be further
simplified by assuming that every dialogue act item in
am triggers one push-operation. This assumption can be
made without loss of generality, because it is possible to
push a null() act (which is later removed) or to push an
act with more than one item. The advantage of this as-
sumption is that the known number M of items in am

now determines the number of push-operations. Hence
N ′′ = N ′ + M and

P (A′′[N ′+1..N ′′]|am, G′′)
= P (A′′[N ′+1..N ′+M ]|am[1..M ], G′′) (10)

=
M∏
i=1

P (A′′[N ′+i]|am[i], G′′) (11)

The expression in Eq. 11 shows that each item am[i] in
the system act triggers one push operation, and that this
operation is conditioned on the goal. This model is now
simple enough to be handcrafted using heuristics. For ex-
ample, the model parameters can be set so that when the
item x=y in am[i] violates the constraints in G′′, one of
the following is pushed onto A′′: negate(), inform(x=z),
deny(x=y, x=z), etc.

2.6 Goal Update Model for System Acts

The goal update model P (G′′|am, G′) describes how the
user constraints C ′ and requests R′ change with a given
machine action am. Assuming that R′′ is conditionally
independent of C′ given C ′′ it can be shown that

P (G′′|am, G′)
= P (R′′|am, R′, C ′′)P (C ′′|am, R′, C ′). (12)

To restrict the space of transitions from R′ to R′′ it
can be assumed that the request slots are independent and
each slot (eg. addr,phone,etc.) is either filled using infor-
mation in am or left unchanged. Using R[k] to denote the
k’th request slot, we approximate that the value of R′′[k]
only depends on its value at the previous time step, the
value provided by am, and M(am, C ′′) which indicates
a match or mismatch between the information given in
am and the goal constraints.

P (R′′|am, R′, C ′′)
=

∏
k P (R′′[k]|am, R′[k],M(am, C ′′)). (13)
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To simplify P (C ′′|am, R′, C ′) we assume that C ′′ is
derived from C ′ by either adding a new constraint, set-
ting an existing constraint slot to a different value (eg.
drinks=dontcare), or by simply changing nothing. The
choice of transition does not need to be conditioned on
the full space of possible am, R′ and C ′. Instead it can
be conditioned on simple boolean flags such as ”Does am

ask for a slot in the constraint set?”, ”Does am signal that
no item in the database matches the given constraints?”,
etc. The model parameter set is then sufficiently small for
handcrafted values to be assigned to the probabilities.

3 Evaluation

3.1 Training the HIS Dialogue Manager

The Hidden Information State (HIS) model is the first
trainable and scalable implementation of a statistical
spoken dialog system based on the Partially-Observable
Markov Decision Process (POMDP) model of dialogue
(Young, 2006; Young et al., 2007; Williams and Young,
2007). POMDPs extend the standard Markov-Decision-
Process model by maintaining a belief space, i.e. a proba-
bility distribution over dialogue states, and hence provide
an explicit model of the uncertainty present in human-
machine communication.

The HIS model uses a grid-based discretisation of the
continuous state space and online ε-greedy policy iter-
ation. Fig. 2 shows a typical training run over 60,000
simulated dialogues, starting with a random policy. User
goals are randomly generated and an (arbitrary) reward
function assigning 20 points for successful completion
and -1 for every dialogue turn is used. As can be seen, di-
alogue performance (defined as the average reward over
1000 dialogues) converges after roughly 25,000 iterations
and asymptotes to a value of approx. 14 points.

Figure 2: Training a POMDP system

3.2 Experimental Evaluation and Results

A prototype HIS dialogue system with a learned policy
was built for the Tourist Information Domain and exten-
sively evaluated with 40 human subjects including native
and non-native speakers. A total of 160 dialogues with
21667 words was recorded and the average Word-Error-
Rate was 29.8%. Task scenarios involved finding a spe-

cific bar, hotel or restaurant in a fictitious town (eg. the
address of a cheap, Chinese restaurant in the west).

The performance of the system was measured based
on the recommendation of a correct venue, i.e. a venue
matching all constraints specified in the given task (all
tasks were designed to have a solution). Based on this
definition, 145 out of 160 dialogues (90.6%) were com-
pleted successfully, and the average number of turns to
completion was 5.59 (if no correct venue was offered the
full number of turns was counted).

4 Summary and Future Work

This paper has investigated a new agenda-based user sim-
ulation technique for bootstrapping a statistical dialogue
manager without access to training data. Evaluation re-
sults show that, even with manually set model parame-
ters, the simulator produces dialogue behaviour realistic
enough for training and testing a prototype system. While
the results demonstrate that the learned policy works well
for real users, it is not necessarily optimal. The next step
is hence to use the recorded data to train the simulator,
and to then retrain the DM policy.
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Abstract

This paper describes a new grapheme-to-
phoneme framework, based on a combi-
nation of formal linguistic and statisti-
cal methods. A context-free grammar is
used to parse words into their underly-
ing syllable structure, and a set of sub-
word “spellneme” units encoding both
phonemic and graphemic information can
be automatically derived from the parsed
words. A statistical � -gram model can
then be trained on a large lexicon of words
represented in terms of these linguistically
motivated subword units. The frame-
work has potential applications in mod-
eling unknown words and in linking spo-
ken spellings with spoken pronunciations
for fully automatic new-word acquisition
via dialogue interaction. Results are re-
ported on sound-to-letter experiments for
the nouns in the Phonebook corpus.

1 Introduction

Spoken dialogue systems are emerging as an effec-
tive means for humans to access information spaces
through natural spoken interaction with comput-
ers. A significant enhancement to the usability of
such systems would be the automatic acquisition
of new knowledge through spoken interaction with
its end users. Such knowledge would include both

�
This research was supported by the Industrial Technology

Research Institute (ITRI) in Taiwan.

the spelling and pronunciation of a new word, ide-
ally leading to a successful match to an entry in a
large external database. To take advantage of an
integrated approach to recognizing the spoken and
spelled forms of a new word, there is a need for
a high-quality reversible phoneme-grapheme map-
ping system. This is a difficult task for English due
to the many inconsistencies in letter-to-sound rules
as a consequence of borrowings from multiple lan-
guage groups.

It is also increasingly the case that dialogue sys-
tems must dynamically adjust the recognizer vocab-
ulary to handle changing database contents. If a sys-
tem can reliably predict the pronunciation of a new
word algorithmically, especially if substantiated by
a spoken pronunciation of the word during active us-
age, it will be far more effective in satisfying chang-
ing user needs.

In this paper, we describe a new reversible
grapheme-to-phoneme framework based on combin-
ing formal linguistic knowledge with statistical data-
driven techniques. We first describe and motivate
our choice for the linguistic model. Section 3 de-
scribes the iterative process for obtaining a subword
baseforms lexicon used to train the statistical model.
Sections 4 and 5 present experiments and results for
sound-to-letter modeling on 5000 nouns. We con-
clude after a brief section on related work.

2 Linguistic Model

Our linguistic model is based on syllable structure,
but we felt that whole-syllable units would be too
large to adequately generalize to unseen data. We
thus decided to decompose syllables into onsets and
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rhyme1 onset rhyme usyl rhyme usyl ambi rhyme
-aek s+ -ehl -axr -aam -ax+ tf -er+
a c c e l e r o m e t e r

Figure 1: Linguistic representation for the word “accelerometer,” illustrating the structure of our model.

rhymes, which would then become subword pronun-
ciation units in a lexical baseforms file. These sub-
word units would, in turn, be specified in terms of
phonemic baseforms in a separate subword lexicon.
Thus the words in our training set are represented
in terms of subword units, which are converted into
phonemic baseforms by simple lookup of the sub-
word pronunciations.

A difficult aspect for English is to decide where
to place the syllable boundary within a sequence
of intersyllabic consonants. To guide this decision,
we made use of sonority constraints combined with
maximal stress and maximal onset principles. For
a select subset of intersyllable consonants, we in-
voke the special category “ambi” for “ambisyllabic,”
to allow the consonant to be ambiguously assigned.
In addition to onset and rhyme, we also include the
category “affix,” to account for those instances of
(usually coronal) consonants that would lead to a
violation of sonority principles in the coda position
(e.g., “fifths,” “kept”, etc.), following linguistic the-
ory (Blevins, 1995).

We decided to distinguish the first stressed and
the first unstressed syllable from all other stressed
and unstressed syllables in the word, in order to en-
code separate statistics for the privileged first posi-
tion. We also combined onset and rhyme into a sin-
gle whole syllable unit for a selected subset of rel-
atively frequent unstressed syllables. In total, our
current inventory consists of 678 unique symbols.

An example hierarchical representation in our for-
malism is illustrated in Figure 1, for the word “ac-
celerometer.”

3 Procedures

Our approach is based on a technique that exploits
a context-free grammar applied to a large lexicon to
aid in the preparation of a baseforms file encoding
the lexicon in terms of a set of linguistically moti-
vated subword units. The subword units, which en-
code syllabification and pronunciation, are initially

acrostics -ax+ kr+ -aas t -axk +s
actualities -aek ch+ -uw+ -ael -ax+ tf -iy+ +z
fabrications f+ -aeb r+ -ax+ k -ey+ shaxn +z
preferences pr+ -ehf rsyl -axn +s -axz
skepticism sk+ -ehp t -ax+ s+ -ihz -m
striplings str+ -ihp l+ -ihng +z

Figure 2: Sample entries from the subword lexicon.

derived automatically from a phonemic baseforms
file through simple rewrite rules. The grammar is
developed manually, a process that amounts to iden-
tifying all the possible ways to spell each subword
unit. In an iterative procedure, parse failures are
manually corrected either by modifying erroneous
pronunciations or by augmenting the rules govern-
ing permissible letter sequences for the subword
units. Through this process we have now converted
phonemic baseforms for a lexicon of 140,000 words
into the new subword units. Example entries in the
baseforms file are shown in Figure 2.

Once a grammar and a large lexicon of subword
baseforms are available, the next step is to cre-
ate a statistical language model encoding the letter-
subword mappings. We have decided to create a new
set of subword units, which we call “spellnemes,”
combining the letter sequence and associated pro-
nunciation into a single symbolic tag, as illustrated
in Figure 3. The sequence of spellnemes associated
with each word in the lexicon can easily be obtained
by parsing the word, constrained by its subword re-
alization. The spellneme sequences for each word in
the lexicon are then used to train a trigram language
model. Our formalism currently has 2541 unique
spellnemes, on average nearly a 4-fold expansion
over the number of pronunciation-based subwords.

Derivative sound-to-letter and letter-to-sound sys-
tems are straightforward. For sound-to-letter, a pro-
vided phonemic transcript is exhaustively expanded
to a graph of all possible subword realizations, and
subsequently into a graph of all spellnemes asso-
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b r � 591 � oo k � 547 � l � 617 � e t � 263 �
b r � 591 � oo k � 547 � l � 617 � i n e � 281 �
b r � 591 � oo k � 547 � l � 617 � y n � 250 �
b r � 591 � oo k � 547 � m � 619 � o n t � 43 �

Figure 3: Sample entries from the tagged corpus
which is used to train the statistics of the � -gram
language model. The numeric tags encode the asso-
ciated subword unit, each of which maps to a unique
phonemic sequence.

ciated with each subword. The trigram language
model is applied to produce an N-best list of the
top-scoring hypothesized spellneme sequences. The
letter-to-sound system exhaustively expands the let-
ter sequence into all possible spellneme sequences.
After applying the trigram language model, the N-
best list of spellneme sequences can be mapped to
the pronunciations by concatenation of the phone-
mic realizations of the individual subwords.

4 Experiments on Phonebook

We imagine a two-stage speech recognition frame-
work for a word spoken in isolation, in which the
first stage uses subword units that encode only pro-
nunciation, and produces an N-best list of hypothe-
sized pronunciations, represented as phonemic base-
forms. The second stage is tasked with hypothe-
sizing possible spellings from the provided phone-
mic baseforms, and then verifying them by a match
with a lexical entry. For the purposes of this paper,
we assume a perfect phonemic baseform as input,
and investigate the quality of the N-best list of hy-
pothesized spellings automatically generated by the
sound-to-letter system. We quantify performance by
measuring the depth of the correct word in the gen-
erated N-best list.

Our experiments were conducted on a set of
nearly 5000 nouns and proper nouns, a sub-
set of the 8000 word Phonebook vocabulary that
were identified as nouns using the Web site
http://www.comp.lancs.ac.uk/ucrel/claws/. We se-
lected this set of words for two reasons: (1) they
contain a substantial number of nouns not included
in our original training lexicon, and (2) they will al-
low us to conduct speech recognition experiments
from the available Phonebook corpus of words spo-
ken in isolation over the telephone.

The trigram training corpus was restricted to a
subset of 55,159 entries in our original lexicon,
containing the words that were tagged as nouns in
Comlex. We are interested in quantifying the gap
between in-vocabulary (IV) and out-of-vocabulary
(OOV) words, with respect to the training corpus.
We also measure the gains that can be realized
through manual repair of automatically generated
baseforms for training the sound-to-letter system.
Thus we conducted experiments on the following
four conditions:

1. Train on 55,159 nouns, test on the 3478 word
IV subset of Phonebook nouns.

2. Train on 55,159 nouns, test on the 1518 OOV
words in Phonebook.

3. Augment the training set with entries for the
1518 OOV words, that are obtained automati-
cally by processing them through the letter-to-
sound system. Test on the OOV subset.

4. Augment the training lexicon with manually
corrected pronunciations for the OOV subset.
Test on the OOV subset.

Items (3) and (4) will show us the degree to
which improvements can be gained through auto-
matic methods, once a new list of nouns becomes
available, as well as how much further gain can be
realized after manual correction. Automatic meth-
ods will be feasible for a dialogue system which can
extract from the Web a list of nouns appropriate for
the domain, but has no phonemic baseforms avail-
able for those nouns.

5 Results

Results are shown in Table 1. With an N-best list
of 30, the system has a very low failure rate for all
conditions. However, there is a marked difference in
performance in terms of the depth of the correct an-
swer. The mean depth is 2.07 for the OOV words, as
contrasted with only 1.15 for the IV words. Fully
automatic methods to improve the sound-to-letter
system lead to substantial gains, reducing the mean
depth to 1.54. Manual correction provides signifi-
cant further gains, achieving a mean depth of 1.13,
comparable to that of the original IV subset. There
were two cases where an incorrect match to a lexical
entry was found at a higher level in the N-best list
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Top 1 Top 2 Top 3 Top 4 Top 5 Top 30 Mean Depth Failed
OOV 65.7% 80.7% 86.5% 90.0% 91.7% 98.4% 2.07 1.6%
plus auto 84.0% 91.6% 93.4% 94.7% 95.7% 99.0% 1.54 1.0%
plus manual 92.2% 98.0% 98.9% 99.3% 99.6% 99.9% 1.13 0.1%
IV 91.8% 97.5% 98.8% 99.3% 99.5% 100.0% 1.15 0.0%

Table 1: Percentage of words spelled correctly as a function of N-best depth for sound-to-letter experiments.
See text for discussion.

than the correct match. These were the homonym
pairs: carolyn/caroline and jasmine/jazzman.

Nouns that fail to appear in the top 30 can poten-
tially still be recovered through simple spell check-
ing methods. Using a conservative approach of al-
lowing only a single letter insertion, substitution or
deletion, and further, of requiring that the grammar
could parse the corrected word under the constraints
of the system’s proposed subwords, we were able to
recover over 60% of the failures.

6 Related Work

Many researchers have worked on letter-to-
sound modeling for text-to-speech conver-
sion (R. I. Damper and Gustafson, 1998). The
topic of bi-directional phoneme-to-grapheme
conversion is becoming important for application
to unknown words and new word acquisition
in speech understanding systems (Chung et al.,
2003), although it is difficult to compare results
due to different representations and data sets.
In (Meng, 1996), a hierarchical approach was
used for bi-directional sound-letter generation.
(Rentzepopoulos and Kokkinakis, 1996) describes
a hidden Markov model approach for phoneme-to-
grapheme conversion, in seven European languages
evaluated on a number of corpora. (Marchand and
Damper, 2000) uses a fusion of data-driven and
pronunciation-by-analogy methods, obtaining word
accuracies of 57.7% and 69.1% for phoneme-to-
grapheme and grapheme-to-phoneme experiments
respectively, when evaluated on a general dictionary.
(Llitjos and Black, 2001) report improvements on
letter-to-sound performance on names by adding
language origin features, yielding 61.72% word
accuracy on 56,000 names. (Galescu and Allen,
2002) addresses bi-directional sound-letter gener-
ation using a data-driven joint � -gram method on
proper nouns, yielding around 41% word accuracy

for sound-to-letter and 68% word accuracy for
letter-to-sound.

7 Summary and Conclusions

In this paper, we report on a new technique for
reversible letter-to-sound sound-to-letter modeling,
which is based on linguistic theory and statistical
modeling. The system was evaluated on a set of
nearly 5000 nouns from the Phonebook domain,
separately for in-vocabulary and out-of-vocabulary
subsets, with respect to the training corpus for the
sound-to-letter system. In future work, we plan to
evaluate the effectiveness of the model for automatic
new word acquisition in spoken dialogue systems.
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Abstract

This study investigates whether some
speech recognition (SR) errors are eas-
ier to detect and what patterns can be
identified from those errors. Specifically,
SR errors were examined from both non-
linguistic and linguistic perspectives. The
analyses of non-linguistic properties re-
vealed that high error ratios and consecu-
tive errors lowered the ease of error detec-
tion. The analyses of linguistic properties
showed that ease of error detection was as-
sociated with changing parts-of-speech of
reference words in SR errors. Addition-
ally, syntactic relations themselves and the
change of syntactic relations had impact
on the ease of error detection.

1 Introduction

Speech recognition (SR) errors remain as one of the
main impediment factors to the wide adoption of
speech technology, especially for continuous large-
vocabulary SR applications. As a result, lowering
word error rate is the focus of SR research which
can benefit from analyzing SR errors. SR errors
have been examined from various perspectives: lin-
guistic regularity of errors (McKoskey and Boley,
2000), the relationships between linguistic factors
and SR performance (Greenberg and Chang, 2000),
and the associations of prosodic features with SR er-
rors (Hirschberg et al., 2004). However, little is un-
derstood about patterns of errors with regard to ease
of detection.

Analyzing SR errors can be helpful to error detec-
tion. Skantze and Edlund (2004) conducted a user
study to evaluate the effects of various features on
error detection. Our study is different in that it in-
vestigates the relationships between the characteris-
tics of SR errors and their ease of detection through
an empirical user study. Given two SR systems with
the same word error rates, the output of one system
could be more useful if its errors are easier to detect
than the other. Accordingly, SR and its error de-
tection research could focus on addressing difficult
errors by developing automatic solutions or by pro-
viding decision support to manual error detection.

2 Experiment

A laboratory experiment was carried out to evaluate
humans’ performance in SR error detection.

2.1 Experimental Data

Speech transcripts were extracted from a dictation
corpus on daily correspondence in office environ-
ment generated using IBM ViaVoice under high-
quality condition (Zhou et al., 2006).

Eight paragraphs were randomly selected from
the transcripts of two task scenarios based on two
criteria: recognition accuracy and paragraph length
(measured by # of words). Specifically, the over-
all recognition accuracy (84%) and the length of a
medium-sized paragraph (90 words) of the corpus
were used as references.

The selected paragraphs consist of 36 sentences.
Sentence lengths range from 9 to 38 words, with an
average of 20. For error detection, SR output in-
stead of references is a better base for computing
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error rates because SR output but not reference tran-
scripts are accessible during error detection. This
may result in fewer number of deletion errors be-
cause when one SR error maps to several reference
words, it is counted as one substitution error. Based
on this method, there are totally 140 errors in the
selected data: 104 substitution, 31 insertion, and 5
deletion errors. The error ratio, defined as the ratio
of the number of errors to the number of words in
output sentence, ranges from 4.76% to 61.54%.

2.2 Task and Procedure

Participants were required to read error annotation
schema and sample transcripts prior to the exper-
iment, and could attend the experiment only af-
ter they passed the test on their knowledge of the
schema and SR output.

Each participant was asked to detect errors in all
eight paragraphs. All sentences in the same para-
graphs were presented all at once. The paragraphs
were presented with different methods, including
three with no additional information, three with al-
ternative hypotheses, and two with both dictation
scenario and alternative hypotheses. The sequence
of paragraphs and their presentation methods were
randomized for each participant.

Ten participants from a mid-sized university in
the U.S. completed the study. They were all native
speakers and none of them was professional editor.

3 Analysis and Discussion

In this section, we analyze the relationship between
characteristics of SR errors and ease of error detec-
tion. We characterize errors with non-linguistic and
linguistic properties and further break down the lat-
ter into parts-of-speech and syntactic relations.

3.1 Ease of Error Detection

The ease of detecting an error was defined as the
number of participants who successfully detected
the error. When computing the ease of error detec-
tion, we merged all the data by ignoring the presen-
tation methods. The decision was made because a
repeated measure ANOVA of recall failed to yield
a significant effect of presentation methods (p =
n.s.). The recall was selected because it measures
the percentage of actual errors being detected and
the focal interest of this study was actual errors. The

average recalls of error detection of three presenta-
tion methods were very close, ranging from 72% to
75%.

The ease values fell between 0 and 10, with 0 be-
ing the least ease when all participants missed the er-
ror and 10 being the most ease when everyone found
the error. To improve the power of statistical analy-
ses, errors were separated into 3 groups using equal-
height binning based on their ease values, namely 1
for low, 2 for medium, and 3 for high (see Table 1).
The overall average ease value was 2.15.

Level of Ease Ease Values # of Errors
Low (1) 0-5 39
Medium (2) 6-8 41
High (3) 9-10 60

Table 1: Grouping of ease values

3.2 Non-linguistic Error Properties

Three non-linguistic error properties, including error
ratio, word error type, and error sequence (in isola-
tion or next to other errors) were selected to examine
their relationships with ease of error detection.

Two-tailed correlation analyses of error ratio and
ease of detection showed that the Pearson correla-
tion coefficient was -0.477 (p < 0.01), which sug-
gests that it is easier to detect errors in sentences
with lower error ratios.

One way ANOVA failed to yield a significant ef-
fect of error type on ease of detection (p = n.s.).
Nonetheless, mean comparisons showed that inser-
tion errors were less easy to detect (mean = 2.03)
than deletion errors (mean = 2.20) and substitution
errors (mean = 2.18). Users may have difficulty in
judging extra words.

Among the 140 errors, about half of them (i.e., 71)
were next to some other errors. One way ANOVA
revealed a significant effect of error sequence on
ease of detection,p < 0.05. Specifically, isolated
errors (mean = 2.33) are easier to detect than con-
secutive errors (mean = 1.97).

3.3 Part-Of-Speech(POS)

SR output and reference transcripts were analyzed
using Brill’s part-of-speech tagger (Brill, 1995). To
alleviate data sparsity problem, we adopted second-
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level tags such as NN and VB. The POSes of SR
errors as well as POS change patterns between ref-
erence words and SR errors were analyzed.

Table 2 reports the average eases of detection for
difference POSes on all the errors, substitution er-
rors only, and insertion errors only. Deletion errors
were not included because they did not appear in SR
output. Only those POSes with frequency of at least
10 in all the errors were selected.

POS All Substitution Insertion
NN 2.03 2.00 2.25
VB 2.30 2.41 1.67
CC 2.21 2.38 1.83
IN 2.22 2.27 2.00
DT 1.80 2.25 1.50

Table 2: Ease of detection for different POSes

It was easier to detect verbs that were misplaced
than verbs that were inserted mistakenly (p < 0.1
in one-tailed results). This is because an additional
verb may change syntactic and semantic structures
of entire sentence. Similar patterns held for both CC
and DT (p < 0.1 in one-tailed results). The less
ease in detecting DT and CC when they were in-
serted than replaced is due in part to the fact that
they play significant syntactic roles in constructing
a grammatical sentence. Further, ease of detecting
DT was lower than the average ease of all errors
(p < 0.1 in one-tailed results).

Only substitution errors were applicable in POS
change analysis. POS change was set to ‘Y’ when
the POSes of an SR error and its corresponding ref-
erence word were different, and ‘N’ when otherwise.
This resulted in 69 Ys and 35 Ns. One way ANOVA
results yielded a significant effect of POS change
on ease of detection (p < 0.05). Specifically, it
was easier to detect errors that had different POSes
(mean = 2.32) from their references than those that
shared the same POSes (mean = 1.91). This is
partly due to the requirements of semantic and even
discourse information in detecting errors from the
same POSes.

3.4 Syntactic Relations

Both SR output and reference transcripts were
parsed using minipar (Lin, 1998), a principle-based

parser that can generate a dependency parse tree for
each sentence. The dependency relations between
SR errors and other words in the same sentence were
extracted as the syntactic relations of SR errors. The
same kinds of relations were also extracted for cor-
responding reference words.

Three types of properties of syntactic relations
were analyzed, including the number of syntactic
relations, syntactic relation change, and errors’ pat-
terns of syntactic relations.

Table 3 reports descriptive statistics of ease of
detection for SR errors with varying numbers of
syntactic relations. The average number of syntac-
tic relations for all errors was 1.64. Analysis re-
sults showed that it was easier to detect errors with
no syntactic relations than those with one relation
(p < 0.05). The analysis of correlation between the
number of syntactic relations and the ease of detec-
tion yielded a very small Pearson correlation coef-
ficient (p = n.s.). They suggest that errors that do
not fit into a sentence are easy to detect. However,
increasing the number of syntactic relations does not
lower the ease of detection.

# of Syntactic Mean Std Frequency
Relations Deviation
0 2.40 0.695 35
1 1.98 0.883 51
2 2.21 0.918 19
3 2.00 0.791 17
> 3 2.22 0.808 18

Table 3: Ease of detection for numbers of relations

Same as POS change, only substitution errors
were considered in syntactic relation change anal-
ysis, and the values of the syntactic changes were
set similarly. By dividing the syntactic relations into
head and modifier according to whether the words
served as heads in the relations, we also derived syn-
tactic changes for head and modifier relations, re-
spectively.

Two-way ANOVA analyses of head and modifier
syntactic relation changes yielded a significant in-
teraction effect (p < 0.05). A post-hoc analysis
revealed that, when the modifier syntactic relations
were the same, it was easier to detect errors that did
not cause the change of head syntactic relations than
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those causing such changes (p < 0.05).
Table 4 reports descriptive statistics of ease of de-

tection in terms of syntactic relations of SR errors
that occurred at least 5 times. Two relations were
presented in the “Syntactic Relations” column. The
first one is the relation in which errors played the
head role, and the second one is the relation that er-
rors served as a modifier. “None” indicates no such
relations exist.

Syntactic Mean Std Frequency
Relations Deviation
none none 2.40 0.695 35
none subj 2.70 0.675 10
none det 1.78 0.833 9
none punc 2.00 0.926 8
none nn 2.00 1.000 7
none pcomp-n 2.33 1.033 6
mod pcomp-n 1.20 0.447 5
none obj 1.80 0.837 5

Table 4: Ease of detection for syntactic relations

It is shown in Table 4 that it is easier to detect if
an error is the subject of a verb (subj). A typical ex-
ample is the “summary” in sentence “summary will
have to make my travel arrangement ... ”. All the
participants successfully detected “summary” as an
error. In contrast, “mod pcomp-n” was difficult to
detect. Manual scrutinizing of the data showed that
such errors were nouns that both have some other
words/phrases as modifier (mod) and are nominal
complements of a preposition (pcomp-n). For exam-
ple, for “transaction” in sentence “I’m particularly
interested in signal transaction in ... ”, 80% partic-
ipants failed to detect the error. It requires domain
knowledge to determine the error.

4 Conclusion and Future Work

This study revealed that both high error ratio and
consecutive errors increased the difficulty of error
detection, which highlights the importance of SR
performance. In addition, it was easier to detect
SR errors when they had different POSes from cor-
responding reference words. Further, SR errors
lacking syntactic relations were easy to detect, and
changes in syntactic relations of reference words in
SR errors had impact on the ease of error detection.

The extracted patterns could advance SR and auto-
matic error detection research by accounting for the
ease of error detection. They could also guide the
development of support systems for manual SR er-
ror correction.

This study brings up many interesting issues for
future study. We plan to replicate the study with au-
tomatic error detection experiment. Additional ex-
periments would be conducted on a larger data set to
extract more robust patterns.
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Abstract

In this paper we propose a statistical pars-
ing technique that simultaneously iden-
tifies biomedical named-entities (NEs)
and extracts subcellular localization re-
lations for bacterial proteins from the
text in MEDLINE articles. We build
a parser that derives both syntactic and
domain-dependent semantic information
and achieves an F-score of 48.4% for the
relation extraction task. We then propose
a semi-supervised approach that incor-
porates noisy automatically labeled data
to improve the F-score of our parser to
83.2%. Our key contributions are: learn-
ing from noisy data, and building an an-
notated corpus that can benefit relation ex-
traction research.

1 Introduction
Relation extraction from text is a step beyond
Named-Entity Recognition (NER) and generally de-
mands adequate domain knowledge to build rela-
tions among domain-specific concepts. A Biomedi-
cal Functional Relation (relation for short) states in-
teractions among biomedical substances. In this pa-
per we focus on one such relation: Bacterial Protein
Localization (BPL), and introduce our approach for
identifying BPLs from MEDLINE1 articles.

BPL is a key functional characteristic of pro-
teins. It is essential to the understanding of the func-
tion of different proteins and the discovery of suit-
able drugs, vaccines and diagnostic targets. We are
collaborating with researchers in molecular biology
with the goal of automatically extracting BPLs from

∗This research was partially supported by NSERC, Canada.
1MEDLINE is a bibliographic database of biomedical

scientific articles at National Library of Medcine (NLM,
http://www.nlm.nih.gov/).

text with BioNLP techniques, to expand their pro-
tein localization database, namely PSORTdb2(Rey
et al., 2005). Specifically, the task is to produce as
output the relation tuple BPL(BACTERIUM, PRO-
TEIN, LOCATION) along with source sentence and
document references. The task is new to BioNLP
in terms of the specific biomedical relation being
sought. Therefore, we have to build annotated cor-
pus from scratch and we are unable to use existing
BioNLP shared task resources in our experiments.
In this paper we extract from the text of biomedical
articles a relation among: a LOCATION (one of the
possible locations shown in Figure 1 for Gram+ and
Gram- bacteria); a particular BACTERIUM, e.g. E.
Coli, and a PROTEIN name, e.g. OprF.

(Nair and Rost, 2002) used the text taken from
Swiss-Prot annotations of proteins, and trained a
subcellular classifier on this data. (Hoglund et al.,
2006) predicted subcellular localizations using an
SVM trained on both text and protein sequence data,
by assigning each protein name a vector based on
terms co-occurring with the localization name for
each organism. (Lu and Hunter, 2005) applied a hi-
erarchical architecture of SVMs to predict subcel-
lular localization by incorporating a semantic hier-
archy of localization classes modeled with biolog-
ical processing pathways. These approaches either
ignore the actual location information in their pre-
dicted localization relations, or only focus on a small
portion of eukaryotic proteins. The performance of
these approaches are not comparable due to different
tasks and datasets.

2 System Outline

During our system’s preprocessing phase, sentences
are automatically annotated with both syntactic in-
formation and domain-specific semantic informa-
tion. Syntactic annotations are provided by a statis-
tical parser (Charniak and Johnson, 2005). Domain-

2http://db.psort.org.
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Figure 1: Illustration of possible locations of pro-
teins with respect to the bacterial cell structure.

specific semantic information includes annotations
on PROTEIN, BACTERIUM and LOCATION NEs
by dictionary lookups from UMLS3, NCBI Taxon-
omy4 and SwissProt5, and two automatic Bio-NE
recognizers: MMTx6 and Lingpipe7.

We propose the use of a parser that simultane-
ously identifies NEs and extracts the BPL relations
from each sentence. We define NEs to be Relevant
to each other only if they are arguments of a BPL re-
lation, otherwise they are defined to be Irrelevant.
A sentence may contain multiple PROTEIN (LO-
CATION or ORGANISM) NEs, e.g., there are two
PROTEIN NEs in the sentence below but only one,
OmpA, is relevant. Our system aims to identify the
correct BPL relation among all possible BPL tuples
(candidate relations) in the sentence by only recog-
nizing relevant NEs. Each input sentence is assumed
to have at least one BPL relation.
Nine of 10 monoclonal antibodies mapped within the carboxy-

terminal region of [PROTEIN OprF] that is homologous to

the [ORGANISM Escherichia coli] [LOCATION outer membrane]

protein [PROTEIN OmpA].

3 Statistical Syntactic and Semantic Parser

Similar to the approach in (Miller et al., 2000) and
(Kulick et al., 2004), our parser integrates both syn-
tactic and semantic annotations into a single annota-
tion as shown in Figure 2. A lexicalized statistical
parser (Bikel, 2004) is applied to the parsing task.
The parse tree is decorated with two types of seman-

3http://www.nlm.nih.gov/research/umls/
4http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Taxonomy
5http://www.ebi.ac.uk/swissprot/
6MetaMap Transfer, http://mmtx.nlm.nih.gov/
7http://www.alias-i.com/
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Figure 2: An example of parsing results

tic annotations:
1) Annotations on relevant PROTEIN, BAC-
TERIUM and LOCATION NEs. Tags are PRO-
TEIN R, BACTERIUM R and LOCATION R respec-
tively.
2) Annotations on paths between relevant NEs. The
lower-most node that spans both NEs is tagged as
LNK and all nodes along the path to the NEs are

tagged as PTR.
Binary relations are apparently much easier to

represent on the parse tree, therefore we split the
BPL ternary relation into two binary relations: BP
(BACTERIUM and PROTEIN) and PL (PROTEIN
and LOCATION). After capturing BP and PL rela-
tions, we will predict BPL as a fusion of BP and PL,
see §4.1. In contrast to the global inference done us-
ing our generative model, heavily pipelined discrim-
inative approaches usually have problems with error
propagation. A more serious problem in a pipelined
system when using syntactic parses for relation ex-
traction is the alignment between the named enti-
ties produced by a separate system and the syntac-
tic parses produced by the statistical parser. This
alignment issue is non-trivial and we could not pro-
duce a pipelined system that dealt with this issue
satisfactorily for our dataset. As a result, we did
not directly compare our generative approach to a
pipelined strategy.

4 Experiment Settings and Evaluations
The training and test sets are derived from a small
expert-curated corpus. Table 1 lists numbers of sen-
tences and relevant NEs in each BP/PL/BPL set.

Since the parsing results include both NE and path
tags (note that we do not use any external NER sys-
tem), there are two metrics to produce and evalu-
ate PL or BP relations: Name-only and Name-path
metrics. The name-only metric only measures Rel-
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PL BP BPL
Training set 289 / 605 258 / 595 352 / 852

Test set 44 / 134 28 / 127 62 / 182
Table 1: Sizes of training and test sets (number of
sentences / number of relevant NEs)

evant PROTEIN, BACTERIUM and LOCATION
NEs (see Section 2). It does not take path annota-
tions into account. The name-only metric is mea-
sured in terms of Precision, Recall and F-score, in
which True Positive (TP ) is the number of correctly
identified NEs, False Positive (FP ) is the number of
incorrectly identified NEs and False Negative (FN )
is the number of correct NEs that are not identified.

The name-path measures nodes being annotated
as LNK, PTR or R along the path between NEs
on the parse tree, therefore it represents confidence
of NEs being arguments of the relation. The name-
path metric is a macro-average measure, which is
the average performance of all sentences in data set.
In measurement of the name-path metric, TP is the
number of correctly annotated nodes on the path be-
tween relevant NEs. FP is the number of incor-
rectly annotated nodes on the path and FN is the
number of correct nodes that are not identified.

4.1 Fusion of BP and PL

The BPL relation can be predicted by a fusion of
BP and PL once they are extracted. Specifically, a
BP and a PL that are extracted from the same sen-
tence are merged into a BPL. The predicted BPL
relations are then evaluated by the same name-only
and name-path metrics as for binary relations. In the
name-path metric, nodes on both PL and BP paths
are counted. Note that we do not need a common
protein NER to merge the BP and PL relations. E.g.,
for name-only evaluation, assume true BPL(B1, P1,
L1): if we predict BP(B1, ) and PL(P1, L2), then
TP=2 due to B1, P1; FP=1 due to L2; and FN=1
due to P1.

5 NER and BPL Extraction

Baseline: An intuitive method for relation extrac-
tion would assume that any sentence containing
PROTEIN, ORGANISM and LOCATION NEs has
the relation. We employ this method as a baseline
system, in which NEs are identified by the auto-

matic NE recognizers and dictionary lookups as in-
troduced in §2. The system is evaluated against the
test set in Table 1. Results in Table 2 show low pre-
cision for PROTEIN NER and the name-path metric.
Extraction using Supervised Parsing: We first ex-
periment a fully supervised approach by training the
parser on the BP/PL training set and evaluate on the
test set (see Table 1). The name-only and name-path
evaluation results in Table 2 show poor syntactic
parsing annotation quality and low recall on PRO-
TEIN NER. The major reason of these problems is
the lack of training data.
Extraction using Semi-supervised Parsing: Ex-
periments with purely supervised learning show that
our generative model requires a large curated set
to minimize the sparse data problem, but domain-
specific annotated corpora are always rare and ex-
pensive. However, there is a huge source of unla-
beled MEDLINE articles available that may meet
our needs, by assuming that any sentence contain-
ing BACTERIUM, PROTEIN and LOCATION NEs
has the BPL relation. We then choose such sentences
from a subset of the MEDLINE database as the
training data. These sentences, after being parsed
and BPL relations inserted, are in fact the very noisy
data when used to train the parser, since the assumed
relations do not necessarily exist. The reason this
noisy data works at all is probably because we can
learn a preference for structural relations between
entities that are close to each other in the sentence,
and thus distinguish between competing relations in
the same sentence. In future work, we hope to ex-
plore explicit bootstrapping from the labeled data to
improve the quality of the noisy data.

Two experiments were carried out corresponding
to choices of the training set: 1) noisy data only, 2)
noisy data and curated training data. Evaluation re-
sults given in Table 2.

Evaluation results on the name-only metric show
that, compared to supervised parsing, our semi-
supervised method dramatically improves recall for
NER. For instance, recall for PROTEIN NER in-
creases from 25.0% to 81.3%; recall on BAC-
TERIUM and LOCATION NERs increases about
30%. As for the name-path metric, the over-
all F-score is much higher than our fully super-
vised method increasing from 39.9% to 74.5%. It
shows that the inclusion of curated data in the semi-
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Name-only Evaluation (%) Name-Path Evaluation (%)
Method Measure PL BP BPL PL BP BPL

PROT LOC PROT BACT
P 42.3 78.6 41.9 81.3 40.7 27.1 38.9 31.0

Baseline R 92.5 97.3 87.8 97.4 90.9 56.5 69.0 60.7
F 58.0 87.0 56.7 88.6 56.2 36.6 49.8 41.0

Supervised P 66.7 87.5 66.7 72.7 76.9 45.9 41.2 43.9
(training data R 25.0 56.0 10.5 47.1 35.3 36.7 36.3 36.5

only) F 36.4 68.3 18.2 57.1 48.4 40.8 38.6 39.9
Semi-supervised P 66.7 95.5 70.6 94.1 80.8 76.2 83.5 79.3

(noisy data R 84.2 80.8 80.0 84.2 81.8 67.8 72.4 67.0
only) F 74.4 87.5 75.0 88.9 81.3 71.7 77.5 74.2

Semi-supervised P 73.9 95.5 76.5 94.1 84.8 77.0 81.1 78.7
(noisy data + R 81.0 80.8 81.3 84.2 81.7 68.5 73.7 70.7
training data) F 77.3 87.5 78.8 88.9 83.2 72.5 77.2 74.5

Table 2: Name-only and name-path evaluation results. PROTEIN, LOCATION and BACTERIUM are
PROT, LOC and BACT for short. The training data is the subset of curated data in Table 1.

supervised method does not improve performance
much. Precision of PROTEIN NER increases 6.5%
on average, while F-score of overall BPL extraction
increases only slightly. We experimented with train-
ing the semi-supervised method using noisy data
alone, and testing on the entire curated set, i.e., 333
and 286 sentences for BP and PL extractions respec-
tively. Note that we do not directly train from the
training set in this method, so it is still “unseen” data
for this model. The F-scores of path-only and path-
name metrics are 75.5% and 67.1% respectively.

6 Discussion and Future Work

In this paper we introduced a statistical parsing-
based method to extract biomedical relations from
MEDLINE articles. We made use of a large un-
labeled data set to train our relation extraction
model. Experiments show that the semi-supervised
method significantly outperforms the fully super-
vised method with F-score increasing from 48.4%
to 83.2%. We have implemented a discriminative
model (Liu et al., 2007) which takes as input the ex-
amples with gold named entities and identifies BPL
relations on them. In future work, we plan to let the
discriminative model take the output of our parser
and refine our current results further. We also plan
to train a graphical model based on all extracted BP,
PL and BPL relations to infer relations from multi-
ple sentences and documents.
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Abstract

Collecting supervised training data for au-
tomatic speech recognition (ASR) sys-
tems is both time consuming and expen-
sive. In this paper we use the notion of vir-
tual evidence in a graphical-model based
system to reduce the amount of supervi-
sory training data required for sequence
learning tasks. We apply this approach to
a TIMIT phone recognition system, and
show that our VE-based training scheme
can, relative to a baseline trained with
the full segmentation, yield similar results
with only 15.3% of the frames labeled
(keeping the number of utterances fixed).

1 Introduction

Current state-of-the-art speech recognizers use thou-
sands of hours of training data, collected from a
large number of speakers with various backgrounds
in order to make the models more robust. It is well
known that one of the simplest ways of improv-
ing the accuracy of a recognizer is to increase the
amount of training data. Moreover, speech recog-
nition systems can benefit from being trained on
hand-transcribed data where all the appropriate word
level segmentations (i.e., the exact time of the word
boundaries) are known. However, with increasing
amounts of raw speech data being made available, it
is both time consuming and expensive to accurately
segment every word for every given sentence. More-
over, for languages for which only a small amount
of training data is available, it can be expensive and
challenging to annotate with precise word transcrip-
tions – the researcher may have no choice but to use
partially erroneous training data.

There are a number of different ways to label
data used to train a speech recognizer. First, the
most expensive case (from an annotation perspec-
tive) is fully supervised training, where both word
sequences and time segmentations are completely
specified1 . A second case is most commonly used
in speech recognition systems, where only the word
sequences of utterances are given, but their precise
segmentations are unknown. A third case falls un-
der the realm of semi-supervised approaches. As
one possible example, a previously trained recog-
nizer is used to generate transcripts for unlabeled
data, which are then used to re-train the recog-
nizer based on some measure of recognizer confi-
dence (Lamel et al., 2002).

The above cases do not exhaust the set of possible
training scenarios. In this paper, we show how the
notion of virtual evidence (VE) (Pearl, 1988) may
be used to obtain the benefits of data with time seg-
mentations but using only partially labeled data. Our
method lies somewhere between the first and sec-
ond cases above. This general framework has been
successfully applied in the past to the activity recog-
nition domain (Subramanya et al., 2006). Here we
make use of the TIMIT phone recognition task as an
example to show how VE may be used to deal with
partially labeled speech training data. To the best of
our knowledge, this paper presents the first system to
express training uncertainty using VE in the speech
domain.

2 Baseline System

Figure 1 shows two consecutive time slices of a dy-
namic Bayesian network (DBN) designed for con-

1This does not imply that all variables are observed during
training. While the inter-word segmentations are known, the
model is not given information about intra-word segmentations.
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Figure 1: Training Graph.

text independent (CI) phone recognition. All ob-
served variables are shaded, deterministic depen-
dences are depicted using solid black lines, value
specific dependences are shown using a dot-dash
lines, and random dependencies are represented us-
ing dashed lines. In this paper, given any random
variable (rv) X , x denotes a particular value of that
rv, DX is the domain of X (x ∈ DX ), and |DX |
represents its cardinality.

In the above model, Pt is the rv representing
the phone variable, Ht models the current po-
sition within a phone, St is the state, Ot the
acoustic observations, At and Rt indicate state
and phone transitions respectively. Here, DXt

=
DXt−1

, ∀t,∀X . In our implementation here,
DHt

, DAt
∈ {0, 1, 2}, DRt

∈ {0, 1}. Also
δ{c1, . . . , cn} is an indicator function that turns on
when all the conditions {c1, . . . , cn} are true (i.e.
a conjunction over all the conditions). The distri-
bution for Ht is given by p(ht|ht−1, rt−1, at−1) =
δ{ht=0,rt−1=1} + δ{ht=at−1+ht−1,rt−1=0}, which im-
plies that we always start a phone with Ht = 0.
We allow skips in each phone model, and At=0,
indicates no transition, At=1 implies you transi-
tion to the next state, At=2 causes a state to skip
(Ht+1 = Ht + 2). As the TIMIT corpus pro-
vides phone level segmentations, Pt is observed dur-
ing training. However, for reasons that will be-
come clear in the next section, we treat Pt as hid-
den but make it the parent of a rv Ct, with, p(ct =
1|pt) = δlt=pt

where lt is obtained from the tran-
scriptions (lt ∈ DPt

). The above formulation has
exactly the same effect as making Pt observed and
setting it equal to lt (Bilmes, 2004). Additional de-
tails on other CPTs in this model may be found in
(Bilmes and Bartels, 2005). We provide more de-
tails on the baseline system in section 4.1.

Our main reason for choosing the TIMIT phone
recognition task is that TIMIT includes both se-
quence and segment transcriptions (something rare

t t t1 4 7

p2p1

Labeled Unlabeled

t5t2 t6tt t 8t30

Figure 2: Illustration showing our rendition of Vir-
tual Evidence.

for LVCSR corpora such as Switchboard and
Fisher). This means that we can compare against
a model that has been trained fully supervised. It is
also well known that context-dependent (CD) mod-
els outperform CI models for the TIMIT phone
recognition task (Glass et al., 1996). We used
CI models primarily for the rapid experimental
turnaround time and since it still provides a rea-
sonable test-bed for evaluating new ideas. We
do note, however, that our baseline CI system is
competitive with recently published CD systems
(Wang and Fosler-Lussier, 2006), albeit which uses
many fewer components per mixture (see Sec-
tion 4.1).

3 Soft-supervised Learning With VE

Given a joint distribution over n variables
p(x1, . . . , xn), “evidence” simply means that
one of the variables (w.l.o.g. x1) is known. We
denote this by x̄1, so the probability distribution
becomes p(x̄1, . . . , xn) (no longer a function of x1).
Any configuration of the variables where x1 6= x̄1

is never considered. We can mimic this behavior
by introducing a new virtual child variable c into
the joint distribution that is always observed to be
one (so c = 1), and have c interact only with x1

via the CPT p(c = 1|x1) = δx1=x̄1
. Therefore,∑

x1
p(c = 1, x1, . . . , xn) = p(x̄1, . . . , xn). Now

consider setting p(c = 1|x1) = f(x1), where
f() is an arbitrary non-negative function. With
this, different treatment can be given to different
assignments to x1, but unlike hard evidence, we
are not insisting on only one particular value. This
represents the general notion of VE. In a certain
sense, the notion of VE is similar to the prior
distribution in Bayesian inference, but it is different
in that VE expresses preferences over combinations
of values of random variables whereas a Bayesian
prior expresses preferences over combinations of
model parameter values. For a more information on
VE, see (Bilmes, 2004; Pearl, 1988).

VE can in fact be used when accurate phone level
segmentations are not available. Consider the illus-
tration in Figure 2. As shown, t1 and t4 are the
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start and end times respectively for phone p1, while
t4 and t7 are the start and end times for phone p2.
When the start and end times for each phone are
given, we have information about the identity of
the phone that produced each and every observation.
The general training scenario in most large vocabu-
lary speech recognition systems, however, does not
have access to these starting/ending times, and they
are trained knowing only the sequence of phone la-
bels (e.g., that p2 follows p1).

Consider a new transcription based on Figure 2,
where we know that p1 ended at some time t3 ≤ t4
and that p2 started at sometime t5 > t4. In the
region between t3 and t5 we have no information
on the identity of the phone variable for each
acoustic frame, except that it is either p1 or p2. A
similar case occurs at the start of phone p1 and
the end of phone p2. The above information can
be used in our model (Figure 1) in the following
way (here given only for t2 ≤ t ≤ t6): p(Ct =
1|pt) = δ{pt=p1,t2≤t≤t3} + δ{pt=p2,t5≤t≤t6} +

ft(p
1)δ{pt=p1,t3≤t≤t5} + gt(p

2)δ{pt=p2,t3≤t≤t5}.

Here ft(p
1) and gt(p

2) represent our relative beliefs
at time t in whether the value of Pt is either p1

or p2. It is important to highlight that rather than
the absolute values of these functions, it is their
relative values that have an effect on inference
(Bilmes, 2004). There are number of different
ways of choosing these functions. First, we can set
ft(p

1) = gt(p
2) = α, α > 0. This encodes our

uncertainty regarding the identity of the phone in
this region while still forcing it to be either p1 or
p2, and equal preference is given for both (referred
to as “uniform over two phones”). Alternatively,
other functions could take into account the fact that,
in the frames ‘close’ to t3, it is more likely to be
p1, whereas in the frames ‘close’ to t5, it is more
likely to be p2. This can be represented by using
a decreasing function for ft(p

1) and an increasing
function for gt(p

2) (for example linearly increasing
or decreasing with time).

As more frames are dropped around transitions
(e.g., as t3 − t2 decreases), we use lesser amounts
of labeled data. In an extreme situation, we can drop
all the labels (t3 < t2) to recover the case where only
sequence and not segment information is available.
Alternatively, we can have t3 = t2 +1, which means
that only one frame is labeled for every phone in an
utterance — all other frames of a phone are left un-
transcribed. From the perspective of a transcriber,
this simulates the task of going through an utter-
ance and identifying only one frame that belongs to
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Figure 3: Virtual Evidence Results

each particular phone without having to identify the
phone boundary. In contrast to the task of determin-
ing the phone boundary, identifying one frame per
word unit is much simpler, less prone to error or dis-
agreement, and less costly (Greenberg, 1995).

4 Experimental Results

4.1 Baseline System
We trained a baseline TIMIT phone recognition sys-
tem that made full use of all phone level segmen-
tations (the fully supervised case). To obtain the
acoustic observations, the signal was first preem-
phasized (α = 0.97) and then windowed using a
Hamming window of size 25ms at 100Hz. We then
extracted MFCC’s from these windowed features.
Deltas and double deltas were appended to the above
observation vector. Each phone is modeled using 3
states, and 64 Gaussians per state. We follow the
standard practice of building models for 48 different
phones and then mapping them down to 39 phones
for scoring purposes (Halberstadt and Glass, 1997).
The decoding DBN graph is similar to the training
graph (Figure 1) except that the variable Ct is re-
moved when decoding. We test on the NIST Core
test set (Glass et al., 1996). All results reported in
this paper were obtained by computing the string
edit (Levenshtein) distance between the hypothesis
and the reference. All models in this paper were
implemented using the Graphical Models Toolkit
(GMTK) (Bilmes and Bartels, 2005).

4.2 VE Based Training and Results
We tested various cases of VE-based training by
varying the amount of “dropped” frame labels on
either side of the transition (the dropped labels be-
came the unlabeled frames of Figure 2). We did this
until there was only one frame left labeled for ev-
ery phone. Moreover, in each of the above cases,
we tested a number of different functions to gener-
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ate the VE scores (see section 3). The results of our
VE experiments are shown in Figure 3. The curves
were obtained by fitting a cubic spline to the points
shown in the figure. The phone accuracy (PA) of our
baseline system (trained in a fully supervised man-
ner) is 61.4%. If the total number of frames in the
training set is NT , and we drop labels on N frames,
the amount of unused data is given by U = N

NT
∗100

(the x-axis in the figure). Thus U = 0% is the fully
supervised case, whereas U = 100% corresponds
to using only the sequence information. Dropping
the label for one frame on either side of every phone
transition yielded U = 24.5%.

It can be seen that in the case of both “uniform
over 2 phones” and linear interpolation, the PA ac-
tually improves when we drop a small number (≤
5 frames) of frames on either side of the transition.
This seems to suggest that there might be some in-
herent errors in the frame level labels near the phone
transitions. The points on the plot at U=84.7% cor-
respond to using a single labeled frame per phone
in every utterance in the training set (average phone
length in TIMIT is about 7 frames). The PA of the
system using a single label per phone is 60.52%. In
this case, we also used a trapezoidal function defined
as follows: if t = ti were the labeled frames for
phone p1, then ft(p

1) = 1, ti − 1 ≤ t ≤ ti + 1, and
a linear interpolation function for the other values
t during the transition to generate the VE weights.
This system yielded a PA of 61.29% (baseline accu-
racy 61.4%). We should highlight that even though
this system used only 15.3% of the labels used by
the baseline, the results were similar! The figure
also shows the PA of the system that used only
the sequence information was about 53% (compare
against baseline accuracy of 61.4%). This lends ev-
idence to the claim that training recognizers using
data with time segmentation information can lead to
improved performance.

Given the procedure we used to drop the frames
around transitions, the single labeled frame for ev-
ery phone is usually located on or around the mid-
point of the phone. This however cannot be guaran-
teed if a transcriber is asked to randomly label one
frame per phone. To simulate such a situation, we
randomly choose one frame to be labeled for every
phone in the utterance. We then trained this system
using the “uniform over 2 phones” technique and
tested it on the NIST core test set. This experiment
was repeated 10 times, and the PA averaged over the
10 trails was found to be 60.5% (standard deviation
0.402), thus showing the robustness of our technique
even for less carefully labeled data.

5 Discussion
In this paper we have shown how VE can be used
to train a TIMIT phone recognition system using
partially labeled data. The performance of this sys-
tem is not significantly worse than the baseline that
makes use of all the labels. Further, though this
method of data transcription is only slightly more
time consuming that sequence labeling, it yeilds sig-
nificant gains in performance (53% v/s 60.5%). The
results also show that even in the presence of fully
labaled data, allowing for uncertainity at the tran-
sitions during training can be beneficial for ASR
performance. It should however be pointed out
that while phone recognition accuracy is not al-
ways a good predictor of word accuracy, we still
expect that our method will ultimately generalize
to word accuracy as well, assuming we have ac-
cess to a corpus where at least one frame of each
word has been labeled with the word identity. This
work was supported by an ONR MURI grant, No.
N000140510388.
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Abstract 

Customization to specific domains of dis-
course and/or user requirements is one of 
the greatest challenges for today�s Infor-
mation Extraction (IE) systems. While 
demonstrably effective, both rule-based 
and supervised machine learning ap-
proaches to IE customization pose too 
high a burden on the user. Semi-
supervised learning approaches may in 
principle offer a more resource effective 
solution but are still insufficiently 
accurate to grant realistic application. We 
demonstrate that this limitation can be 
overcome by integrating fully-supervised 
learning techniques within a semi-
supervised IE approach, without 
increasing resource requirements. 

1 Introduction 

Customization to specific discourse domains 
and/or user requirements is one of the greatest 
challenges for today�s Information Extraction (IE) 
systems. While demonstrably effective, both rule-
based and supervised machine learning approaches 
to IE customization require a substantial 
development effort. For example, Aone and 
Ramos-Santacruz (2000) present a rule-based IE 
system which handles 100 types of relations and 
events. Building such a system requires the manual 
construction of numerous extraction patterns 
supported by customized ontologies. Soderland 
(1999) uses supervised learning to induce a set of 
rules from hand-tagged training examples. While 
Sonderland suggests that the human effort can be 

reduced by interleaving learning and manual 
annotation activities, the creation of training data 
remains an onerous task. 

To reduce the knowledge engineering burden on 
the user in constructing and porting an IE system, 
unsupervised learning has been utilized, e.g. Riloff 
(1996), Yangarber et al. (2000), and Sekine (2006). 
Banko et al. (2007) present a self-supervised 
system that aims to avoid the manual IE 
customization problem by extracting all possible 
relations of interest from text. Stevenson and 
Greenwood (2005) propose a weakly supervised 
approach to sentence filtering that uses semantic 
similarity and bootstrapping to acquire IE patterns.  
Stevenson�s and Greenwood�s approach provides 
some of the best available results in weakly 
supervised IE to date, with 0.58 F-measure. While 
very good, an F-measure of 0.58 does not provide 
sufficient reliability to grant use in a production 
system.  

In this paper, we show that it is possible to 
provide a significant improvement over 
Stevenson�s and Greenwood�s results, without 
increasing resource requirements, by integrating 
fully-supervised learning techniques within a 
weakly supervised IE approach. 

1.1 Learning Algorithm 

Our method is modeled on the approach developed 
by Stevenson and Greenwood (2005) but uses a 
different technique for ranking candidate patterns. 
Stevenson�s and Greenwood�s algorithm takes as 
data inputs a small set of initial seed patterns and a 
corpus of documents, and uses any of several 
semantic similarity measures (Resnik, 1995; Jiang 
and Conrath, 1997; Patwardhan et al., 2003) to 
iteratively identify patterns in the document corpus 
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that bear a strong resemblance to the seed patterns. 
After each iteration, the top-ranking candidate 
patterns are added to the seed patterns and 
removed from the corpus. Our approach differs 
from that of Stevenson and Greenwood in that we 
use a supervised classifier to rank candidate 
patterns.  This grants our system greater robustness 
and flexibility because the weight of classification 
features can be automatically determined within a 
supervised classification approach. 

In building supervised classifiers to rank 
candidate patterns at each iteration, we use both 
positive and negative training examples. Instead of 
creating manually annotated training examples, we 
follow an active learning approach where training 
examples are automatically chosen by ranking 
candidate patterns in terms of cosine similarity 
with the seed patterns. More specifically, we  
select patterns that have the lowest similarity with 
seed patterns to be the negative training examples. 
We hypothesized that these negative examples 
would contain many of the uninformative features 
occurring throughout the corpus and that using 
these examples would enable the classifier to 
determine that these features would not be useful.  

The pattern learning approach we propose 
includes the following steps. 
1. An unannotated corpus is required as input. 

For each sentence, a set of features is 
extracted. This information becomes Scand, the 
set of all candidate patterns. 

2. The user defines a set of seed patterns, Sseed. 
These patterns contain features expected to be 
found in a relevant sentence.  

3. The cosine measure is used to determine the 
distance between the patterns in Sseed and Scand. 
The patterns in Scand are then ordered by their 
lowest distance to a member of Sseed. 

4. The α highest ranked patterns in Scand are 
added to Spos, the set of positive training 
examples. 

5. Sseed and Sacc are added to Spos. Sneg, the set of 
negative training examples is constructed from 
β+iteration*γ of the lowest ranked patterns in 
Scand. Then, a maximum entropy classifier is 
built using Spos and Sneg as training data.  

6. The classifier is used to score each pattern in 
Scand. Scand is then sorted by these scores. 

7. The top δ patterns in Scand are added to Sacc and 
removed from Scand. 

8. If a suitable stopping point has been reached, 
the process ends. Otherwise, Spos and Sneg are 
emptied and the process continues at step 6. 

We set α to 5, β to 20, γ to 15, δ to 5, and used the 
following linguistic processing tools: (1) the 
OpenNLP library (opennlp.sourceforge.net) for 
sentence splitting and named-entity recognition,  
and (2) Connexor for syntactic parsing 
(Tapanainen and Järvinen, 1997). For the 
classifier, we used the OpenNLP MaxEnt 
implementation (maxent.sourceforge.net) of the 
maximum entropy classification algorithm (Berger 
et al. 1996).  We used the MUC-6 data set as the 
testing ground for our proposed approach. 

1.2 Description of Features Used 

Stevenson and Greenwood (2005) use subject-
verb-object triples for their features. We use a 
richer feature set. Our system can easily 
accommodate more features because we let the 
maximum entropy classifier determine the weight 
for the features. Stevenson�s and Greenwood�s 
approach determines weights using semantic 
similarity and would require significant changes to 
take into account various other features, especially 
those for which a WordNet (Fellbaum, 1998) 
similarity score is not available. 

We use single tokens, token combinations, and 
semantic information to inform our IE pattern 
extraction system. Lexical items marked by the 
named-entity recognition system as PERSON or 
ORGANIZATION are replaced with �person� and 
�organization�, respectively. Number tokens are 
replaced with �numeric�. Single Token Features 
include: 
• All words in the sentence and all hypernyms of 

the first sense of the word with attached part-
of-speech 

• All words in the sentence with attached 
dependency 

• The verb base of each nominalization and the 
verb�s first sense hypernyms are included. 

Token Combinations include: 
• All bigrams from the sentence 
• All subject-object pairs 
• All parent-child pairs from the parse tree 
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• A specially marked copy of the parent-child 
pairs where the main verb is the parent. 

We also added semantic features indicating if a 
PERSON or ORGANIZATION was detected 
within the sentence boundaries. Table1 provides an 
example where a simple sentence is mapped into 
the set of features we have just described. 
 

Alan G. Spoon, 42, will succeed 
Mr. Graham as president of the 
company. 

 
 

Single Token Features 
With attached dependencies: 
attr:person, subj:person, mod:numeric, v-ch:will, 
main:succeed, obj:person, copred:as, pcomp:president, 
mod:of, det:the, pcomp:company 
With part-of-speech tags: 
n:person, v:succeed, v:will, dt:the, n:company, 
n:institution, n:social_group, n:group, n:organization, 
n:person, n:president, n:executive, n:corporat-
e_executive, n:administrator, n:head, n:leader, n:orga-
nism, n:living_thing, n:object, n:entity, num:numeric, 
abbr:person, prp:as, prp:of, v:control, v:declare, 
v:decree, v:express, v:ordain, v:preside, v:state 
Token Combinations 
Bigrams: 
person+comma, comma+numeric, numeric+comma, 
comma+will, will+succeed, succeed+person, person+as, 
as+president, president+of, of+the, the+company 
Subject Object Pairs: 
sop:person+person 
Parent-Child Pairs: 
pc:person+person, pc:person+numeric, pc:will+person, 
pc:succeed+will, pc:succeed+person, pc:succeed+as, 
pc:as+president, pc:president+of, pc:of+company, 
pc:company+the 
Main Verb Parent-Child Pairs: 
mvpc:succeed+person, mvpc:succeed+will, mv-
pc:succeed+as 
Semantic Features 
hasOrganization, hasPerson 
Table 1: Feature representation of a simple sentence. 
 

The seeds we used are adapted from the seed 
patterns employed by Stevenson and Greenwood. 
As shown in Table 2, only a subset of the features 
described above is used in the seed patterns. 

2 Evaluation 

We used the document collection which was 
initially developed for the Sixth Message 

Understanding Conference (MUC-6) as ground 
truth data set to evaluate our approach. The MUC-
6 corpus (www.ldc.upenn.edu) is composed of 100 
Wall Street Journal documents written during 1993 
and 1994.  Our task was to detect sentences which 
included management succession patterns, such as 
those shown in Table 2.  
 
1: subj:organization, main:appoint, obj:person, hasPers-

on, hasOrganization 
2: subj:organization, main:elect, obj:person, hasOrgani-

zation, hasPerson 
3: subj:organization, main:promote, obj:person, hasOrg-

anization, hasPerson 
4: subj:organization, main:name, obj:person, hasOrgani-

zation, hasPerson 
5: subj:person, main:resign, hasPerson 
6: subj:person, main:depart, hasPerson 
7: subj:person, main:quit, hasPerson 
Table 2: Feature representation of seed patterns. 
 
     The version of the MUC-6 corpus produced by 
Soderland (1999) provided us with a specification 
of succession patterns at the sentence level, but as 
shown in Table 3 did not include the source text.  
We reconstructed the original text by  
automatically aligning the succession patterns in 
the sentence structures in Soderland�s version of 
the MUC-6 corpus with the sentences in the 
original MUC-6 corpus. This alignment produced a 
set of 1581 sentences, of which 134 contained 
succession patterns.  

 
@S[ 
  {SUBJ  @CN[ FOX ]CN } 
  {VB  NAMED @NAM } 
  {OBJ  @PN[ LUCILLE S. SALHANY ]PN , @PS[ 
CHAIRMAN ]PS OF @CN[ FOX INC. ]CN 'S 
TELEVISION PRODUCTION ARM , } 
  {REL_V  TO SUCCEED @SUCCEED HIM . } 
]@S 9301060123-5 
@@TAGS Succession {PersonIn @PN[ LUCILLE S. 
SALHANY ]PN}+ {Post @PS[ CHAIRMAN ]PS}+ 
{Org @CN[ FOX INC. ]CN}_  @@COVERED_BY 
@@ENDTAGS 
Table 3: Data sample from Soderland test set. 
 

As shown in Figure 1, our best score of 0.688 F-
measure was obtained on the 36th iteration; at the 
end of this iteration, our algorithm selected 180 
sentences including 108 of the sentences that 
contained succession patterns. This is a significant 
improvement over the 0.58 F-measure score 
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reported by Stevenson and Greenwood (2005) for 
the same task. The use of a supervised 
classification approach to the ranking of candidate 
patterns with a richer feature set were the two 
determinant factors in achieving such 
improvement. 
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Figure 1: Evaluation results with MUC-6 data. 

3 Conclusions 

Our results show a substantial improvement over 
previous efforts in weakly supervised IE methods, 
suggesting that weakly supervised methods can be 
made to rival rule-based or fully supervised 
approaches both in resource effectiveness and 
accuracy. We plan to verify the strength of our 
approach evaluating against other ground truth data 
sets. We also plan to detail how the various 
features in our classification model contribute to 
ranking of candidate patterns.  An additional area 
of envisioned improvement regards the use of a 
random sub selection of negative candidate 
patterns as training samples to counteract the 
presence of sentence fragments among low-
ranking candidate patterns. Finally, we intend to 
evaluate the benefit of having a human in the loop 
in the first few iterations to filter out patterns 
chosen by the system. 
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Abstract

Individuals using an Augmentative and
Alternative Communication (AAC) de-
vice communicate at less than 10% of
the speed of “traditional” speech, creat-
ing a large communication gap. In this
user study, we compare the communica-
tion rate of pseudo-impaired individuals
using two different word prediction algo-
rithms and a system without word pre-
diction. Our results show that word pre-
diction can increase AAC communication
rate and that more accurate predictions
significantly improve communication rate.

1 Introduction

Communication is a significant quality-of-life issue
for individuals with severe speech impairments. The
field of Augmentative and Alternative Communica-
tion (AAC) is concerned with mitigating commu-
nication barriers that would otherwise isolate indi-
viduals from society. Most high-tech AAC devices
provide the user with an electronic letter and word
board to input messages which are output via speech
synthesis. However, even with substantial user inter-
face optimization, communication rate is often less
than 10 words per minute (Newell et al., 1998) as
compared to about 150-200 words per minute for
unimpaired speech.

One way to improve communication rate is to de-
crease the number of keys entered to form a mes-
sage. Word prediction is an application of language

modeling to allowing the user to access words they
may be spelling at a cost of one keystroke. Many
commercial AAC devices use word prediction, such
as PRC’s PathfinderTM, Dynavox Technology’s Dy-
navox 4TM, and Saltillo’s ChatPCTM.

Although word prediction is used in AAC de-
vices, researchers have questioned whether it ac-
tually increases communication rate (Venkatagiri,
1993; Koester and Levine, 1997; Anson et al.,
2004). These works note the additional cognitive
demands and cost of using word prediction in con-
junction with a letter-by-letter interface, such as the
need to shift the focus of attention to the prediction
list, the time to scan the prediction list, and the cog-
nitive effort required for making decisions about the
predicted words. Obviously the design of the par-
ticular interface (e.g., the ease of using word pre-
diction) will affect these results. In addition, these
studies used a single, simplistic method of generat-
ing predictions, and this may also be responsible for
some of their results.

In contrast, other researchers (Lesher and Hig-
ginbotham, 2005; Li and Hirst, 2005; Trnka et
al., 2006) have continued to investigate various im-
provements to language modeling for word pre-
diction in order to save the user more keystrokes.
Newer methods such as topic modeling yield sta-
tistically significant keystroke savings over previ-
ous methods. However, the question remains as to
whether improvements in prediction methods trans-
late to an enhanced communication rate. We hypoth-
esize that it will.

In this paper we study (1) whether a word pre-
diction interface increases communication rate over
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letter-by-letter typing when a reasonable prediction
method is employed and (2) whether an advanced
word prediction method increases communication
rate over a basic word prediction method to a degree
greater than that afforded by the difference in theo-
retical keystroke savings between the two methods.
We expect that the communication rate gain due to
the better word prediction method will exceed the
gains from the poorer system. Our reasons for this
expectation has to do with not only users wasting
time scanning lists that do not contain the desired
word, but also the tendency for a user to give up on
such a system (i.e., choosing to ignore the predic-
tions) and thus missing the predicted word even if it
does appear in the list. Validating these hypotheses
will motivate continued improvements in word pre-
diction methods for increased communication rate.

The target population of our research is adult
AAC users without significant cognitive impair-
ments. Including actual AAC users in the study
poses several significant complications, perhaps the
largest of which concerns the user interface. AAC
devices vary significantly in the physical interfaces
available, in accordance with the variety of physi-
cal abilities of AAC users. This diversity has caused
different word prediction interfaces to be developed
for each physical interface. Moreover, it would be
impossible to mimic our word prediction layout in a
consistent fashion on all of the major AAC devices
used. Because of this, we conducted this pilot study
using subjects that are pseudo-impaired: the subjects
have no motor impairments but we have simulated
a motor impairment by providing an interface that
emulates the communication rate of a typical AAC
user. Future work includes the verification of the re-
sults using a smaller number of actual AAC users.

2 Approach

The purpose of the study was to measure the effects
of word prediction methods on communication rate.
To this end, the interface used for text entry was opti-
mized for ease-of-use and kept constant across trials.
Subjects were asked to enter text on a touchscreen
monitor using WivikTM, an on-screen keyboard. Be-
cause we wanted to simulate AAC users with mo-
tor impairments, we programmed a 1.5 second de-
lay between a key press and its registration in the

system. The artificial impairment gave the subjects
the same incentive to use word prediction that AAC
users face every day, whereas users with fine motor
control tend to ignore word prediction (e.g., in com-
mon word processing software). The delay slows the
input rate of our subjects down to a rate more typical
of AAC users (about 8-10 words per minute).

Seventeen adult, native speakers of English with
no visual, cognitive, or motor impairments partic-
ipated in the study. These subjects were asked to
type in three different excerpts from held-out data of
the Switchboard corpus on three different days.1 In
each of these sessions, a different prediction method
was used and the order of prediction methods was
randomized across subjects. Keystrokes and pre-
dictions were logged and then post-processed to
compute the words produced per minute, seconds
per keystroke, and keystroke savings, among other
statistics.

2.1 Independent variable: prediction methods

The independent variable in our study is the method
of text entry used: (1) letter-by-letter typing using
the Wivik keyboard with no word prediction, (2)
letter-by-letter typing augmented with word predic-
tions produced by a basic prediction method, (3)
letter-by-letter typing augmented with word predic-
tions produced by an advanced prediction method.

Basic prediction generates predictions from the
combination of a recency model of the text entered
so far in conjunction with a large word list. The
recency model is given priority in generating pre-
dictions. This model is similar to language models
used in AAC devices with the exception that many
devices use a unigram model in lieu of a word list.

Advanced prediction generates predictions on
the basis of a trigram model with backoff. A spe-
cial unigram model is used for the first word in
each sentence. This language model is constructed
from the transcribed telephone conversations of the
Switchboard corpus. If the prediction list isn’t filled
from this model’s predictions, then predictions are
selected from a recency model and then a word list,
as in the basic prediction method.

1Switchboard was chosen because our prediction models
were trained using another portion of the corpus. A copy task
was chosen for more controlled experimental conditions.
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Adv. prediction Basic prediction No prediction
Words per minute (wpm) 8.09 5.50 5.06
Time (seconds) 1316s 1808s 2030s
Seconds per keystroke (spk) 2.92s 2.58s 2.28s
Keystroke savings (ks) 50.3% 18.2% -
Potential keystroke savings (pks) 55.2% 25.0% -
Prediction utilization (pru) 90.9% 73.3% -

Figure 1: Average statistics for each method.

3 Results

Once the data was collected, we post-processed the
logs and accumulated statistics. Average values for
each method are shown in Figure 1 and comparative
values are shown in Figure 2.

3.1 Communication rate (output rate)

The overall average words per minute and task com-
pletion time for each method is shown in Figure 1,
and Figure 2 shows comparative data for the three
methods. As hypothesized, advanced prediction was
found to be significantly faster than basic prediction
and basic prediction was found to be significantly
faster than no prediction (α = 0.01). For example,
users produced 59.9% more words per minute using
advanced prediction compared to no prediction. Ad-
vanced prediction was 44.4% faster than basic pre-
diction but basic prediction was only 10.1% faster
than no prediction.

Additionally, the relative task completion time is
shown in Figure 2. The copy tasks with advanced
prediction were completed in 64.5% of the time it
took to complete without word prediction. The trend
shown with relative task completion time reinforces
the trends shown with words per minute – advanced
prediction offers a large speedup over no prediction
and basic prediction, but basic prediction offers a
much smaller increase over no prediction.

Our results show that basic word prediction sig-
nificantly boosts communication rate and that ad-
vanced word prediction substantially increases com-
munication rate beyond basic prediction.

3.2 Input rate (seconds per keystroke)

Figures 1 and 2 indicate that there were significant
differences (at α = 0.01) in the methods in terms

of the rate at which keys were pressed. In partic-
ular, while overall communication rate was signif-
icantly faster with advanced prediction, users took
0.641 seconds longer for each key press from us-
ing advanced prediction compared to entry without
prediction. Similarly, users spent 0.345s longer to
enter each key using advanced as opposed to basic
prediction and basic prediction required more time
per keystroke than no prediction. The slower input
rate can be attributed to the additional demands of
searching through a prediction list and making a de-
cision about selecting a word from that list over con-
tinuing to type letters.

3.3 Keystroke savings / prediction utilization

The difference between the potential keystroke sav-
ings offered by advanced and basic prediction is sub-
stantial: 55.2% vs. 25.0%, as shown in Figure 1.
Accordingly, the actual keystroke savings that users
realized under each prediction method shows a wide
separation: 50.3% for advanced and 18.2% for ba-
sic. The keystroke savings that users of basic predic-
tion achieved seems quite a bit lower than the poten-
tial keystroke savings offered by the predictions. In
other words, the prediction utilization of basic pre-
diction was much lower than that of advanced pre-
diction. Comparative analysis shows a 17.1% im-
provement in prediction utilization from advanced
over basic prediction.

4 Discussion

The results show that communication rate increased
despite the decreased input rate due to a large reduc-
tion in the amount of input required (high keystroke
savings). In the past, researchers have noted that the
cognitive load of using word prediction was consid-
erable, so that the keystroke savings of word pre-
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Adv. over None Adv. over Basic Basic over None
Relative task completion time 0.6451 0.7011 0.9191

Words per minute (wpm) 59.9% faster2 44.4% faster2 10.1% faster2

Seconds per keystroke (spk) 0.641s2 0.345s2 0.286s2

Prediction utilization (pru) 17.1%2

Figure 2: Average per-subject improvements. (1 Significance not tested. 2 Significant at α = 0.01.)

diction was outweighed by the overhead of using
it. However, we have shown that despite significant
cognitive load, the reduction in keystroke savings
dominates the effect on output rate.

In contrast to earlier studies, our basic method
showed a significantly improved communication
rate over no prediction. One reason for this could
be the intuitiveness of our user interface. A second
reason could be related to the consistency of the ba-
sic prediction method. In particular, at least some
subjects using the basic prediction method learned
to scan the prediction list when the desired word was
recently used and mentioned it in the exit survey. At
other times they simply ignored the prediction list
and proceeded with letter-by-letter typing. This be-
havior would also explain why the input was sig-
nificantly slower with the advanced method over the
basic method – users found that scanning the predic-
tion list more often was worth the added effort. This
also explains the significant difference in prediction
utilization between the methods.

The relationship between keystroke savings and
communication rate is a trend of increasing rate
enhancement with increasingly accurate prediction
methods. Improved prediction methods offer greater
potential keystroke savings to users and users see
increased keystroke savings in practice. Addition-
ally, users rely on better predictions more and thus
lose less of the potential keystroke savings offered
by the method. We expect that keystroke savings
will see substantial increases from improved poten-
tial keystroke savings until prediction utilization is
closer to 100%.

5 Conclusions

Word prediction in an experimental AAC device
with simulated AAC users significantly enhances
communication rate. The difference between an ad-
vanced and basic prediction method demonstrates

that further improvements in language modeling for
word prediction are likely to appreciably increase
communication rate. Therefore, further research in
improving word prediction is likely to have an im-
portant impact on quality-of-life for AAC users. We
plan to improve word prediction and validate these
results using AAC users as future work.
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Abstract

We present a method for automatic deter-
miner selection, based on an existing lan-
guage model. We train on the Penn Tree-
bank and also use additional data from the
North American News Text Corpus. Our
results are a significant improvement over
previous best.

1 Introduction

Determiner placement (choosing if a noun phrase
needs a determiner, and if so, which one) is a
non-trivial problem in several language processing
tasks. While context beyond that of the current sen-
tence can sometimes be necessary, native speakers
of languages with determiners can select determin-
ers quite well for most NPs. Native speakers of lan-
guages without determiners have a much more diffi-
cult time.

Automating determiner selection is helpful in sev-
eral applications. A determiner selection program
can aid in Machine Translation of determiner-free
languages (by adding determiners after the text has
been translated), correct English text written by non-
native speakers (Lee, 2004), and choose determiners
for text generation programs.

Early work on determiner selection focuses on
rule-based systems (Gawronska, 1990; Murata and
Nagao, 1993; Bond and Ogura, 1994; Heine, 1998).
Knight and Chander (1994) use decision trees to
choose betweentheanda/an, ignoring NPs with no
determiner, and achieve 78% accuracy on their Wall

Street Journal corpus. (Deciding betweena andan
is a trivial postprocessing step.)

Minnen et al. (2000) use a memory-based learner
(Daelemans et al., 2000) to choose determiners of
base noun phrases. They choose between no deter-
miner (henceforenull), the, anda/an. They use syn-
tactic features (head of the NP, part-of-speech tag of
the head of the NP, functional tag of the head of the
NP, category of the constituent embedding the NP,
and functional tag of the constituent embedding the
NP), whether the head is a mass or count noun and
semantic classes of the head of the NP (Ikehara et
al., 1991). They report 83.58% accuracy.

In this paper, we use the Charniak language model
(Charniak, 2001) for determiner selection. Our ap-
proach significantly improves upon the work of Min-
nen et al. (2000). We also use additional automat-
ically parsed data from the North American News
Text Corpus (Graff, 1995), further improving our re-
sults.

2 The Immediate-Head Parsing Model

The language model we use is described in (Char-
niak, 2001). It is based upon a parser that, for a
sentences, tries to find the parseπ defined as:

arg maxπp(π | s) = arg maxπp(π, s) (1)

The parser can be turned into a language modelp(s)
describing the probability distribution over all pos-
sible stringss in the language, by considering all
parsesπ of s:

p(s) =
∑

π
p(π, s) (2)
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Herep(π, s) is zero if the yield ofπ 6= s.
The parsing model assigns a probability to a parse

π by a top-down process. For each constituentc in
π it first guesses the pre-terminal ofc, t(c) (t for
“tag”), then the lexical head ofc, h(c), and then the
expansion ofc into further constituentse(c). Thus
the probability of a parse is given by the equation

p(π) =
∏

c∈π
p(t(c) | l(c),H(c))

· p(h(c) | t(c), l(c),H(c))

· p(e(c) | l(c), t(c), h(c),H(c))

wherel(c) is the label ofc (e.g., whether it is a noun
phrase NP, verb phrase, etc.) andH(c) is the rel-
evant history ofc — information outsidec deemed
important in determining the probability in question.
H(c) approximately consists of the label, head, and
head-part-of-speech for the parent ofc: m(c), i(c),
and u(c) respectively and also a secondary head
(e.g., in “Monday Night Football” Monday would
be conditioned on both the head of the noun-phrase
“Football” and the secondary head “Night”).

It is usually clear to which constituent we are re-
ferring and we omit the(c) in, e.g.,h(c). In this no-
tation the above equation takes the following form:

p(π) =
∏

c∈π
p(t | l,m, u, i) · p(h | t, l,m, u, i)

· p(e | l, t, h,m, u). (3)

Next we describe how we assign a probability to
the expansione of a constituent. We break up a tra-
ditional probabilistic context-free grammar (PCFG)
rule into a left-hand side with a labell(c) drawn
from the non-terminal symbols of our grammar, and
a right-hand side that is a sequence of one or more
such symbols. For each expansion we distinguish
one of the right-hand side labels as the “middle” or
“head” symbolM(c). M(c) is the constituent from
which the head lexical itemh is obtained according
to deterministic rules that pick the head of a con-
stituent from among the heads of its children. To the
left of M is a sequence of one or more left labels
Li(c) including the special termination symbol△,
which indicates that there are no more symbols to
the left. We do the same for the labels to the right,
Ri(c). Thus, an expansione(c) looks like:

l →△Lm...L1MR1...Rn△. (4)

The expansion is generated first by guessingM ,
then in orderL1 throughLm+1 (= △), and then,R1

throughRn+1.
Let us turn to how this works in the case of de-

terminer recovery. Consider a noun-phrase, which,
missing a possible determiner, is simply “FBI.” The
language model is interested in the probability of the
strings “the FBI,” “a/an FBI” and “FBI.” The ver-
sion with the highest probability will dictate the de-
terminer, or lack thereof. So, consider (most of) the
probability calculation for the answer “the FBI:”

p(NNP | H) · p(FBI | NNP,H)

· p(det | FBI, NNP,H)

· p(△ | det, FBI, NNP,H)

· p(the | det, FBI, NNP,H) (5)

Of these, the first two terms, the probability that
the head will be an NNP (a singular proper noun)
and the probability that it will be “FBI”, are shared
by all three competitors,null, the, anda/an. These
terms can therefore be ignored when we only wish to
identify the competitor with the highest probability.
The next two probabilities state that the noun-phrase
contains a determiner to the left of “FBI” and that
the determiner is the last constituent of the left-hand
side. The last of the probabilities states that the de-
terminer in question isthe. Ignoring the first two
probabilities, the critical probabilities for “the FBI”
are:

p(det | FBI, NNP,H)

· p(△ | det, FBI, NNP,H)

· p(the | det, FBI, NNP,H) (6)

Conversely, to evaluate the probability of the noun-
phrase “FBI” — i.e., no determiner, we evaluate:

p(△ | FBI, NNP,H) (7)

We ask the probability of the NP stopping immedi-
ately to the left of “FBI.” For “a/an FBI” we evalu-
ate:

p(det | FBI, NNP,H)

· p(△ | det, FBI, NNP,H) (8)

· (p(a | det, FBI, NNP,H) +

p(an | det, FBI, NNP,H))
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Test Data Method Accuracy
leave-one-out Minnen et al. 83.58%

Language Model (LM) 86.74%
tenfold on development LM 84.72%

LM trained on WSJ + 3 million words of NANC 85.83%
LM trained on WSJ + 10 million words of NANC 86.36%
LM trained on WSJ + 20 million words of NANC 86.64%

tenfold on test LM trained on WSJ + 20 million words of NANC 86.63%

Table 1: Results of classification

This equation is very similar to Equation 6 (the
equation for “the FBI”, except the term for the prob-
ability of the is replaced by the sum of the probabil-
ities for a andan.

To choose betweennull, the, ora/an, the language
model in effect constructs Equations 6, 7 and 8 and
we pick the one that has the highest probability.

2.1 Training the model

As with (Minnen et al., 2000), we train the lan-
guage model on the Penn Treebank (Marcus et al.,
1993). As far as we know, language modeling
always improves with additional training data, so
we add data from the North American News Text
Corpus (NANC) (Graff, 1995) automatically parsed
with the Charniak parser (McClosky et al., 2006) to
train our language model on up to 20 million addi-
tional words.

3 Results and Discussion

The best results of Minnen et al. (2000) are using
leave-one-out cross-validation. We also test our lan-
guage model using leave-one-out cross-validation
on the Penn Treebank (Marcus et al., 1993) (WSJ),
giving us 86.74% accuracy (see Table 1).

Leave-one-out cross-validation does not make
sense in this case. When choosing determiners, we
can train a language model on similar data, but not
on other NPs in the article. Therefore, for the rest
of our tests, we use tenfold cross-validation. The
difference between leave-one-out and tenfold cross-
validation is due to the co-occurrence of NPs within
an article. Church (2000) shows that a word appears
with much higher probability when seen elsewhere
in an article. Thus, a rare NP might be unseen in
tenfold cross-validation, but seen in leave-one-out.

For each of our sets in tenfold cross validation,
we use 80% of the Penn Treebank for training, 10%
for development, and 10% for testing. The divisions
occur at article boundaries. On our development set
with tenfold cross-validation, we get 84.72% accu-
racy using the language model (Table 1).

As expected, we achieve significant improvement
when adding NANC data over training on data from
the Penn Treebank alone (Table 1). With 20 mil-
lion additional words, we seem to be approaching
an upper bound on the language model features. We
obtain improvement despite the fact that the parses
were automatic, but there may have been errors in
determiner selection due to parsing error.

Table 2 gives “error” examples. Some errors are
wrong (either grammatically or yielding a signifi-
cantly different interpretation), but some “incorrect”
answers are reasonable possibilities. Furthermore,
even all the text of the article is not enough for clas-
sification at times. In particular note Example 5,
where unless you know whether IBM wastheworld
leader or simply one of the world leaders at the time
of the article, no additional context would help.

4 Conclusions and Future Work

With the Charniak (Charniak, 2001) language
model, our results exceed those of the previous best
(Minnen et al., 2000) on the determiner selection
task. This shows the benefits of the language model
features in determining the most grammatical deter-
miner to use in a noun phrase. Such a language
model looks at much of the structure in individual
sentences, but there may be additional features that
could improve performance. There is a high rate of
ambiguity for many of the misclassified sentences.

The success of using a state-of-the-art language
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Guess Correct Sentence
the null (1) The computers were crude bytoday’s standards.
null the (2) In addition,the Apple II was an affordable $1,298.

(3) Highway officials insistthe ornamental railings on older bridges aren’t strong enough
to prevent vehicles from crashing through.

a/an the (4) The new carrier can tote as many as four cups at once.
(5) IBM, the world leader in computers, didn’t offer its first PC
until August 1981 as many other companies entered the market.

the a/an (6) In addition, the Apple II wasan affordable $1,298.
(7) “The primary purpose ofa railing is to contain a vehicle and not to provide
a scenic view,” says Jack White, a planner with the Indiana Highway Department.

a/an null (8) Crude as they were, these early PCs triggeredexplosive product development in
desktop models for the home and office.

Table 2: Examples of “errors”

model in determiner selection also suggests that one
would be helpful in making other decisions in the
surface realization stage of text generation. This is
an avenue worth exploring.
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Abstract 

This paper presents empirical results that 
contradict the prevailing opinion that en-
tity extraction is a boring solved problem.  
In particular, we consider data sets that 
resemble familiar MUC/ACE data, and re-
port surprisingly poor performance for 
both commercial and research systems.  
We then give an error analysis that sug-
gests research challenges for entity ex-
traction that are neither boring nor solved. 

1 Background 

Entity extraction or named entity recognition, as it 
is sometimes called, is a known and familiar prob-
lem.  Named entity (NE) tagging has been the sub-
ject of numerous shared-task evaluations, including 
the seminal MUC 6, MUC 7 and MET evaluations, 
the CoNLL shared task, the SIGHAN bake-offs, and 
the ACE evaluations.  With this track record, and 
with commercial vendors now selling named-entity 
tagging for a fee, many naturally consider entity 
extraction to be an essentially solved problem.  
The present paper challenges this view. 

The main issue, as we see it, is transfer: NE tag-
gers developed for a specific corpus tend not to 
perform well on other data sets.  Kosseim and 
Poibeau (2001), for one, show that the informal 
language of email or speech transcriptions befud-
dles taggers built for journalistic text.  Minkov et 
al (2005) further explore the systematic differences 
between journalistic and informal texts, training 
separate taggers for each text source of interest. 

Because named entity taggers are so strongly 
based on surface features, it isn’t surprising to ob-

serve poor tagger transfer across texts with signifi-
cantly different styles or with unrelated content.  In 
this paper, we report on the more surprising result 
that transfer issues arise even for texts with closely 
aligned content or closely aligned styles. 

In particular, we consider a range of primarily 
business-related texts that are, on the face of it, 
close in style and/or substance to the journalistic 
stories in existing NE data sets, MUC 6 in particular.  
We thus would have expected these texts to sup-
port good transfer performance from taggers con-
figured to the MUC task.  Instead, we found the 
same kinds of performance drops as Kosseim and 
Poibeau had noted for informal texts.  Our aim 
here is to shed light on the how and why of this. 

2 Scope of the present study 

We begin with a disclaimer.  Our goal is not so 
much to present new technical solutions to NE rec-
ognition, as to draw attention to those aspects of 
the problem that remain unsolved.  We cover two 
main thrusts: (i) a black-box evaluation of several 
NE taggers (commercial and research systems); and 
(ii) an error analysis of system performance. 

2.1 Evaluation data 

Our evaluation data set contains three distinct sec-
tions.  The largest component consists of publicly-
available financial reports filed with the Securities 
and Exchange Commission (SEC), in particular the 
2003 forms 10-K filed by eight Fortune 500 com-
panies.  These corporate annual reports share the 
same subject matter as much business news: sales, 
profits, acquisitions, business strategies and the 
like.  They take, however, a more technical slant 
and are rich in accounting jargon.  They are also 
longer, ranging in our study from 22 to 54 pages. 
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Preliminary exploration with our own MUC 6 
tagger showed these SEC filings to be particularly 
hard to tag.  Because their sheer length and techni-
cal emphasis seemed implicated in this poor per-
formance, we assembled a second corpus of forty 
Web-hosted business stories from such news pro-
viders as MS-NBC, CNN Money, and Motley Fool.  
These stories focus on the same eight companies as 
our 10-K data set, but are shorter and less techni-
cal, thus allowing us to isolate length and techni-
cality as factors in tagging business texts. 

The final portion of our test set consists of ten 
news stories that were selected to closely match the 
kind of data used in past MUC evaluations.  They 
were drawn from the New York Times (NYT) and 
Wall Street Journal (WSJ) on-line editions, and fo-
cus on current events, thus providing one more 
comparable dimension of evaluation.1 

2.2 Evaluated systems 

Five systems participated in our study, represent-
ing a range of commercial tools and research pro-
totypes.  Two of these are state-of-the-art hand-
built systems based on rule/pattern interpreters.  
Two are open-source statistical systems, one based 
on HMMs, and the other on CRFs; both were trained 
on the MUC 6 data set.  The final system is our own 
legacy MUC-style tagger, noted as Ariel in Table 1.  
Except as noted below, all the systems were run 
out of the box, with no adaptation to the data. 

License and privacy concerns prevent us from 
identifying all the systems; instead this paper re-
ports most results anonymously, using the names 
of Disney heroines as system pseudonyms.  We 
have, however exposed the identity of our own 
system out of fairness, as it benefited somewhat 
from earlier tuning to SEC forms 10-K. 

2.3 Evaluation method 

We attempted to replicate the procedure used in the 
MUC evaluations, extending it only as required by 

                                                
1 We will make the non-copyrighted part of our corpus (the 
10-Ks) available to other researchers. 

the characteristics of the taggers.  The test data 
were formatted as in MUC 6, and where SGML 
markup ran afoul of system I/O characteristics, we 
remapped the data manually, resolving, e.g., cross-
ing tags that may have strayed into the output. 

To provide scores that could be compared with 
the MUC evaluations, we created MUC6-compliant 
answer keys (Sundheim, 1995), and remapped sys-
tem output to this standard.  We removed system 
responses that were considered non-taggable in 
MUC (e.g., URLs) and conflated fine-grained dis-
tinctions not made in MUC (e.g., remapping coun-
try tags to location).  Scores were assessed with the 
venerable MUC scorer, which provides partial 
credit for system responses that match the key in 
type but not extent, or vice-versa.  The scorer also 
provides a full error analysis, separately character-
izing each error in a system response. 

3 Findings 

Table 2, overleaf, presents our overall findings, 
aggregated across the three primary entity types: 
person, organization, and location (the ENAMEX 
types in the MUC standard).  We generally did not 
measure the MUC TIMEX (dates, times) and NUMEX 
types (moneys, percents) because: (i) neither of the 
statistical systems generate them; (ii) those systems 
that do generate them tend to do well; (iii) they are 
overwhelmingly more frequent in the SEC data than 
in news, thus skewing results.  For completeness’ 
sake, however, Table 2 does provide all-entity 
news scores in parentheses for those systems that 
happened to generate the full set of MUC-6 entities. 

Turning now to actual performance measure-
ments, Table 2 does not present an especially 
pretty picture.  Aside from two systems’ runs on 
the MUC-like current events, all the scores are sub-
stantially below those obtained by competitive 
MUC systems, which typically reached F scores in 
the mid-90s, with a high of F=96 at MUC-6. 

SEC.  The worst performances were turned in 
for SEC filings, as shown in the first block of rows 
in Table 2.  While precision is generally poor, re-
call is even worse.  One reason for this is the very 
frequent rightwards shortenings of company names 
(e.g., from 3M Corporation to the Corporation), in 
contrast to the leftwards shortening (e.g., 3M) fa-
vored in news texts.  Ariel had been tuned to tag all 
these cases, but the other systems only tagged a 
scattershot fraction.  To isolate the contribution of 

Pocahontas Rule-based 
Belle Rule-based 
Jasmine Statistical, HMM, MUC-trained 
Mulan Statistical, CRF, MUC-trained 
Ariel Rule-based, 10-K tuning 

Table 1: system pseudonyms. 
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these cases to system recall error, we recalculated 
the scores by making the cases optional.  The 
scorer removes missing optional responses from 
the recall denominator, and as expected recall im-
proved; see the second block in Table 2. 

 Business news.  The most consistent perform-
ance across systems was achieved with business 
news, with scores ranging in F=69-80.  This is a 
huge improvement over the gaping F=36-75 range 
we saw with SEC filings (F=43-75 with optional 
short names).  This confirms that length and finan-
cial jargon are implicated in the poor performance 
on forms 10-K.  Nonetheless, these improved 
scores are still 15-20 points lower than the better 
MUC scores.  Is business language just hard to tag? 

MUC-like news.  Our attempt to replicate the 
MUC evaluation data yields an equivocal answer.  
Two systems (Pocahontas and Ariel) achieved 
MUC6-level scores; it may not be coincidental that 
both are next-generation versions of systems that 
participated at MUC.  Of the other systems, MUC-
trained Mulan also showed substantial improve-
ment going from business news to current events. 

While it is good news that three of the systems 
that were explicitly trained on MUC (manually or 
statistically) did well on MUC-like data, it is disqui-
eting to see how poorly this training generalized to 
other news texts. 

4 Factors affecting performance 

A finer analysis of our three data sets helps trian-
gulate the factors leading to the systematic per-
formance differences shown in Table 2. 

Prevalence of organizations.  One factor espe-
cially stands out: as Table 3 shows, organizations 

are twice as prevalent in the business sources as in 
the MUC-like data.  As organization scores gener-
ally trail scores for persons and locations (Table 4), 
this partly explains why business texts are hard. 

Kinds of organizations.  But that does not ex-
plain it all.  The profiles in Figure 1 show that cur-
rent events favor government/quasi-government 
names (e.g.,“Congress,” “Hamas”).  They are less 
linguistically productive than the corporate and 
quasi-corporate names in business texts, and so are 
more amenable to being explicitly listed in name 
gazetteers.  Florian et al (2003) note the effective-
ness of gazetteers for tagging the CoNLL corpus. 

Editorial standards.  Our business news data 
reflect a growing portion of Web-hosted texts that 
relax the journalistic editorial rules of traditional 
news sources such as the NYT or WSJ.  For in-
stance, our data show the same frequent omission 
of corporate designators (e.g. “inc.”) that Kosseim 
noted in informal text.  Whereas news sources of 
record will generally mention a company’s desig-
nator at least once in a story, our business data fre-
quently fail to do so at all, thus removing a key 
name-tagging cue.  By tracing the Ariel rule base, 
we found that the absence of any designator was 
implicated in 81% of the system’s recall error for 
organization names. 

Length.  Name taggers often overcome this 
kind of missing evidence by second-passing a text, 
propagating name mentions identified in the first 

 Pocahontas Belle Jasmine Mulan Ariel 
R=58 R=28 R=50 R=50 R=71 
P=65 P=52 P=43 P=56 P=79 

SEC filings 

F=61.1 F=36.4 F=42.7 F=52.6 F=74.5 
R=71 R=36 R=55 R=60 R=71 
P=65 P=52 P=40 P=56 P=79 

SEC filings, 
“the Corp.” 
optional F=68.0 F=42.8 F=46.2 F=57.9 F=74.7 

R=80 (82) R=64 (69) R=76 R=65 R=71 (75) 
P=80 (79) P=86 (83) P=63 P=74 P=74 (75) 

Business 
news 

F=80.1 (81) F=73.5 (75) F=69.1 F=69.2 F=72.3 (75) 
R=94 (94) R=59 (63) R=79 R=79 R=89 (91) 
P=94 (93) P=82 (80) P=70 P=92 P=91 (92) 

Current 
events 
(MUC-like) F=94.3 (94) F=68.5 (71) F=74.5 F=84.9 F=90.4 (92) 

Table 2: aggregated extraction scores, ENAMEX only, unless parenthesized (in parens = all entities). 

 SEC Business MUC 
Org 70% 65% 29% 
Per 9% 23% 35% 
Loc 21% 12% 36% 
Table 3: Relative distribution of entity types 
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pass to matching but undetected mentions (Mik-
heev, 1999).  This strategy runs foul, though, when 
the first pass produces precision errors, as these too 
can get propagated.  Document length is implicated 
in this through the greater cumulative likelihood of 
making an error on the first pass and of finding a 
mention that matches the error on the second pass. 

Quasi-names and non-names.  A final factor 
that especially afflicts the Forms 10-K is the simi-
larity of names and non-names.  Non-taggable 
product names (“AMD Athlon”) often look like le-
gitimate subsidiaries, while valid operating divi-
sions (“Health Care”) are often hard to distinguish 
from generic designations of market segments.  

5 Implications for further research. 

What surprised us most in conducting this study 
was to find so obvious a transfer gap among what 
appear to be very similar text sources.  We were 
also surprised by the involvement in this of relaxed 
editorial standards around seeming trivia (like the 
keyword “inc.”)  This suggests, for one, that cur-
rent techniques remain too dependent on skin-deep 
word co-occurrence features.  It also suggests that 
the editorially pristine news texts used in so much 
NE research may be atypically easy to tag. 

While name-tagging programs may struggle 
with editorially informal texts, the absence of sur-

face contextual cues poses no noticeable challenge 
to human readers.  What cues are left, and there are 
many, are semantic in nature: predicate-argument 
structure, selectional restrictions, organization of 
the lexicon, etc.  Recent efforts to create common 
propositional banks and lexical ontologies may 
thus have much to offer.  Indeed, current research 
in these areas is just beginning to trickle down to 
the name-tagging problem (Mohit & Hwa, 2005). 

Another key issue is ensuring tagging coher-
ency at the whole-document level.  This might help 
alleviate the kind of error propagation with dual-
pass strategies that particularly afflicts long docu-
ments.  Recent applications of statistical co-
reference models are beginning to show promise 
(Finkel et al, 2005; Ji & Grishman, 2005). 

Lastly, we can see this whole study as a particu-
lar challenge case for transfer learning, and indeed 
such work as Sutton and McCallum’s (2005) has 
looked at the name-tagging task from a transfer 
learning standpoint. 

It may thus be that today’s exciting emerging 
work in “unsolved” areas – semantics, reference, 
and learning – could come to play a key role in 
what is sometimes maligned as yesterday’s boring 
solved problem. 
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 Poca. Belle Jasm. Mul. Ariel 
S org F=62 F=10 F=46 F=53 F=83 
  opt F=74 F=14 F=52 F=61 F=83 
S per F=75 F=65 F=49 F=64 F=60 
S loc F=79 F=77 F=49 F=74 F=78 
B org F=77 F=72 F=70 F=63 F=66 
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Abstract

We present a novel machine translation
framework based on kernel regression
techniques. In our model, the translation
task is viewed as a string-to-string map-
ping, for which a regression type learning
is employed with both the source and the
target sentences embedded into their ker-
nel induced feature spaces. We report the
experiments on a French-English transla-
tion task showing encouraging results.

1 Introduction

Fig. 1 illustrates an example of phrase alignment
for statistical machine translation (SMT). A rough
linear relation is shown by the co-occurences of
phrases in bilingual sentence pairs, which motivates
us to introduce a novel study on the SMT task:

If we define the feature spaceHx of our source
languageX as all its possible phrases (i.e. informa-
tive blended wordn-grams), and define the mapping
Φx : X → Hx, then a sentencex ∈ X can be ex-
pressed by its feature vectorΦx(x) ∈ Hx. Each
component ofΦx(x) is indexed by a phrase with the
value being the frequency of it inx. The definition
of the feature spaceHy of our target languageY can
be made in a similar way, with corresponding map-
ping Φy : Y → Hy. Now in the machine translation
task, givenS = {(xi, yi) : xi ∈ X , yi ∈ Y, i =
1, . . . ,m}, a set of sample sentence pairs whereyi

is the translation ofxi, we are trying to learnW a
matrix represented linear operator, such that:

Φy(y) = f(x) = WΦx(x) (1)

we return
to marked

questions

marquées

nous

revenous

aux
questions

Figure 1: Phrase alignment in SMT

to predict the translationy for a new sentencex.
Comparing with traditional methods, this model

gives us a theoretical framework to capture higher-
dimensional dependencies within the sentences. To
solve the multi-output regression problem, we inves-
tigate two models, least squares regression (LSR)
similar to the technique presented in (Cortes et al.,
2005), and maximum margin regression (MMR) in-
troduced in (Szedmak et al., 2006).

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief review of the regression models.
Section 3 details the solution to the pre-image prob-
lem. We report the experimental results in Section
4, with discussions in Section 5.

2 Kernel Regression with Vector Outputs

2.1 Kernel Induced Feature Space

In the practical learning process, only the inner prod-
ucts of the feature vectors are needed (see Section
2.2, 2.3 and 3), so we can perform the so-called
kernel trick to avoid dealing with the very high-
dimensional feature vectors explicitly. That is, for
x, z ∈ X , a kernel function is defined as:

κx(x, z) = 〈Φx(x),Φx(z)〉 = Φx(x)⊤Φx(z) (2)
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Similarly, a kernel functionκy(·, ·) is defined inHy.
In our case, the blendedn-spectrum string ker-

nel (Lodhi et al., 2002) that compares two strings
by counting how many (contiguous) substrings of
length from 1 up ton they have in common, is a good
choice for the kernel function to induce our feature
spacesHx andHy implicitly, even though it brings
in some uninformative features (word n-grams) as
well, when compared to our original definition.

2.2 Least Squares Regression

A basic method to solve the problem in Eq. 1 is least
squares regression that seeks the matrixW mini-
mizing the squared loss inHy on the training setS:

min ‖WMx −My‖
2
F (3)

where Mx = [Φx(x1), ...,Φx(xm)], My =
[Φy(y1), ...,Φy(ym)], and‖ · ‖F denotes the Frobe-
nius norm.

Differentiating the expression and setting it to
zero gives:

2WMxM
⊤
x − 2MyM

⊤
x = 0

⇒ W = MyK
−1
x M

⊤
x (4)

whereKx = M
⊤
x Mx = (κx(xi, xj)1≤i,j≤m) is the

Gram matrix.

2.3 Maximum Margin Regression

An alternative solution to our regression learn-
ing problem is proposed in (Szedmak et al.,
2006), called maximum margin regression. If L2-
normalized feature vectors are used in Eq. 1, de-
noted byΦ̄x(·) andΦ̄y(·), MMR solves the follow-
ing optimization:

min
1

2
‖W‖2

F + C

m∑

i=1

ξi (5)

s.t. 〈Φ̄y(yi),WΦ̄x(xi)〉Hy
≥ 1− ξi,

ξi > 0, i = 1, . . . ,m.

whereC > 0 is the regularization coefficient, and
ξi are the slack variables. The Lagrange dual form
with dual variablesαi gives:

min

m∑

i,j=1

αiαj κ̄x(xi, xj)κ̄y(yi, yj)−

m∑

i=1

αi

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m. (6)

where κ̄x(·, ·) and κ̄y(·, ·) denote the kernel func-
tions associated to the respective normalized feature
vectors.

This dual problem can be solved efficiently with
a perceptron algorithm based on an incremental
subgradient method, of which the bounds on the
complexity and achievable margin can be found in
(Szedmak et al., 2006).

Then according to Karush-Kuhn-Tucker theory,
W is expressed as:

W =

m∑

i=1

αiΦ̄y(yi)Φ̄x(xi)
⊤ (7)

In practice, MMR works better when the distribu-
tion of the training points are symmetrical. So we
center the data before normalizing them. IfΦSx

=
1
m

∑m
i=1 Φx(xi) is the centre of mass of the source

sentence sample set{xi} in the feature space, the
new feature map is given bŷΦx(·) = Φx(·) − ΦSx

.
The similar operation is performed onΦy(·) to ob-
tain Φ̂y(·). Then the L2-normalizations of̂Φx(·) and
Φ̂y(·) yield our final feature vectors̄Φx(·) andΦ̄y(·).

3 Pre-image Solution

To find the pre-image sentencey = f−1(x) can be
achieved by seekingyt that has the minimum loss
between its feature vectorΦy(yt) and our prediction
f(x). That is (Eq. 8: LSR, Eq. 9: MMR):

yt = arg min
y∈Y(x)

‖WΦx(x)− Φy(y)‖2

= arg min
y∈Y(x)

κy(y, y)− 2ky(y)K−1
x kx(x) (8)

yt = arg min
y∈Y(x)

1− 〈Φ̄y(y),WΦ̄x(x)〉Hy

= arg max
y∈Y(x)

m∑

i=1

αiκ̄y(yi, y)κ̄x(xi, x) (9)

whereY(x) ⊂ Y is a finite set covering all po-
tential translations for the given source sentence
x, and kx(·) = (κx(·, xi)1≤i≤m) and ky(·) =
(κy(·, yi)1≤i≤m) arem× 1 column matrices.

A properY(x) can be generated according to a
lexicon that contains possible translations for every
component (word or phrase) inx. But the size of it
will grow exponentially with the length ofx, which
poses implementation problem for a decoding algo-
rithm.
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In earlier systems, several heuristic search meth-
ods were developed, of which a typical example
is Koehn (2004)’s beam search decoder for phrase-
based models. However, in our case, because of the
κy(y, y) item in Eq. 8 and the normalization opera-
tion in MMR, neither the expression in Eq. 8 nor
the one in Eq. 9 can be decomposed into a sum
of subfunctions each involving feature components
in a local area only. It means we cannot estimate
exactly how well a part of the source sentence is
translated, until we obtain a translation for the entire
sentence, which prevents us doing a straightforward
beam search similar to (Koehn, 2004).

To simplify the situation, we restrict the reorder-
ing (distortion) of phrases that yield the output sen-
tences by only allowing adjacent phrases to ex-
change their positions. (The discussion of this strat-
egy can be found in (Tillmann, 2004).) We usex[i:j]

andy[i:j] to denote the substrings ofx andy that be-
gin with theith word and end with thejth. Now, if
we go back to the implementation of a beam search,
the current distortion restriction guarantees that in
each expansion of the search states (hypotheses) we
havex[1:lx] translated to ay[1:ly], either like state (a)
or like state (b) in Fig. 2, wherelx is the number of
words translated in the source sentence, andly is the
number of words obtained in the translation.

We assume that ify is a good translation ofx,
theny[1:ly] is a good translation ofx[1:lx] as well. So
we can expect that the squared loss‖WΦx(x[1:lx])−
Φy(y[1:ly])‖

2 in the LSR is small, or the inner prod-
uct 〈Φ̄y(y[1:ly]),WΦ̄x(x[1:lx])〉Hy

in the MMR is
large, for the hypothesis yielding a good translation.
According to Eq. 8 and Eq. 9, the hypotheses in the
search stacks can thus be reranked with the follow-
ing score functions (Eq. 10: LSR, Eq. 11: MMR):

Score(x[1:lx], y[1:ly]) = (10)

κy(y[1:ly], y[1:ly])− 2ky(y[1:ly])K
−1
x kx(x[1:lx])

Score(x[1:lx], y[1:ly]) =
m∑

i=1

αiκ̄y(yi, y[1:ly])κ̄x(xi, x[1:lx]) (11)

Therefore, to solve the pre-image problem, we
just employ the same beam search algorithm as
(Koehn, 2004), except we limit the derivation of new
hypotheses with the distortion restriction mentioned

nous revenous aux questions

we return to questions

marquées …(a)

(b)

marked

…nous revenous aux questions

we return to questions

marquées

Figure 2: Search states with the limited distortion.

above. However, our score functions will bring
more runtime complexities when compared with tra-
ditional probabilistic methods. The time complexity
of a naive implementation of the blendedn-spectrum
string kernel between two sentencessi and sj is
O(n|si||sj|), where|·| denotes the length of the sen-
tence. So the score function in Eq. 11 results in an
average runtime complexity ofO(mnlyl), wherel is
the average length of the sentencesyi in the training
set. Note herēκx(x[1:lx], xi) can be pre-computed
for lx from 1 to |x| before the beam search, which
calls forO(m|x|) space. The average runtime com-
plexity of the score function in Eq. 10 will be the
same if we pre-computeK−1

x kx(x[1:lx]).

4 Experimental Results

4.1 Resource Description

Baseline System To compare with previous work,
we take Pharaoh (Koehn, 2004) as a baseline system,
with its default settings (translation table size 10,
beam size 100). We train a trigram language model
with the SRILM toolkit (Stocke, 2002). Whilst, the
parameters for the maximum entropy model are de-
veloped based on the minimum error rate training
method (Och, 2003).

In the following experiments, to facilitate com-
parison, each time we train our regression models
and the language model and translation model for
Pharaoh on a common corpus, and use the same
phrase translation table as Pharaoh’s to decode our
systems. According to our preliminary experiments,
with the beam size of 100, the search errors of our
systems can be limited within 1.5%.

Corpora To evaluate our models, we randomly
take 12,000 sentences from the French-English por-
tion of the 1996–2003 Europarl corpus (Koehn,
2005) for scaling-up training, 300 for test (Test), and
300 for the development of Pharaoh (Dev). Some
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Vocabulary Words Perplexity
Fr En Fr En Dev Test

4k 5084 4039 43k 39k 32.25 31.92
6k 6426 5058 64k 59k 30.81 29.03
8k 7377 5716 85k 79k 29.91 28.94
10k 8252 6339 106k 98k 27.55 27.09
12k 9006 6861 127k 118k 27.19 26.41

Table 1: Statistics of the corpora.

characteristics of the corpora are summarized in Ta-
ble 1.

4.2 Results

Based on the 4k training corpus, we test the per-
formance of the blendedn-spectrum string kernel in
LSR and MMR using BLEU score, with n increas-
ing from 2 to 7. Fig. 3 shows the results. It can be
found that the performance becomes stable whenn
reaches a certain value. Finally, we choose the 3-
spectrum for LSR, and the 5-spectrum for MMR.

Then we scale up the training set, and compare the
performance of our models with Pharaoh in Fig. 4.
We can see that the LSR model performs almost as
well as Pharaoh, whose differences of BLEU score
are within 0.5% when the training set is larger than
6k. But MMR model performs worse than the base-
line. With the training set of 12k, it is outperformed
by Pharaoh by 3.5%.

5 Discussions

Although at this stage the main contribution is
still conceptual, the capability of our approach to
be applied to machine translation is still demon-
strated. Comparable performance to previous work
is achieved by the LSR model.

But a main problem we face is to scale-up the
training set, as in practice the training set for SMT
will be much larger than several thousand sentences.
A method to speed up the training is proposed in
(Cortes et al., 2005). By approximating the Gram
matrix with a n × m (n ≪ m) low-rank matrix,
the time complexity of the matrix inversion opera-
tion can be reduced fromO(m3) to O(n2m). But
the space complexity ofO(nm) in their algorithm is
still too expensive for SMT tasks. Subset selection
techniques could give a solution to this problem, of
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Figure 3: BLEU(%) versusn-spectrum
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Figure 4: BLEU(%) versus training set size

which we will leave the further exploration to future
work.
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Abstract

We propose a variation of the SO-PMI al-
gorithm for Japanese, for use in Weblog
Opinion Mining. SO-PMI is an unsuper-
vised approach proposed by Turney that
has been shown to work well for English.
We first used the SO-PMI algorithm on
Japanese in a way very similar to Turney’s
original idea. The result of this trial leaned
heavily toward positive opinions. We then
expanded the reference words to be sets of
words, tried to introduce a balancing fac-
tor and to detect neutral expressions. After
these modifications, we achieved a well-
balanced result: both positive and negative
accuracy exceeded 70%. This shows that
our proposed approach not only adapted
the SO-PMI for Japanese, but also modi-
fied it to analyze Japanese opinions more
effectively.

1 Introduction

Recently, more and more websites add information
in the form of personal opinions to the Web, e.g.
customer reviews of products, forums, discussion
groups, and blogs. Here, we use the term Weblog for
these sites. This type of information is often useful.
However, we have to deal with an enormous amount
of unstructured and/or semi-structured data. These
data are subjective, in free format and mostly tex-
tual, thus using them is difficult and time consum-
ing. Therefore, how to mine the Weblog opinions
automatically more effectively has attracted more
and more attention (Gamon, 2005; Popescu, 2005;
Chaovalit, 2005).

Turney (2002) has presented an unsupervised
opinion classification algorithm called SO-PMI (Se-
mantic Orientation Using Pointwise Mutual Infor-
mation). The main use of SO-PMI is to estimate
the semantic orientation (i.e. positive or negative)
of a phrase by measuring the hits returned from a
search engine of pairs of words or phrases, based on
the mutual information theory. This approach has
previously been successfully used on English. The
average accuracy was 74% when evaluated on 410
reviews from Epinions1.

However, according to our preliminary experi-
ment, directly translating Turney’s original idea into
Japanese gave a very slanted result, with apositive
accuracyof 95% and anegative accuracyof only
8%. We found that the balance between the posi-
tive and negative sides is influenced greatly by the
page hits of reference words/sets, since a search en-
gine is used. Therefore, we introduced a balancing
factor according for the difference in occurrence be-
tween positive and negative words. And then we
added several threshold rules to detect neutral ex-
pressions. The proposed approach is evaluated on
200 positive and 200 negative Japanese opinion sen-
tences and yielded a well-balanced result.

In the remainder of this paper, we review the SO-
PMI Algorithm in Section 2, then adapt the SO-PMI
for Japanese and present the modifications in Sec-
tion 3. In section 4, we evaluate and discuss the
experimental results. Section 5 gives concluding re-
marks.

2 Details of the SO-PMI Algorithm

The SO-PMI algorithm (Turney, 2002) is used to es-
timate the semantic orientation (SO) of a phrase by

1
http://www.epinions.com
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measuring the similarity of pairs of words or phrases
using the following formula:

PMI(word1,word2)=log2

[
p(word1&word2)

p(word1)p(word2)

]
(1)

SO(phrase) = PMI(phrase,“excellent”)

−PMI(phrase,“poor”) (2)

The reference words “excellent” and “poor” are
used, thus SO is positive when a phrase is more
strongly associated with “excellent” and negative
when a phrase is more strongly associated with
“poor”. Let hits(query) be the number of hits re-
turned when using a search engine, the following
estimate of SO can be derived from Formula (2) and
(1) with some minor algebraic manipulation.

SO(phrase) = log2 [A]

A = hits(phrase NEAR“excellent”)∗hits(“poor”)
hits(phrase NEAR“poor”)∗hits(“excellent”) (3)

Turney used AltaVista2 search engine because it
has a NEAR operator. This operator constrains the
search to documents that contain the words within
ten words of one another, in either order. Turney’s
previous work has shown that NEAR performs bet-
ter than AND when measuring the strength of se-
mantic association between words.

3 Our Proposed Approach

The first step of our approach is to extract opin-
ion phrases using word POS (part of speech) tem-
plates based on our analysis of opinions in Japanese
Weblog and the results of related work (Kobayashi,
2003; Taku, 2002; Wang, 2006). The second step is
to estimate the semantic orientation of the extracted
phrases, using the SO-PMI algorithm.

3.1 Adapting SO-PMI for Japanese

Following Turney’s original idea, we first translated
the SO formula to the one shown in Formula (4) for
Japanese.

SO(phrase) = log2 [B] (4)

We used the Google search engine3 to get the
hits(query) even though Google does not have a
NEAR operator. The AltaVista NEAR operator does
not work well for Japanese and Google indexes more

2
http://www.altavista.com/sites/search/adv

3
http://www.google.co.jp/

pages than AltaVista, thus we used Google and re-
placed the NEAR operator with the AND operator in
the SO formula. “すばらしい” and “不良” were se-
lected because they correspond to the English words
“excellent” and “poor”.

For testing the performance of this trial, we used
200 positive and 200 negative Japanese opinion sen-
tences which have been labeled by hand. The re-
sults were very slanted. Many phrases, whether pos-
itive or negative in meaning, still received a posi-
tive SO. Some possible causes could be that “不良
(poor)” has more hits than “すばらしい (excellent)”,
as shown in Table 1, and that the AND operator is
less useful than the NEAR operator.

3.2 Modifying SO-PMI for Japanese

In Japanese, there are many expressions when
people evaluate something. For example, “いい
(good)”, “良い (good)”, “満足 (satisfaction)” , “す
ばらしい (excellent)” are usually used when some-
one wants to convey a positive opinion. Hence
we tried to replace the reference words “excellent”
and “poor” with two reference sets: “p−basic” and
“n−basic”:

SO(phrase) = log2 [C]

C = hits(phrase ANDp−basic)∗hits(n−basic)
hits(phrase ANDn−basic)∗hits(p−basic) (5)

“p−basic” is a set of common strong positive
words in Japanese. “n−basic” is a set of common
weak negative words. The hit counts of these words
from Google is shown in Table 1 (All data from
2007/01/12). The hits(query) was calculated by
hits(phrase AND (“いい (good)” OR “好き (like)”)
OR “良い (good)” OR ...).

Table 1:Frequency ofp−basic/n−basic words on the Web

2.57 26,000すばらしい(excellent) 2.81 28,400おもしろい(interesting) 5.89 59,500うれしい(happy) 7.40 74,700素敵(lovely) 7.48 75,500嬉しい(happy) 7.89 79,700面白い(interesting) 7.98 80,600満足(satisfaction) 9.59 96,900良く(good) 10.20 103,000よい(good) 10.59 107,000楽しい(delightful) 11.39 115,000欲しい(want) 11.39 115,000大好き(favorite) 14.85 150,000魅力(charm) 20.89 211,000良い(good) 23.96 242,000好き(like) 36.83 372,000いい(good) R(%)Hits (K)p_basic words

2.57 26,000すばらしい(excellent) 2.81 28,400おもしろい(interesting) 5.89 59,500うれしい(happy) 7.40 74,700素敵(lovely) 7.48 75,500嬉しい(happy) 7.89 79,700面白い(interesting) 7.98 80,600満足(satisfaction) 9.59 96,900良く(good) 10.20 103,000よい(good) 10.59 107,000楽しい(delightful) 11.39 115,000欲しい(want) 11.39 115,000大好き(favorite) 14.85 150,000魅力(charm) 20.89 211,000良い(good) 23.96 242,000好き(like) 36.83 372,000いい(good) R(%)Hits (K)p_basic words

1.02 10,300 まずい(bad) 1.54 15,600 あまり(not good) 1.64 16,600 不具合 (fault) 2.05 20,700 最悪(worst) 2.20 22,200 不満(dissatisfaction) 2.58 26,100 不快(dissatisfaction) 2.62 26,500 辛い(painful) 2.62 26,500 だめ(useless) 3.67 37,100 嫌い(dislike) 3.75 37,900 あんまり(not good) 6.44 65,000 嫌(dislike) 7.68 77,600 難しい(hard) 7.71 77,900 欠点(fault) 8.22 83,000 不安(worry) 10.89 110,000 悪い(bad) 11.78 119,000 不良(poor) R(%)Hits (K)n_basic words

1.02 10,300 まずい(bad) 1.54 15,600 あまり(not good) 1.64 16,600 不具合 (fault) 2.05 20,700 最悪(worst) 2.20 22,200 不満(dissatisfaction) 2.58 26,100 不快(dissatisfaction) 2.62 26,500 辛い(painful) 2.62 26,500 だめ(useless) 3.67 37,100 嫌い(dislike) 3.75 37,900 あんまり(not good) 6.44 65,000 嫌(dislike) 7.68 77,600 難しい(hard) 7.71 77,900 欠点(fault) 8.22 83,000 不安(worry) 10.89 110,000 悪い(bad) 11.78 119,000 不良(poor) R(%)Hits (K)n_basic words

We evaluated this modification using the same
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data as in Section 3.1. We obtained a slightly bet-
ter result. However the SO values were still slanted.
This time many phrases, whether positive or nega-
tive in meaning, still received a negative SO. All of
these test results are shown in detail in Section 4.2.

In the experiments above, we obtained heavily
slanted results. We consider that the large differ-
ence in page hits between the positive and negative
reference words/sets are the main cause for this phe-
nomenon. To mitigate this problem, we decided to
introduce a balancing factor to adjust the balance be-
tween the positive and negative sides. The SO for-
mula was modified from (5) to (6).

SO(phrase) = log2 [C] + f (α) (6)

The balancing factorf(α) was calculated by For-
mula (7).

f (α) = α ∗ log2

[
hits(p−basic)
hits(n−basic)

]
(7)

The log2 of “p−basic” and “n−basic” is a fac-
tor that adjusts the balance of the similarity of
“p−basic”/“ n−basic” and phrases automatically by
the hits of “p−basic”/“ n−basic” itself. α is a weight
value. We evaluated different values ofα from “0.0”
to “1.0” on the benchmark dataset, which is shown
in detail in Section 4.2.

From these preliminary trials, we also found that
many neutral phrases often receive positive or neg-
ative SO. Therefore we added detection of neu-
tral expressions. The idea is that if the phrase is
strongly or faintly associated with both “p−basic”
and “n−basic”, it is considered a neutral phrase. Be-
cause this means that this phrase has an ambiguous
connection with both “p−basic” and “n−basic”. We
use the following rules (Figure 1) to separate neutral
phrases from positive/negative phrases. The thresh-
old valuesta, tb and tc are obtained from a small,
hand-labeled corpus.1. hits( phrase AND p_basic) > ta AND hits( phrase AND n_basic) > ta2.  hits( phrase AND p_basic) < tb AND  hits( phrase AND n_basic) < tb3.  | hits( phrase AND p_basic) – hits( phrase AND n_basic) | < tc4. SO( phrase ) = 0 
Figure 1: Rules for Detecting Neutral Expressions

4 Experimental Performance Evaluation
4.1 Gold Standard and Evaluation Metrics

As a gold standard, we collected a benchmark
dataset which has 200 positive opinion sentences

and 200 negative opinion sentences from the reviews
about Electronic Dictionary and MP3 Player prod-
ucts that have been labeled as either positive or neg-
ative reviews in “Kakaku.com”4. “Kakaku.com” is
the largest Japanese Weblog specializing in product
comparison of consumer goods, including price and
user opinions, etc. Lots of people exchange mis-
cellaneous product information and reviews. These
reviews are classified as questions, positive re-
views, negative reviews, rumors, sale information or
“other” category.

To classify a sentence as positive (P) or negative
(N), the average SO of the phrases in the sentence is
used. If the average SO is P, the sentence is a posi-
tive sentence; otherwise it is a negative sentence. As
evaluation metrics, we measured our proposed ap-
proach’s performance byaccuracy. accuracywas
measured as the number of sentences correctly clas-
sified as P/N sentences to the total number of P/N
sentences in the benchmark dataset (200).PA means
positive accuracy, NA meansnegative accuracy, i.e.
the accuracy on only positive or negative sentences
respectively.

4.2 Experiments and Results

First we did the balancing factor experiment to
determine the value of “α”, using the benchmark
dataset. The results are shown in Figure 2. (a)
and (b) show the dashed line indicates average ac-
curacy (74%) on English Data from Turney’s Study
(2002). Turney didn’t evaluate positive and nega-
tive accuracy respectively. The full drawn line indi-
cates the result after translating the original SO-PMI
to Japanese (PA:95%, NA: 8%).PA series (the line
with triangle mark)/NA series (the line with circle
mark) when values of “α” from “0.0” to “1.0” were
used.

Changing theα tends to be a tradeoff, lowering
PA when NA is improved and vice versa. There-
fore, we usedHarmonic−Mean by the following
formula to find a proper value of “α”.

Harmonic−Mean =
2 ∗ PA ∗NA

PA + NA
(8)

Figure 2, (c) shows PA, NA and
Harmonic−Mean curves for different values

4
http://www.kakaku.com/
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Figure 2: Experiment forα in Balance Factor

of “α”. We selected the “α=0.9” giving the highest
Harmonic−Mean value, thus giving a good
balance betweenPA (75%) andNA (70%).

The comparative experiment results between the
SO-PMI for Japanese (Test 1), and our modifications
(Test 2, 3, 4) are shown in Table 2.

Table 2: Comparative Experiment Results

7278Test 3 + Modification 3: Neutral Phrase DetectionTest 4PA: Positive Accuracy         NA: Negative Accuracy Test 3Test 2Test 1 9912Modification 1: Two Reference Sets 7075Test 2 + Modification 2: Balancing Factor [α =  0.9] 895Naive translation of Turney’s Approach for Japanese NA(%)PA(%)Test Content
7278Test 3 + Modification 3: Neutral Phrase DetectionTest 4PA: Positive Accuracy         NA: Negative Accuracy Test 3Test 2Test 1 9912Modification 1: Two Reference Sets 7075Test 2 + Modification 2: Balancing Factor [α =  0.9] 895Naive translation of Turney’s Approach for Japanese NA(%)PA(%)Test Content

In Test 1 and 2, we obtained extreme results, lean-
ing to the positive or negative end, whether using the
Turney’s original approach or expanding the refer-
ence word as “p−basic” and “n−basic”. In Test 3,
we added a balancing factor as described in section
3.2, and obtained a comparatively well-balanced re-
sult. Finally, after adding the neutral expressions de-
tection, we achieved aPA of 78% andNA of 72%
(Test 4). The balance between positive and negative
sides was quite improved by contrast with Test 1 and
2.

5 Conclusions

This study first proposed a modified unsupervised
approach (SO-PMI) for Japanese Weblog Opinion
Mining. Some parts of Turney’s approach, such as
the NEAR operator, does not work for Japanese,
thus some modifications must be done. In a prelim-
inary experiment, thenegative accuracy(8%) was
very poor while thepositive accuracy(95%) was
high. To deal with this phenomenon, we presented
three modifications based on the characteristics of

Japanese and the results of related work. The ex-
periment results (positive accuracy: 78%, negative
accuracy: 72%) show that our proposal achieved
a considerably improved performance, comparing
with directly translating the SO-PMI. Hence it
would be expected that the balancing factor and neu-
tral expressions detection would work effectively
also for other reference words or languages. In the
future, we will evaluate different choices of words
for the sets of positive and negative reference words.
We also plan to appraise our proposal on other lan-
guages.
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Abstract

This paper investigates the combined use of
pause duration and pitch reset for automatic
story segmentation in Mandarin broadcast
news. Analysis shows that story boundaries
cannot be clearly discriminated from utterance
boundaries by speaker-normalized pitch reset
due to its large variations across different syl-
lable tone pairs. Instead, speaker- and tone-
normalized pitch reset can provide a clear sep-
aration between utterance and story bound-
aries. Experiments using decision trees for
story boundary detection reinforce that raw and
speaker-normalized pitch resets are not effec-
tive for Mandarin Chinese story segmentation.
Speaker- and tone-normalized pitch reset is a
good story boundary indicator. When it is com-
bined with pause duration, a highF-measure
of 86.7% is achieved. Analysis of the decision
tree uncovered four major heuristics that show
how speakers jointly utilize pause duration and
pitch reset to separate speech into stories.

1 Introduction
Pitch reset refers to the speaker’s general pitch declina-
tion through the course of a speech unit, followed by a re-
set to a high pitch at the start of next speech unit, as shown
in Figure 1(a). The speech unit may be of different lev-
els of granularity (Tseng et. al., 2005), such as a speech
segment that conveys a central topic (e.g. a news story), a
prosodic phrase group (PG) or an utterance. These units
are often separated by pauses. Pauses and pitch resets
were shown to be effective story boundary indicators in
English broadcast news segmentation (Shriberg et. al.,
2000; Tür et. al., 2001). These previous efforts specifi-
cally point out that pause durations are longer and pitch
resets are more pronounced at story boundaries, when
compared to utterance boundaries in English broadcast
news. However, such story segmentation approaches may
be different for a tonal language such as Mandarin Chi-

nese. The use of similar prosodic features for Chinese
news story segmentation deserves further investigation.
The main reason is that Chinese tonal syllables may com-
plicate the expressions of pitch resets. Chinese syllable
tones are expressed acoustically in pitch trajectories, i.e,
different tones show different pitch value ranges and tra-
jectory patterns,1 as shown in Figure 1(b). Initial work in
(Levow, 2004) has shown that Mandarin words at story
ending positions show a lower pitch as compared with
words at non-story-ending positions. In this paper, we
present a data-oriented study to investigate how the tonal-
ity of Mandarin syllables affects pitch resets at utterance
and story boundaries. To alleviate the effects from tonal-
ity, we propose to use speaker- and tone-normalized pitch
reset with pause duration to separate Mandarin broadcast
audio stream into distinct news stories.
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Speech Unit Speech Unit

(a)

5
5

3

5

2

1

4

5

1

5

Tone 1 (high) Tone 2 (rising) Tone 3 (low) Tone 4 (falling)

4

3

2

1
(b)

Figure 1: (a) Pitch reset phenomenon between speech
units; (b) Pitch trajectories for the four Mandarin basic
syllable tones. The speaker pitch range is segmented to
five zones from high to low. The pitch trajectories of the
four tones are 5-5, 3-5, 2-1-4 and 5-1, respectively.

2 Task and Corpus
In a continuous audio stream of broadcast news, there are
programs that consist of speaker changes among anchors,
reporters and interviewees. Other programs may contain
a sequence of news stories reported by a single speaker.
We focus on the latter kind in this investigation, because
the combined use of pause duration and pitch reset to
punctuate the end of a story and the beginning of the next
carries many speaker-dependent characteristics.

We select a subset of TDT2 VOA Mandarin broadcast
news corpus (LDC, 1998) and manually extract the news
sessions reported by a single speaker. We also annotate

1http://www.mandarinbook.net/pronunciation/
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Table 1: The TDT2 subset used in this study.

Nature
Mandarin news sessions reported
by a single speaker (13.4 hours)

# of News
Sessions

175 (Training: 74, Development:
50, Testing: 51)

Mean Session
Duration

276 seconds, 1071 Mandarin char-
acters

# of Story
Boundaries

1085 (Training: 442, Develop-
ment: 316, Testing: 327)

# of Speakers 11 (7 females and 4 males)
Mean Story
Duration

36 seconds, 105 Mandarin charac-
ters

Transcriptions
Dragon ASR recognizer, GB-
encoded word-level transcriptions
in XML format

the news story boundaries in this subset. These single-
speaker sessions typically contain between 3 to 9 short
news stories separated by pauses and constitute about
30% of the entire TDT2 Mandarin corpus (by time du-
ration). The selected subset is divided into training, de-
velopment and testing sets. Details are shown in Table 1.

3 Region of Interest and Pitch Extraction
Previous work on English news segmentation (Shriberg
et. al., 2000) measured pitch resets at inter-word bound-
aries. Since Chinese news transcripts come as a charac-
ter stream and each character is pronounced as a tonal
syllable, it is more reasonable to investigate the pitch re-
set phenomenon at the syllable level. We assume that a
story boundary must occur at an utterance boundary. The
utterances are separated by labeled pauses in the VOA
transcriptions ([P] in Figure 2) and a story may contain
various utterances (between 2 to 38 in the corpus). There-
fore, we only investigate pitch resets in inter-syllable re-
gions across two consecutive utterances as shown in Fig-
ure 2. This is reasonable because there are only 6 story
boundaries (out of 1085) that are not signaled by pause
breaks in the corpus. The region of interest (ROI) is lim-
ited to only two tonal syllables, i.e., the last tonal syllable
of the previous utterance and the first tonal syllable of the
following utterance. We have performed experiments on
window length selection and results have shown a wider
window does not bring a noticeable improvement.

Raw pitch values are extracted by the YIN pitch
tracker (Cheveigné et. al., 2002). The output pitch tra-
jectories are ranked as “good” and “best” by the pitch
tracker. Pitch values for unvoiced and pause segments are
assigned to be zero. We keep the “best” pitch trajectories
for pitch reset measurements. We focus on pitch resets in
the ROIs and thus obtain pitch contours for the left and
right tonal syllables for each ROIs. However, the corpus
transcription does not provide time annotations for those
tonal syllables. Therefore, in the pitch trajectory of an

! " # $ % & ' ( ) * + , *[P]Character

Tonal Syllable lian2 he2 guo2    mi4 shu1 zhang3    an1  nan2 di3    da2    ba1   ge2   da2[P]

Translation United Nations Secretary-general Annan Arrived at Bagdad

[P]Utterance Utterance Utterance Utterance

Story Story
Boundary

Utterance
Boundary

Utterance Utterance

Tone 2       2        2      4      1        3         1        2                    3      2       1       2       2

Story

Utterance
Final

Utterance
Initial

ROI

[P] [P]

ROI

ROI ROI

Figure 2: Region of interest(ROI) for pitch reset measure.

audio stream, we search forwards and backwards on both
sides of the pause segment for the nearest non-zero pitch
measurement sequences. The two pitch sequences found
are used as the pitch contours for the left and right tonal
syllables of the ROI, respectively. This approximation is
reasonable because a Mandarin tonal syllable usually ex-
hibits a continuous pitch contour within its time duration.

4 Speaker- and Tone-Normalized Pitch
Reset Analysis in Mandarin Broadcast
News

We investigate the pitch reset behavior in the ROIs, i.e.,
the pitch jump between the left and right tonal syllables
at utterance and story boundaries across all corpus audio.
Since pitch is a speaker-related feature, we adopt speaker-
normalized pitch reset, defined as

PR = F0r − F0l, (1)
whereF0l andF0r are the speaker-normalized pitch for
the left and right tonal syllables in the ROIs, which are
calculated using

F0 = (f0 − µs
f0

)/σs
f0

. (2)
f0 denotes the mean value of the pitch contour of a tonal
syllable uttered by speakers. µs

f0
andσs

f0
are the pitch

mean and standard deviation calculated for speakers over
all the ROIs of speakers in the corpus.

We measure the speaker-normalized pitch resets in all
ROIs, and categorize them into two boundary types, i.e.
utterance boundary and story boundary. To show the ef-
fects of tonality in pitch movement, we also categorize
the pitch resets by different tone combinations (16 com-
binations for 4 Mandarin tones2). Figure 3 plots the mean
PR of each tone combinations for the two boundary
types calculated on the corpus data. We see that the pitch
reset phenomenon holds for all tone combinations, even
for the tone pair (1,3) (i.e. high, low) that has a very small
reset. We performt-tests (p < 0.0025, one-tailed), which
show that for a given tone pair across a boundary, there
is a significant difference inPR between an utterance
boundary and a story boundary. However, thePR val-
ues vary greatly across different tone pairs. For example,

2The neutral tone is not considered here since its pitch pat-
tern depends heavily on its neighboring tonal syllables.
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Figure 3: Mean speaker-normalized pitch reset of the 16
tone pairs for story and utterance boundaries.

pitch resets are reduced for the tone pairs (1,3) and (4,3),
but are pronounced for the tone pairs (3,1) and (2,1). The
t-test (p < 0.0025, one-tailed) shows that thePR differ-
ence between utterance boundaries and story boundaries
arenot significant. This motivates us to formulate a defi-
nition for speaker- and tone-normalized pitch reset.

The speaker- and tone-normalized pitch reset is defined
as:

PR = F0r −F0l, (3)
whereF0l andF0r are the speaker- & tone-normalized
pitch for the left and right tonal syllables in the ROIs,
respectively, defined as

F0 = (F0 − µτ
F0

)/στ
F0

, (4)
whereF0 is the speaker-normalized pitch in Equation (2)
of a tonal syllable with toneτ . µτ

F0
andστ

F0
are the pitch

mean and standard deviation calculated for the tonal syl-
lables with toneτ over all ROIs in the corpus. Figure 4
plots the meanPR of each tone combinations for the two
boundary types calculated on the corpus data.

Figure 4 shows a clear separation in speaker- and tone-
normalized pitch reset (PR) between utterance and story
boundaries (shade area in Figure 4). This result is sta-
tistically significant based on at-test (p < 0.0025, one-
tailed). This observation suggests that speaker- and tone-
normalized pitch reset may be an effective story boundary
indicator for Mandarin broadcast news.

5 Experiments on Story Boundary
Detection

We perform experiments on story boundary detection at
the ROIs in the corpus. Since all ROIs are utterance
boundaries, of which only some are story boundaries, we
take a“hypothesize and classify”approach in order to
strike a good balance between recall and precision. We
first hypothesize the occurrence of a story boundary if
the ROI has a pause duration that exceeds a threshold.
This is followed by a decision tree classifier that decides
on the existence of a story boundary. We used Quinlan’s
C4.5-style decision tree (Quinlan, 1992) as the classifier,
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Figure 4: Mean speaker- and tone-normalized pitch reset
of the 16 tone pairs for story and utterance boundaries.

implemented by the IND toolkit.3 The pause duration
threshold was selected by a heuristic search procedure
described as follows: We experimented with pause du-
rations ranging from 0.1 to 4 seconds with step size of
0.1 second. In each case, we hypothesized raw bound-
aries in the training and development sets. A decision tree
was then grown using the raw boundary hypotheses of the
training set, and tested on the raw boundary hypotheses
of the development set. The pause duration leading to the
highestF-measure on the development set was selected
as the optimal threshold for the further experiments on
the testing set.

We develop seven story boundary detectors according
to the features used (see Table 2). The boundary de-
tection results on the testing set are shown in Table 2.
From Table 2, we can see that the detector using pause
duration achieves a highF-measure of 82.2%. This re-
sult is reasonable since VOA Mandarin news broadcast
makes large use of long pauses at story boundaries, es-
pecially at news sessions reported by a single speaker.
The detector using raw pitch reset (pr = f0r−f0l) only
gets aF-measure of 50.8% and the speaker-normalized
pitch reset (PR) achieves a slightly betterF-measure of
55.3%. Speaker- and tone-normalized pitch reset (PR)
achieves a superior performance with anF-measure of
71.1%. This result is consistent with the observations
in Section 4. The story boundary indicative ability of
speaker-normalized pitch reset is affected by the tonal-
ity of Mandarin syllable. Speaker- and tone-normalized
pitch reset can alleviate the effects, thus leading to a bet-
ter discrimination. Based on Table 2, when pause is
combined with raw pitch reset, theF-measure degrades
from 82.2% to 68.3%. TheF-measure reaches 77.4%
when we combine pause with speaker-normalized pitch
reset. When pause is combined with speaker- and tone-
normalized pitch reset (Pause+PR), the bestF-measure
is achieved at 86.7%.

3http://ic.arc.nasa.gov/projects/bayes-group/ind/
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Table 2: Story boundary detection experiment results(%)
Feature Recall Precision F-Measure
Pause 77.1 88.1 82.2

pr 52.0 49.7 50.8
PR 56.6 54.1 55.3
PR 70.3 72.0 71.1

Pause+pr 66.4 70.3 68.3
Pause+PR 72.2 83.5 77.4
Pause+PR 82.6 91.3 86.7

Table 3: Heuristics for story boundary decision

No. Description
Story
Boundary?

1
Pause duration is short (P <
1.475) and pitch reset is small
(PR < 0.401)

No

2
Pause duration is short (P <
1.475) and pitch reset is huge
(PR > 1.112)

Yes

3
Pause duration is long (2.315≤
P<4.915) and pitch reset is big
(PR>0.715)

Yes

4
Pause duration is long (P ≥
4.915) and pitch reset is low
(PR < 0.3513)

No

Figure 5 shows the top levels of the decision tree ob-
tained using thePause+PR set. We can observe the com-
plementarity between pause duration and pitch reset in
story boundary detection. This may be summarized in
terms of four majorheuristicsshown on the tree (labeled
as 1 to 4 in Figure 5). These heuristics cover about 83%
decisions made on the testing set, as described in Table 3.

Heuristics 2 is mainly used to detect possibly miss-
ing story boundaries with short pauses caused by speaker
speaking style, e.g., reporters Li Weiqing and Yang Chen
tend to use short pauses to separate news stories, but they
tend to offset the reduced pauses with pronounced pitch
resets to signify story boundaries. Heuristics 4 detects
possibly false alarms due to broadcast interruptions in
boundary detection. These interruptions (i.e. silences)
usually occur within a news story and may last for sev-
eral seconds (usually> 5 seconds).

6 Summary and Future Work
This paper investigated the combined use of pause dura-
tion and pitch reset for automatic story segmentation in
Mandarin broadcast news. Pitch reset analysis on Man-
darin broadcast news shows that story boundaries cannot
be discriminated from utterance boundaries by speaker-
normalized pitch reset, because speaker-normalized pitch
reset varies greatly across different tone pairs of boundary
syllables. This motivates us to investigate the speaker-
and tone-normalized pitch reset. Analysis shows that
speaker- and tone-normalized pitch reset can clearly sep-
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<0.4012
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Figure 5: Decision tree for story boundary classification
based on thePause+PR feature set. BND denotes story
boundary, and NOTBND denotes not story boundary.

arate utterance boundaries from story boundaries across
all tone pairs. This result shows the difference be-
tween English and Chinese. Previous work for En-
glish (Shriberg et. al., 2000; Tür et. al., 2001) shows
that speaker-normalized pitch reset is effective. This
work shows that the same measurement is not sufficient
for Chinese; instead we need to use speaker- and tone-
normalized pitch reset in Chinese story segmentation.
When pause duration is combined with speaker- and tone-
normalized pitch reset, the best performance is achieved
with a highF-measure of 86.7%. Analysis of the deci-
sion tree uncovered four major heuristics that show how
speakers jointly utilize pause and pitch reset to separate
speech into stories.

Future work will investigate the pitch reset phe-
nomenon in Cantonese broadcast news, because Can-
tonese is another major Chinese dialect with more com-
plicated tonal characteristics. We also plan to incorporate
prosodic cues with lexical cues to further improve perfor-
mance in Chinese story segmentation.
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Abstract

We propose a high-performance cascaded hy-
brid model for Chinese NER. Firstly, we use
Boosting, a standard and theoretically well-
founded machine learning method to combine a
set of weak classifiers together into a base sys-
tem. Secondly, we introduce various types of
heuristic human knowledge into Markov Logic
Networks (MLNs), an effective combination
of first-order logic and probabilistic graphi-
cal models to validate Boosting NER hypothe-
ses. Experimental results show that the cas-
caded hybrid model significantly outperforms
the state-of-the-art Boosting model.

1 Introduction
Named entity recognition (NER) involves the identifica-
tion and classification of certain proper nouns in text,
such as person names (PERs), locations (LOCs), orga-
nizations (ORGs), miscellaneous names (MISCs), tem-
poral, numerical and monetary phrases. It is a well-
established task in the NLP community and is regarded
as crucial technology for many NLP applications, such as
information extraction, question answering, information
retrieval and machine translation.

Compared to European-language NER, Chinese NER
seems to be more difficult (Yu et al., 2006). Recent ap-
proaches to Chinese NER are a shift away from man-
ually constructed rules or finite state patterns towards
machine learning or statistical methods. However, rule-
based NER systems lack robustness and portability, and
machine learning approaches might be unsatisfactory to
learn linguistic information in Chinese NEs. In fact,
Chinese NEs have distinct linguistic characteristics in
their composition and human beings usually use prior
knowledge to recognize NEs. For example, about 365
of the highest frequently used surnames cover 99% Chi-
nese surnames (Sun et al., 1995). For the LOC “�¬
�/Beijing City”, “�¬/Beijing” is the name part and

“�/City” is the salient word. For the ORG “�¬�?
�/Beijing City Government”, “�¬/Beijing” is the LOC
name part, “�/City” is the LOC salient word and “?
�/Government” is the ORG salient word. Some ORGs
contain one or more PERs, LOCs, MISCs and ORGs. A
more complex example is the nested ORG “V��fI
�fI'f¡�:fb/School of Computer Science,
Wuhan University, Wuhan City, Hubei Province” which
contains two ORGs “fI'f/Wuhan University” and
“¡�:fb/School of Computer Science” and two
LOCs “V��/Hubei Province” and “fI�/Wuhan
City”. The two ORGs contain ORG salient words “'
f/University” and “fb/School”, while the two LOCs
contain LOC salient words “�/Province” and “�/City”
respectively.

Inspired by the above observation, we propose a cas-
caded hybrid model for Chinese NER 1. First, we em-
ploy Boosting, which has theoretical justification and has
been shown to perform well on other NLP problems,
to combine weak classifiers into a strong classifier. We
then exploit a variety of heuristic human knowledge into
MLNs, a powerful combination of logic and probabil-
ity, to validate Boosting NER hypotheses. We also use
three Markov chain Monte Carlo (MCMC) algorithms
for probabilistic inference in MLNs. Experimental re-
sults show that the cascaded hybrid model yields better
NER results than the stand-alone Boosting model by a
large margin.

2 Boosting
The main idea behind the Boosting algorithm is that a set
of many simple and moderately accurate weak classifiers
(also called weak hypotheses) can be effectively com-
bined to yield a single strong classifier (also called the
final hypothesis). The algorithm works by training weak
classifiers sequentially whose classification accuracy is
slightly better than random guessing and finally combin-

1In this paper we only focus on PERs, LOCs, ORGs and
MISCs. Since temporal, numerical and monetary phrases can
be well identified with rule-based approaches.
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ing them into a highly accurate classifier. Each weak clas-
sifier searches for the hypothesis in the hypotheses space
that can best classify the current set of training examples.
Based on the evaluation of each iteration, the algorithm
re-weights the training examples, forcing the newly gen-
erated weak classifier to give higher weights to the exam-
ples that are misclassified in the previous iteration.

We use the AdaBoost.MH algorithm (Schapire and
Singer, 1999) as shown in Figure 1, an n-ary classi-
fication variant of the original well-known binary Ad-
aBoost algorithm (Freund and Schapire, 1997). It has
been demonstrated that Boosting can be used to build
language-independent NER models that perform excep-
tionally well (Wu et al. (2002), Wu et al. (2004), Carreras
et al. (2002)). In particular, reasonable Chinese NER
results were still obtained using Boosting, even though
there was no Chinese-specific tuning and the model was
only trained on one-third of the provided corpora in
SIGHAN bakeoff-3 (Yu et al., 2006).

3 Markov Logic Networks
A Markov Network (also known as Markov Random
Field) is a model for the joint distribution of a set of
variables (Pearl, 1988). It is composed of an undirected
graph and a set of potential functions. A First-Order
Knowledge Base (KB) (Genesereth and Nislsson, 1987)
is a set of sentences or formulas in first-order logic. A
Markov Logic Network (MLN) (Richardson and Domin-
gos, 2006) is a KB with a weight attached to each formula
(or clause). Together with a set of constants representing
objects in the domain, it species a ground Markov Net-
work containing one feature for each possible grounding
of a first-order formula in the KB, with the correspond-
ing weight. The weights associated with the formulas in
an MLN jointly determine the probabilities of those for-
mulas (and vice versa) via a log-linear model. An MLN
defines a probability distribution over Herbrand interpre-
tations (possible worlds), and can be thought of as a tem-
plate for constructing Markov Networks. The probabil-
ity distribution over possible worlds x specified by the
ground Markov Network ML,C is given by

P (X = x) =
1
Z

exp(
∑

wini(x )) =
1
Z

∏
φi

(
x{i}

)ni(x)

(1)
where Fi is the formula in first-order logic, wi is a real

number, ni (x) is the number of true groundings of Fi in
x, x{i} is the true value of the atoms appearing in Fi, and
φi

(
x{i}

)
= ewi .

3.1 Learning Weights
Given a relational database, MLN weights can in princi-
ple be learned generatively by maximizing the likelihood
of this database. The gradient of the log-likelihood with

Input: A training set Tr = {< d1, C1 >, . . . , < dg, Cg >}
where Cj ⊆ C = {c1, ..., cm} for all j = 1, . . . , g.
Output: A final hypothesis Φ(d, c) =

∑S

s=1
αsΦs(d, c).

Algorithm: LetD1(dj , ci) = 1
mg

for all j = 1, . . . , g and
for all i = 1, . . . , m. For s = 1, . . . , S do:

• pass distribution Ds(dj , ci)to the weak classifier;

• derive the weak hypothesis Φs from the weak
classifier;

• choose αs ∈ R;

• set Ds+1(dj , ci) =
Ds(dj ,ci)exp(−αsCj [ci]Φs(dj ,ci))

Zs

where
Zs =∑m

i=1

∑g

j=1
Ds(dj , ci )exp(− αsCj [ci] Φs(dj , ci))

is a normalization factor chosen so that∑m

i=1

∑g

j=1
D

s+1
(dj , ci) = 1.

Figure 1: The AdaBoost.MH algorithm.

respect to the weights is

∂

∂wi
logPw(X = x) = ni (x)−

∑
Pw(X = x′)ni(x

′)

(2)
where the sum is over all possible databases x′ , and

Pw(X = x′) is P (X = x′) computed using the current
weight vector w = (w1, ..., wi, ...). Unfortunately, com-
puting these expectations can be very expensive. Instead,
we can maximize the pseudo-likelihood of the data more
efficiently. If x is a possible database and xl is the lth
ground atom’s truth value, the pseudo-log-likelihood of x
given weights w is

logP ∗
w(X = x) =

n∑
l=1

logPw(Xl=xl
| MBx(Xl )) (3)

where MBx (Xl) is the state of Xl’s Markov blan-
ket in the data. Computing Equation 3 and its gradient
does not require inference over the model, and is there-
fore much faster. We optimize the pseudo-log-likelihood
using the limited-memory BFGS algorithm (Liu and No-
cedal, 1989).

3.2 Inference
If F1 and F2 are two formulas in first-order logic, C is a
finite set of constants including any constants that appear
in F1 or F2, and L is an MLN, then

P (F1 | F2, L, C) = P (F1 | F2,ML,C) (4)

=
P (F1 ∧ F2 | ML,C)

P (F2 | ML,C)
(5)

=

∑
x∈χF1∩χF2

P (X = x | ML,C)∑
x∈χF2

P (X = x | ML,C)
(6)
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where χFi is the set of worlds where Fi holds, and
P (x | ML,C) is given by Equation 1. The ques-
tion of whether a knowledge base entails a formula F
in first-order logic is the question of whether P (F |
LKB, CKB,F ) = 1, where LKB is the MLN obtained by
assigning infinite weight to all the formulas in KB, and
CKB,F is the set of all constants appearing in KB or F .

The most widely used approximate solution to proba-
bilistic inference in MLNs is Markov chain Monte Carlo
(MCMC) (Gilks et al., 1996). In this framework, the
Gibbs sampling algorithm is to generate an instance from
the distribution of each variable in turn, conditional on the
current values of the other variables. One way to speed
up Gibbs sampling is by Simulated Tempering (Marinari
and Parisi, 1992), which performs simulation in a gener-
alized ensemble, and can rapidly achieve an equilibrium
state. Poon and Domingos (2006) proposed MC-SAT,
an inference algorithm that combines ideas from MCMC
and satisfiability.

4 Heuristic Human Knowledge
Even though the Boosting model is able to accommodate
a large number of features, some NEs, especially LOCs,
ORGs and MISCs are difficult to identify due to lack
of linguistic knowledge. For example, some ORGs are
possibly mistagged as LOCs and/or MISCs. We incor-
porate heuristic human knowledge via MLNs to validate
the Boosting NER hypotheses. We extract 151 location
salient words and 783 organization salient words from the
LDC Chinese-English bi-directional NE lists compiled
from Xinhua News database. We also make a punctua-
tion list which contains 19 items. We make the following
assumptions to validate the Boosting results:

• Obviously, if a tagged entity ends with a location
salient word, it is a LOC. If a tagged entity ends with
an organization salient word, it is an ORG.

• If a tagged entity is close to a subsequent location
salient word, probably they should be combined to-
gether as a LOC. The closer they are, the more likely
that they should be combined.

• Heuristically, if a series of consecutive tagged en-
tities are close to a subsequent organization salient
word, they should probably be combined together
as an ORG because an ORG may contain multiple
PERs, LOCs, MISCs and ORGs.

• Similarly, if there exists a series of consecutive
tagged entities and the last one is tagged as an ORG,
it is likely that all of them should be combined as an
ORG.

• Entity length restriction: all kinds of tagged entities
cannot exceed 25 Chinese characters.

• Punctuation restriction: in general, all tagged enti-
ties cannot span any punctuation.

• Since all NEs are proper nouns, the tagged entities
should end with noun words.

All the above human knowledge can be formulized as
first-order logic to construct the structure of MLNs. And
all the validated Boosting results are accepted as new NE
candidates (or common nouns). We train an MLN to rec-
ognize them.

5 Experiments
We randomly selected 15,000 and 3,000 sentences from
the People’s Daily corpus as training and test sets, respec-
tively. We used the decision stump2 as the weak classifier
in Boosting to construct a character-based Chinese NER
baseline system.

The features used were as follows:

• The current character and its POS tag.

• The characters within a window of 3 characters be-
fore and after the current character.

• The POS tags within a window of 3 characters be-
fore and after the current character.

• A small set of conjunctions of POS tags and charac-
ters within a window of 3 characters of the current
character.

• The BIO 3 chunk tags of the previous 3 characters.

We declared 10 predicates and specified 9 first-
order formulas according to the heuristic human
knowledge in Section 4. For example, we used
person(candidate) to predicate whether a candi-
date is a PER. Formulas are recursively constructed from
atomic formulas using logical connectives and quanti-
fiers. They are constructed using four types of sym-
bols: constants, variables, functions, and predicates.
Constant symbols represent objects in the domain of
interest (e.g., “�¬/Beijing” and “
w/Shanghai” are
LOCs). Variable symbols range over the objects in the
domain. Function symbols represent mappings from tu-
ples of objects to objects. Predicate symbols repre-
sent relations among objects in the domain or attributes
of objects. For example, the formula endwith(r,
p)ˆlocsalientword(p)=>location(r) means
if r ends with a location salient word p, then it is a LOC.

2A decision stump is basically a one-level decision tree
where the split at the root level is based on a specific at-
tribute/value pair.

3In this representation, each character is tagged as either the
beginning of a named entity (B tag), a character inside a named
entity (I tag), or a character outside a named entity (O tag).
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We extracted all the distinct NEs (4,475 PERs, 2,170
LOCs, 2,823 ORGs and 614 MISCs) from the 15,000-
sentence training corpus. An MLN training database,
which consists of 10 predicates and 44,810 ground
atoms was built. A ground atom is an atomic formula
all of whose arguments are ground terms (terms con-
taining no variables). For example, the ground atom
location(�¬�) conveys that “�¬�/Beijing
City” is a LOC.

During MLN learning, each formula is converted to
Conjunctive Normal Form (CNF), and a weight is learned
for each of its clauses. The weight of a clause is used
as the mean of a Gaussian prior for the learned weight.
These weights reflect how often the clauses are actually
observed in the training data.

We validated 352 Boosting results to construct the
MLN testing database, which contains 1,285 entries and
these entries are used as evidence for inference. Infer-
ence is performed by grounding the minimal subset of the
network required for answering the query predicates. We
applied 3 MCMC algorithms: Gibbs sampling (GS), MC-
SAT and Simulated Tempering (ST) for inference and
the comparative NER results are shown in Table 1. The
cascaded hybrid model greatly outperforms the Boosting
model. We obtained the same results using GS and ST
algorithms. And GS (or ST) yields slightly better results
than the MC-SAT algorithm.

6 Conclusion
In this paper we propose a cascaded hybrid model
for Chinese NER. We incorporate human heuristics via
MLNs, which produce a set of weighted first-order
clauses to validate Boosting NER hypotheses. To the best
of our knowledge, this is the first attempt at using MLNs
for the NER problem in the NLP community. Experi-
ments on People’s Daily corpus illustrate the promise of
our approach. Directions for future work include learning
the structure of MLNs automatically and using MLNs for
information extraction and statistical relational learning
(e.g., entity relation identification).
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Abstract 

  This paper presents a three-step dependency 

parser to parse Chinese deterministically. By divid-

ing a sentence into several parts and parsing them 

separately, it aims to reduce the error propagation 

coming from the greedy characteristic of determi-

nistic parsing. Experimental results showed that 

compared with the deterministic parser which 

parsed a sentence in sequence, the proposed parser 

achieved extremely significant improvement on 

dependency accuracy.  

1 Introduction 

Recently, as an attractive alternative to probabilistic 

parsing, deterministic parsing (Yamada and Matsumoto, 

2003; Nivre and Scholz, 2004) has drawn great attention 

with its high efficiency, simplicity and good accuracy 

comparable to the state-of-the-art generative probabilis-

tic models. The basic idea of deterministic parsing is 

using a greedy parsing algorithm that approximates a 

globally optimal solution by making a sequence of lo-

cally optimal choices (Hall et al., 2006). This greedy 

idea guarantees the simplicity and efficiency, but at the 

same time it also suffers from the error propagation 

from the previous parsing choices to the left decisions.  

For example, given a Chinese sentence, which means 

Paternity test is a test that gets personal identity 

through DNA analysis, and it brings proof for finding 

lost children, the correct dependency tree is shown by 

solid line  (see Figure 1). But, if word 通过(through) is 

incorrectly parsed as depending on word 是(is) (shown 

by dotted line), this error will result in the incorrect 

parse of word 鉴定(a test) as depending on word 提供
(brings) (shown by dotted line).  

This problem exists not only in Chinese, but also in 

other languages. Some efforts have been done to solve 

this problem. Cheng et al. (2005) used a root finder to 

divide one sentence into two parts by the root word and 

parsed them separately. But the two-part division is not 

enough when a sentence is composed of several coordi-

nating sub-sentences. Chang et al. (2006) applied a 

pipeline framework in their dependency parser to make 

the local predictions more robust. While it did not show 

great help for stopping the error propagation between 

different parsing stages.  

 
Figure 1. Dependency tree of a sentence  (word sequence is top-down) 

This paper focuses on resolving this issue for Chi-

nese. After analyzing the dependency structure of sen-

tences in Penn Chinese Treebank 5.1 (Xue et al., 2002), 

we found an interesting phenomenon: if we define a 

main-root as the head of a sentence, and define a sub-

sentence as a sequence of words separated by punctua-

tions, and the head
1
 of these words is the child of main-

root or main-root itself, then the punctuations that de-

pend on main-root can be a separator of sub-sentences.  

For example, in the example sentence there are three 

punctuations marked as PU_A, PU_B and PU_C, in 

which PU_B and PU_C depends on main-root but 

PU_A depends on word 得出(gets). According to our 

observation, PU_B and PU_C can be used for segment-

ing this sentence into two sub-sentences A and B (cir-

cled by dotted line in Figure 2), where the sub-root of A 

is main-root and the sub-root of B depends on main-root.  

This phenomenon gives us a useful clue: if we divide 

a sentence by the punctuations whose head is main-root, 

then the divided sub-sentences are basically independ-

ent of each other, which means we can parse them sepa-

rately. The shortening of sentence length and the recog-

nition of sentence structure guarantee the robustness of 

deterministic parsing. The independent parsing of each 

sub-sentence also prevents the error-propagation. In 

                                                 
1 The head of sub-sentence is defined as a sub-root. 
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addition, because the sub-root depends on main-root or 

is main-root itself, it is easy to combine the dependency 

structure of each sub-sentence to create the final de-

pendency tree. 

 
Figure 2. A segmentation of the sentence in Figure 1 

Based on above analyses, this paper proposes a three-

step deterministic dependency parser for Chinese, which 

works as: 

Step1(Sentence Segmentation): Segmenting a sen-

tence into sub-sentences by punctuations (sub-sentences 

do not contain the punctuations for segmentation); 

Step2(Sub-sentence Parsing): Parsing each sub-

sentence deterministically; 

Step3(Parsing Combination): Finding main-root 

among all the sub-roots, then combining the dependency 

structure of sub-sentences by making main-root as the 

head of both the left sub-roots and the punctuations for 

sentence segmentation. 

2 Sentence Segmentation 

As mentioned in section 1, the punctuations depending 

on main-root can be used to segment a sentence into 

several sub-sentences, whose sub-root depends on main-

root or is main-root. But by analysis, we found only 

several punctuations were used as separator commonly. 

To ensure the accuracy of sentence segmentation, we 

first define the punctuations which are possible for seg-

mentation as valid punctuation, which includes comma, 

period, colon, semicolon, question mark, exclamatory 

mark and ellipsis. Then the task in step 1 is to find 

punctuations which are able to segment a sentence from 

all the valid punctuations in a sentence, and use them to 

divide the sentence into two or more sub-sentences. 

We define a classifier (called as sentence seg-

menter) to classify the valid punctuations in a sentence 

to be good or bad for sentence segmentation. SVM (Se-

bastiani, 2002) is selected as classification model for its 

robustness to over-fitting and high performance.  

Table 1 shows the binary features defined for sen-

tence segmentation. We use a lexicon consisting of all 

the words in Penn Chinese Treebank 5.1 to lexicalize 

word features. For example, if word 为 (for) is the 

27150th word in the lexicon, then feature Word1 of 

PU_B (see Figure 2) is ‘27150:1’. The pos-tag features 

are got in the same way by a pos-tag list containing 33 

pos-tags, which follow the definition in Penn Chinese 

Treebank. Such method is also used to get word and 

pos-tag features in other modules. 
Table 1. Features for sentence segmenter 

Feature Description 

Wordn/Posn word/pos-tag in different position, n=-2,-1,0,1,2 

Word_left/ 

Pos_left 

word/pos-tag between the first left valid punctua-

tion and current punctuation 

Word_right/ 

Pos_right 

word/pos-tag between current punctuation and 

the first right valid punctuation 

#Word_left/ 

#Word_right 

if the number of words between the first left/right 

valid punctuation and current punctuation is 

higher than 2, set as 1; otherwise set as 0 

V_left/ 

V_right 

if there is a verb between the first left/right valid 

punctuation and current punctuation, set as 1; 

otherwise set as 0 

N_leftFirst/ 

N_rightFirst 

if the left/right neighbor word is a noun, set as 1; 

otherwise set as 0 

P_rightFirst/ 

CS_rightFirst 

if the right neighbor word is a preposi-

tion/subordinating conjunction, set as 1; other-

wise set as 0 

3 Sub-sentence Parsing  

3.1 Parsing Algorithm 

The parsing algorithm in step 2 is a shift-reduce parser 

based on (Yamada and Matsumoto, 2003). We call it as 

sub-sentence parser. 

Two stacks P and U are defined, where stack P keeps 

the words under consideration and stack U remains all 

the unparsed words. All the dependency relations cre-

ated by the parser are stored in queue A.  

At start, stack P and queue A are empty and stack U 

contains all the words. Then word on the top of stack U 

is pushed into stack P, and a trained classifier finds 

probable action for word pair <p,u> on the top of the 

two stacks. After that, according to different actions, 

dependency relations are created and pushed into queue 

A, and the elements in the two stacks move at the same 

time. Parser stops when stack U is empty and the de-

pendency tree can be drawn according to the relations 

stored in queue A.  

Four actions are defined for word pair <p, u>: 

LEFT: if word p modifies word u, then push p�u 

into A and push u into P. 

RIGHT: if word u modifies word p, then push u�p 

into A and pop p. 

REDUCE: if there is no word u’ (u’∊U and u’≠u) 

which modifies p, and word next to p in stack P is p’s 

head, then pop p. 

SHIFT: if there is no dependency relation between p 

and u, and word next to p in stack P is not p’s head, then 

push u into stack P. 
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We construct a classifier for each action separately, 

and classify each word pair by all the classifiers. Then 

the action with the highest classification score is se-

lected. SVM is used as the classifier, and One vs. All 

strategy (Berger, 1999) is applied for its good efficiency 

to extend binary classifier to multi-class classifier. 

3.2 Features 

Features are crucial to this step. First, we define some 

features based on local context (see Flocal in Table 2), 

which are often used in other deterministic parsers 

(Yamada and Matsumoto, 2003; Nivre et al., 2006). 

Then, to get top-down information, we add some global 

features (see Fglobal in Table 2). All the features are bi-

nary features, except that Distance is normalized be-

tween 0-1 by the length of sub-sentence.  

Before parsing, we use a root finder (i.e. the sub-

sentence root finder introduced in Section 4) to get 

Rootn feature, and develop a baseNP chunker to get 

BaseNPn feature. In the baseNP chunker, IOB represen-

tation is applied for each word, where B means the word 

is the beginning of a baseNP, I means the word is inside 

of a baseNP, and O means the word is outside of a 

baseNP. Tagging is performed by SVM with One vs. All 

strategy. Features used in baseNP chunking are current 

word, surrounding words and their corresponding pos-

tags. Window size is 5. 
Table 2. Features for sub-sentence parser 

Feature Description 

Wordn/ 

Posn 

word/pos-tag in different position, 

n= P0, P1, P2, U0, U1, U2 (Pi/Ui mean 

the ith position from top in stack P/U) 

Word_childn/ 

Pos_childn 

the word/pos-tag of the children of 

Wordn, n= P0, P1, P2, U0, U1, U2 

Local 

Feature 

(Flocal) 

Distance distance between p and u in sentence 

Rootn 
if Wordn is the sub-root of this sub-

sentence, set as 1; otherwise set as 0 

Global 

Feature 

(Fglobal) BaseNPn baseNP tag of Wordn 

Table 3. Features for sentence/sub-sentence root finder 

Feature Description 

Wordn/Posn words in different position, n=-2,-1,0,1,2 

Word_left/Pos_left wordn/posn where n<-2 

Word_right/Pos_right wordn/posn where n>2 

#Word_left/ 

#Word_right 

if the number of words between the 

start/end of sentence and current word is 

higher than 2, set as 1; otherwise set as 0 

V_left/V_right 

if there is a verb between the start/end of 

sentence and current word, set as 1; oth-

erwise set as 0 

Nounn/Verbn/Adjn 

if the word in different position is a 

noun/verb/adjective, set as 1; otherwise 

set as 0. n=-2,-1,1,2 

Dec_right 
if the word next to current word in right 

side is 的(of), set as 1; otherwise set as 0 

CC_left 

if there is a coordinating conjunction 

between the start of sentence and current 

word, set as 1; otherwise set as 0 

BaseNPn baseNP tag of Wordn 

4 Parsing Combination 

A root finder is developed to find main-root for parsing 

combination. We call it as sentence root finder. We 

also retrain the same module to find the sub-root in step 

2, and call it as sub-sentence root finder. 

We define the root finding problem as a classification 

problem. A classifier, where we still select SVM, is 

trained to classify each word to be root or not. Then the 

word with the highest classification score is chosen as 

root. All the binary features for root finding are listed in 

Table 3. Here the baseNP chunker introduced in section 

3.2 is used to get the BaseNPn feature. 

5 Experimental Results 

5.1 Data Set and Experimental Setting 

We use Penn Chinese Treebank 5.1 as data set. To 

transfer the phrase structure into dependency structure, 

head rules are defined based on Xia’s head percolation 

table (Xia and Palmer, 2001). 16,984 sentences and 

1,292 sentences are used for training and testing. The 

same training data is also used to train the sentence 

segmenter, the baseNP chunker, the sub-sentence root 

finder, and the sentence root finder. During both train-

ing and testing, the gold-standard word segmentation 

and pos-tag are applied. 

TinySVM is selected as a SVM toolkit. We use a 

polynomial kernel and set the degree as 2 in all the ex-

periments.  

5.2 Three-step Parsing vs. One-step Parsing 

First, we evaluated the dependency accuracy and root 

accuracy of both three-step parsing and one-step parsing. 

Three-step parsing is the proposed parser and one-step 

parsing means parsing a sentence in sequence (i.e. only 

using step 2). Local and global features are used in both 

of them. 

Results (see Table 4) showed that because of the 

shortening of sentence length and the prevention of er-

ror propagation three-step parsing got 2.14% increase 

on dependency accuracy compared with one-step pars-

ing. Based on McNemar’s test (Gillick and Cox, 1989), 

this improvement was considered extremely statistically 

significant (p<0.0001).  In addition, the proposed parser 

got 1.01% increase on root accuracy.  
Table 4. Parsing result of three-step and one-step parsing 

Parsing Strategy 
Dep.Accu. 

(%) 

Root Accu. 

(%) 

Avg. Parsing 

Time (sec.) 

One-step Parsing 82.12 74.92 22.13 

Three-step Parsing 
84.26 

(+2.14) 

75.93 

(+1.01) 

24.27 

(+2.14) 

Then we tested the average parsing time for each sen-

tence to verify the efficiency of proposed parser. The 

average sentence length is 21.68 words. Results (see 

Table 4) showed that compared with one-step parsing, 

the proposed parser only used 2.14 more seconds aver-
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agely when parsing one sentence, which did not affect 

efficiency greatly. 

To verify the effectiveness of proposed parser on 

complex sentences, which contain two or more sub-

sentences according to our definition, we selected 665 

such sentences from testing data set and did evaluation 

again. Results (see Table 5) proved that our parser 

outperformed one-step parsing successfully.  
Table 5. Parsing result of complex sentence 

Parsing Strategy Dep.Accu. (%) Root Accu. (%) 

One-step Parsing 82.56 78.95 

Three-step Parsing 84.94 (+2.38) 79.25 (+0.30) 

5.3 Comparison with Others’ Work 

At last, we compare the proposed parser with Nivre’s 

parser (Hall et al., 2006). We use the same head rules 

for dependency transformation as what were used in 

Nivre’s work. We also used the same training (section 

1-9) and testing (section 0) data and retrained all the 

modules. Results showed that the proposed parser 

achieved 84.50% dependency accuracy, which was 

0.20% higher than Nivre’s parser (84.30%).  

6 Discussion 

In the proposed parser, we used five modules: sentence 

segmenter (step1); sub-sentence root finder (step2); 

baseNP chunker (step2&3); sub-sentence parser (step2); 

and sentence root finder (step3).  

The robustness of the modules will affect parsing ac-

curacy. Thus we evaluated each module separately. Re-

sults (see Table 6) showed that all the modules got rea-

sonable accuracy except for the sentence root finder. 

Considering about this, in step 3 we found main-root 

only from the sub-roots created by step 2. Because the 

sub-sentence parser used in step 2 had good accuracy, it 

could provide relatively correct candidates for main-root 

finding. Therefore it helped decrease the influence of 

the poor sentence root finding to the proposed parser. 
Table 6. Evaluation result of each module 

Module F-score(%) Dep.Accu(%) 

Sentence Segmenter (M1) 88.04 --- 

Sub-sentence Root Finder (M2) 88.73 --- 

BaseNP Chunker (M3) 89.25 --- 

Sub-sentence Parser (M4) --- 85.56 

Sentence Root Finder (M5) 78.01 --- 

Then we evaluated the proposed parser assuming us-

ing gold-standard modules (except for sub-sentence 

parser) to check the contribution of each module to 

parsing. Results (see Table 7) showed that (1) the accu-

racy of current sentence segmenter was acceptable be-

cause only small increase on dependency accuracy and 

root accuracy was got by using gold-standard sentence 

segmentation; (2) the correct recognition of baseNP 

could help improve dependency accuracy but gave a 

little contribution to root accuracy; (3) the accuracy of 

both sub-sentence root finder and sentence root finder 

was most crucial to parsing. Therefore improving the 

two root finders is an important task in our future work. 
Table 7. Parsing result with gold-standard modules 

Gold-standard Module Dep.Accu(%) Root.Accu(%) 

w/o 84.26 75.93 

M1 84.51 76.24 

M1+M2 86.57 80.34 

M1+M2+M3 88.63 80.57 

M1+M2+M3+M5 91.25 91.02 

7 Conclusion and Future Work 

We propose a three-step deterministic dependency 

parser for parsing Chinese. It aims to solve the error 

propagation problem by dividing a sentence into inde-

pendent parts and parsing them separately. Results 

based on Penn Chinese Treebank 5.1 showed that com-

pared with the deterministic parser which parsed a sen-

tence in sequence, the proposed parser achieved ex-

tremely significant increase on dependency accuracy. 

Currently, the proposed parser is designed only for 

Chinese. But we believe it can be easily adapted to other 

languages because no language-limited information is 

used. We will try this work in the future. In addition, 

improving sub-sentence root finder and sentence root 

finder will also be considered in the future. 
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Abstract

We evaluate semantic relatedness mea-
sures on different German datasets show-
ing that their performance depends on: (i)
the definition of relatedness that was un-
derlying the construction of the evalua-
tion dataset, and (ii) the knowledge source
used for computing semantic relatedness.
We analyze how the underlying knowl-
edge source influences the performance
of a measure. Finally, we investigate the
combination of wordnets and Wikipedia to
improve the performance of semantic re-
latedness measures.

1 Introduction

Semantic similarity (SS) is typically defined via the
lexical relations of synonymy (automobile – car)
and hypernymy (vehicle – car), while semantic re-
latedness (SR) is defined to cover any kind of lexi-
cal or functional association that may exist between
two words. Many NLP applications, like sense tag-
ging or spelling correction, require knowledge about
semantic relatedness rather than just similarity (Bu-
danitsky and Hirst, 2006). For these tasks, it is not
necessary to know the exact type of semantic rela-
tion between two words, but rather if they are closely
semantically related or not. This is also true for the
work presented herein, which is part of a project
on electronic career guidance. In this domain, it
is important to conclude that the words “baker” and
“bagel” are closely related, while the exact type of a
semantic relation does not need to be determined.

As we work on German documents, we evalu-
ate a number of SR measures on different German
datasets. We show that the performance of mea-
sures strongly depends on the underlying knowledge

source. While WordNet (Fellbaum, 1998) mod-
els SR, wordnets for other languages, such as the
German wordnet GermaNet (Kunze, 2004), contain
only few links expressing SR. Thus, they are not
well suited for estimating SR.

Therefore, we apply the Wikipedia category graph
as a knowledge source for SR measures. We show
that Wikipedia based SR measures yield better cor-
relation with human judgments on SR datasets than
GermaNet measures. However, using Wikipedia
also leads to a performance drop on SS datasets,
as knowledge about classical taxonomic relations
is not explicitly modeled. Therefore, we combine
GermaNet with Wikipedia, and yield substantial im-
provements over measures operating on a single
knowledge source.

2 Datasets

Several German datasets for evaluation of SS or SR
have been created so far (see Table 1). Gurevych
(2005) conducted experiments with a German trans-
lation of an English dataset (Rubenstein and Goode-
nough, 1965), but argued that the dataset (Gur65)
is too small (it contains only 65 noun pairs), and
does not model SR. Thus, she created a German
dataset containing 350 word pairs (Gur350) con-
taining nouns, verbs and adjectives that are con-
nected by classical and non-classical relations (Mor-
ris and Hirst, 2004). However, the dataset is bi-
ased towards strong classical relations, as word
pairs were manually selected. Thus, Zesch and
Gurevych (2006) semi-automatically created word
pairs from domain-specific corpora. The resulting
ZG222 dataset contains 222 word pairs that are con-
nected by all kinds of lexical semantic relations.
Hence, it is particularly suited for analyzing the ca-
pability of a measure to estimate SR.
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CORRELATION r
DATASET YEAR LANGUAGE # PAIRS POS TYPE SCORES # SUBJECTS INTER INTRA

Gur65 2005 German 65 N SS discrete {0,1,2,3,4} 24 .810 -
Gur350 2006 German 350 N, V, A SR discrete {0,1,2,3,4} 8 .690 -
ZG222 2006 German 222 N, V, A SR discrete {0,1,2,3,4} 21 .490 .647

Table 1: Comparison of datasets used for evaluating semantic relatedness.

3 Semantic Relatedness Measures

Semantic wordnet based measures Lesk (1986)
introduced a measure (Les) based on the number of
word overlaps in the textual definitions (or glosses)
of two terms, where higher overlap means higher
similarity. As GermaNet does not contain glosses,
this measure cannot be employed. Gurevych (2005)
proposed an alternative algorithm (PG) generating
surrogate glosses by using a concept’s relations
within the hierarchy. Following the description in
Budanitsky and Hirst (2006), we further define sev-
eral measures using the taxonomy structure.

simPL = l(c1, c2)

simLC = − log
l(c1, c2)

2× depth

simRes = IC(ci) = − log(p(lcs(c1, c2)))
distJC = IC(c1) + IC(c2)− 2IC(lcs(c1, c2))

simLin = 2× IC(lcs(c1, c2))
IC(c1) + IC(c2)

PL is the taxonomic path length l(c1, c2) between
two concepts c1 and c2. LC normalizes the path
length with the depth of the taxonomy. Res com-
putes SS as the information content (IC) of the low-
est common subsumer (lcs) of two concepts, while
JC combines path based and IC features.1 Lin is
derived from information theory.

Wikipedia based measures For computing the
SR of two words w1 and w2 using Wikipedia, we
first retrieve the articles or disambiguation pages
with titles that equal w1 and w2 (see Figure 1). If
we hit a redirect page, we retrieve the correspond-
ing article or disambiguation page instead. In case
of an article, we insert it into the candidate article
set (A1 for w1, A2 for w2). In case of a disam-
biguation page, the page contains links to all en-
coded word senses, but it may also contain other

1Note that JC returns a distance value instead of a similarity
value resulting in negative correlation with human judgments.

Word w2Word w1

1
Candidate 

article 
sets

Candidate 
article 
pairs

3a

Semantic Relatedness

Semantic relatedness of (w1, w2)

Max

a A2A1

2a1a

Article Disambig. page

Redirects

Figure 1: Steps for computing SR using Wikipedia.

links. Therefore, we only consider links conforming
to the pattern 〈Title_(DisambiguationText)〉2 (e.g.
“Train_(roller coaster)”). Following all such links
gives the candidate article set. If no disambiguation
links are found, we take the first link on the page, as
most important links tend to come first. We add the
corresponding articles to the candidate set. We form
pairs from each candidate article ai ∈ A1 and each
article aj ∈ A2. We then compute SR(ai, aj) for
each pair. The output of the algorithm is the maxi-
mum SR value maxai∈A1,aj∈A2(SR(ai, aj)).3

As most SR measures have been developed for
taxonomic wordnets, porting them to Wikipedia re-
quires some modifications (see Figure 2). Text over-
lap measures can be computed based on the article
text, while path based measures operate on the cate-
gory graph. We compute the overlap between article

2‘_(DisambiguationText)’ is optional.
3Different from our approach, Strube and Ponzetto (2006)

use a disambiguation strategy that returns only a single candi-
date article pair. This unnecessarily limits a measure’s potential
to consider SR between all candidate article pairs. They also
limit the search for a lcs to a manually specified threshold of 4.
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Figure 2: SR measures adapted on Wikipedia.

texts based on (i) the first paragraph, as it usually
contains a short gloss, and (ii) the full article text.
As Wikipedia articles do not form a taxonomy, path
based measures have to be adapted to the Wikipedia
category graph (see the right part of Figure 2). We
define C1 and C2 as the set of categories assigned to
article ai and aj , respectively. We compute the SR
value for each category pair (ck, cl) with ck ∈ C1

and cl ∈ C2. We use two different strategies to com-
bine the resulting SR values: First, we choose the
best value among all pairs (ck, cl), i.e., the minimum
for path based, and the maximum for information
content based measures. As a second strategy, we
average over all category pairs.

4 Experiments & Results

Table 2 gives an overview of our experimental re-
sults on three German datasets. Best values for each
dataset and knowledge source are in bold. We use
the PG measure in optimal configuration as reported
by Gurevych (2005). For the Les measure, we give
the results for considering: (i) only the first para-
graph (+First) and (ii) the full text (+Full). For the
path length based measures, we give the values for
averaging over all category pairs (+Avg), or tak-
ing the best SR value computed among the pairs
(+Best). For each dataset, we report Pearson’s cor-
relation r with human judgments on pairs that are
found in both resources (BOTH). Otherwise, the re-

sults would not be comparable. We additionally use
a subset containing only noun-noun pairs (BOTH
NN). This comparison is fairer, because article titles
in Wikipedia are usually nouns. Table 2 also gives
the inter annotator agreement for each subset. It con-
stitutes an upper bound of a measure’s performance.

Our results on Gur65 using GermaNet are very
close to those published by Gurevych (2005), rang-
ing from 0.69–0.75. For Gur350, the performance
drops to 0.38–0.50, due to the lower upper bound,
and because GermaNet does not model SR well.
These findings are endorsed by an even more sig-
nificant performance drop on ZG222. The measures
based on Wikipedia behave less uniformly. Les
yields acceptable results on Gur350, but is generally
not among the best performing measures. LC +Avg
yields the best performance on Gur65, but is outper-
formed on the other datasets by PL +Best, which
performs equally good for all datasets.

If we compare GermaNet based and Wikipedia
based measures, we find that the knowledge source
has a major influence on performance. When evalu-
ated on Gur65, that contains pairs connected by SS,
GermaNet based measures perform near the upper
bound and outperform Wikipedia based measures by
a wide margin. On Gur350 containing a mix of SS
and SR pairs, most measures perform comparably.
Finally, on ZG222, that contains pairs connected by
SR, the best Wikipedia based measure outperforms
all GermaNet based measures.

The impressive performance of PL on the
SR datasets cannot be explained with the struc-
tural properties of the category graph (Zesch and
Gurevych, 2007). Semantically related terms, that
would not be closely related in a taxonomic word-
net structure, are very likely to be categorized under
the same Wikipedia category, resulting in short path
lengths leading to high SR. These findings are con-
trary to that of (Strube and Ponzetto, 2006), where
LC outperformed path length. They limited the
search depth using a manually defined threshold,
and did not compute SR between all candidate ar-
ticle pairs.

Our results show that judgments on the perfor-
mance of a measure must always be made with re-
spect to the task at hand: computing SS or SR. De-
pending on this decision, we can choose the best un-
derlying knowledge source. GermaNet is better for
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GUR65 GUR350 ZG222
BOTH NN BOTH BOTH NN BOTH BOTH NN

# Word Pairs 53 116 91 55 45
Inter Annotator Agreement 0.80 0.64 0.63 0.44 0.43

GermaNet

PG 0.69 0.38 0.42 0.23 0.21
JC -0.75 -0.52 -0.48 -0.19 -0.25
Lin 0.73 0.50 0.50 0.08 -0.12
Res 0.71 0.42 0.42 0.10 0.13

Wikipedia

Les +First 0.16 0.36 0.32 0.01 0.11
Les +Full 0.19 0.34 0.37 0.13 0.17
PL +Avg -0.32 -0.34 -0.46 -0.36 -0.43
PL +Best -0.35 -0.42 -0.53 -0.43 -0.49
LC +Avg 0.37 0.25 0.34 0.30 0.30
LC +Best 0.21 0.12 0.21 0.15 0.12

Combination Linear 0.77 0.59 0.60 0.38 0.43
POS - 0.55 - 0.48 -

Table 2: Correlation r of human judgments with SR measures on different datasets.

estimating SS, while Wikipedia should be used to
estimate SR. Therefore, a measure based on a single
knowledge source is unlikely to perform well in all
settings. We computed a linear combination of the
best measure from GermaNet and from Wikipedia.
Results for this experiment are labeled Linear in Ta-
ble 2. POS is an alternative combination strategy,
where Wikipedia is only used for noun-noun pairs.
GermaNet is used for all other part-of-speech (POS)
combinations. For most datasets, we find a combi-
nation strategy that outperforms all single measures.

5 Conclusion

We have shown that in deciding for a specific mea-
sure and knowledge source it is important to con-
sider (i) whether the task at hand requires SS or
SR, and (ii) which POS are involved. We pointed
out that the underlying knowledge source has a ma-
jor influence on these points. GermaNet is better
used for SS, and contains nouns, verbs, and adjec-
tives, while Wikipedia is better used for SR between
nouns. Thus, GermaNet and Wikipedia can be re-
garded as complementary. We have shown that com-
bining them significantly improves the performance
of SR measures up to the level of human perfor-
mance.

Future research should focus on improving the
strategies for combining complementary knowledge
sources. We also need to evaluate a wider range of
measures to validate our findings. As the simple PL
measure performs remarkably well, we should also
consider computing SR based on the Wikipedia arti-

cle graph instead of the category graph.
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Abstract

Phrase-based statistical machine transla-
tion systems depend heavily on the knowl-
edge represented in their phrase transla-
tion tables. However, the phrase pairs
included in these tables are typically se-
lected using simple heuristics that poten-
tially leave much room for improvement.
In this paper, we present a technique for
selecting the phrase pairs to include in
phrase translation tables based on their es-
timated quality according to a translation
model. This method not only reduces the
size of the phrase translation table, but
also improves translation quality as mea-
sured by the BLEU metric.

1 Introduction

Phrase translation tables are the heart of phrase-
based statistical machine translation (SMT) systems.
They provide pairs of phrases that are used to con-
struct a large set of potential translations for each
input sentence, along with feature values associated
with each phrase pair that are used to select the best
translation from this set.1

The most widely used method for building phrase
translation tables (Koehn et al., 2003) selects, from
a word alignment of a parallel bilingual training cor-
pus, all pairs of phrases (up to a given length) that
are consistent with the alignment. This procedure

1A “phrase” in this sense can be any contiguous sequence of
words, and need not be a complete linguistic constituent.

typically generates many phrase pairs that are not re-
motely reasonable translation candidates.2 To avoid
creating translations that use these pairs, a set of fea-
tures is computed for each pair. These features are
used to train a translation model, and phrase pairs
that produce low scoring translations are avoided. In
practice, it is often assumed that current translation
models are good enough to avoid building transla-
tions with these unreasonable phrase pairs.

In this paper, we question this assumption by in-
vestigating methods for pruning low quality phrase
pairs. We present a simple procedure that reduces
the overall phrase translation table size while in-
creasing translation quality. The basic idea is to
initially gather the phrase pairs and train an trans-
lation model as usual, but to then select a subset of
the overall phrases that performs the best, prune the
others, and retrain the translation model. In experi-
ments, this approach reduced the size of the phrase
tranlsation table by half, and improved the BLEU
score of the resulting translations by up to 1.5 points.

2 Background

As a baseline, we present a relatively standard SMT
approach, following Koehn et al. (2003). Potential
translations are scored using a linear model where
the best translation is computed as

arg max
t,a

n∑
i=1

λifi(s, a, t)

where s is the input sentence, t is the output sen-
tence, and a is a phrasal alignment that specifies how

2In one experiment, we managed to generate more than
117,000 English phrases for the the French word “de”.
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Monsieur le Orateur , je invoque le Règement
"" ,, � ""

Mr. Speaker , I rise on a point of order

Figure 1: A word aligned sentence pair.

t is constructed from s. The weights λi associated
with each feature fi are tuned to maximize the qual-
ity of the translations.

The training procedure starts by computing a
word alignment for each sentence pair in the train-
ing corpus. A word alignment is a relation between
the words in two sentences where, intuitively, words
are aligned to their translation in the other language.
In this work, we use a discriminatively trained word
aligner (Moore et al., 2006) that has state of the art
performance. Figure 1 presents a high quality align-
ment produced by this aligner.

Given a word aligned corpus, the second step is to
extract a phrase translation table. Each entry in this
table contains a source language phrase s, a target
language phrase t, and a list of feature values φ(s, t).
It is usual to extract every phrase pair, up to a cer-
tain phrase length, that is consistent with the word
alignment that is annotated in the corpus. Each con-
sistent pair must have at least one word alignment
between words within the phrases and no words in
either phrase can be aligned any words outside of the
phrases. For example, Figure 2 shows some of the
phrase pairs that would be extracted from the word-
aligned sentence pair in Figure 1. A full list using
phrases of up to three words would include 28 pairs.

For each extracted phrase pair (s, t), feature val-
ues φ(s, t) = 〈log p(s|t), log p(t|s), log l(s, t)〉 are
computed. The first two features, the log translation
and inverse translation probabilities, are estimated
by counting phrase cooccurrences, following Koehn
et al. (2003). The third feature is the logarithm of
a lexical score l(s, t) that provides a simple form of
smoothing by weighting a phrase pair based on how
likely individual words within the phrases are to be
translations of each other. We use a version from
Foster et al. (2006), modified from (Koehn et al.,
2003), which is an average of pairwise word transla-
tion probabilities.

In phrase-based SMT, the decoder produces trans-
lations by dividing the source sentence into a se-
quence of phrases, choosing a target language phrase

# Source Lang. Phrase Target Lang. Phrase
1 Monsieur Mr.
2 Monsieur le Mr.
3 Monsieur le Orateur Mr. Speaker
4 le Orateur Speaker
5 Orateur Speaker
. . . . . . . . .
23 le Règlement point of order
24 le Règlement of order
25 le Règlement order
26 Règlement point of order
27 Règlement of order
28 Règlement order

Figure 2: Phrase pairs consistent with the word
alignment in Figure 1.

as a translation for each source language phrase, and
ordering the target language phrases to build the fi-
nal translated sentence. Each potential translation is
scored according to a weighted linear model. We
use the three features from the phrase translation ta-
ble, summing their values for each phrase pair used
in the translation. We also use four additional fea-
tures: a target language model, a distortion penalty,
the target sentence word count, and the phrase pair
count, all computed as described in (Koehn, 2004).
For all of the experiments in this paper, we used the
Pharaoh beam-search decoder (Koehn, 2004) with
the features described above.

Finally, to estimate the parameters λi of the
weighted linear model, we adopt the popular min-
imum error rate training procedure (Och, 2003)
which directly optimizes translation quality as mea-
sured by the BLEU metric.

3 Selective Phrase Pair Extraction

In order to improve performance, it is important to
select high quality phrase pairs for the phrase trans-
lation table. We use two key ideas to guide selection:

• Preferential Scoring: Phrase pairs are selected
using a function q(s, t) that returns a high score
for source, target phrase pairs (s, t) that lead to
high quality translations.

• Redundancy Constraints: Our intuition is
that each occurrence of a source or target lan-
guage phrase really has at most one translation
for that sentence pair. Redundancy constraints
minimize the number of possible translations
that are extracted for each phrase occurrence.
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Selecting phrases that a translation model prefers
and eliminating at least some of the ambiguity that
comes with extracting multiple translations for a sin-
gle phrase occurrence creates a smaller phrase trans-
lation table with higher quality entries.

The ideal scoring metric would give high scores
to phrase pairs that lead to high-quality translations
and low scores to those that would decrease transla-
tion quality. The best such metric we have available
is provided by the overall translation model. Our
scoring metric q(s, t) is therefore computed by first
extracting a full phrase translation table, then train-
ing a full translation model, and finally using a sub-
part of the model to score individual phrase pairs in
isolation. Because the scoring is tied to a model that
is optimized to maximize translation quality, more
desirable phrase pairs should be given higher scores.

More specifically, q(s, t) = φ(s, t) · λ where
φ(s, t) is the length three vector that contains the
feature values stored with the phrase pair (s, t) in the
phrase translation table, and λ is a vector of the three
parameter values that were learned for these features
by the full translation model. The rest of the features
are ignored because they are either constant or de-
pend on the target language sentence which is fixed
during phrase extraction. In essence, we are using
the subpart of a full translation model that looks at
phrase pair identity and scoring the pair based on
how the full model would like it.

This scoring metric is used in a phrase pair se-
lection algorithm inspired by competitive linking
for word alignment (Melamed, 2000). Local com-
petitive linking extracts high scoring phrase pairs
while enforcing a redundancy constraint that mini-
mizes the number of phrase pairs that share a com-
mon phrase. For each sentence pair in the training
set, this algorithm marks the highest scoring phrase
pair, according to q(s, t), containing each source
language phrase and the highest scoring phrase pair
containing each target language phrase. Each of
these marked phrase pairs is selected and the phrase
translation table is rebuilt. This is a soft redundancy
constraint because a phrase pair will only be ex-
cluded if there is a higher scoring pair that shares
its source language phrase and a higher scoring pair
that shares its target language phrase. For example,
consider again the phrase pairs in Figure 2 and as-
sume they are sorted by their scores. Local compet-

itive linking will select every phrase pair except for
27 and 28. All other pairs are the highest scoring
options for at least one of their phrases.

Selective phrase extraction with competitive link-
ing can be seen as a Viterbi reestimation algorithm.
Because we are extracting fewer phrase pairs, the
features associated with each phrase pair will differ.
If the removed phrases were not real translations of
each other in the first place, the translation features
p(s|t) and p(t|s) should be better estimates because
the high quality phrases that remain will be given
the probability mass that was assigned to the pruned
phrase pairs. Although we are running it in a purely
discriminative setting, it has a similar feel to an EM
algorithm. First, a full phrase translation table and
parameter estimate is computed. Then, based on that
estimate, a subset of the phrases is selected which,
in turn, supplies a new estimate for the parameters.
One question is how many times to run this reestima-
tion procedure. We found, on the development set,
that it never helped to run more than one iteration.
Perhaps because of the hard nature of the algorithm,
repeated iterations caused slight decreases in phrase
translation table size and overall performance.

4 Experiments

In this section, we report experiments conducted
with Canadian Hansards data from the 2003 HLT-
NAACL word-alignment workshop (Mihalcea and
Pedersen, 2003). Phrase pairs are extracted
from 500,000 word-aligned French-English sen-
tence pairs. Translation quality is evaluated accord-
ing to the BLEU metric (with one reference trans-
lation). Three additional disjoint data sets (from the
same source) were used, one with 500 sentence pairs
for minimum error rate training, another with 1000
pairs for development testing, and a final set of 2000
sentence pairs for the final test. For each experiment,
we trained the full translation model as described in
Section 2. Each trial varied only in the phrase trans-
lation table that was used.3

One important question is what the maximum
phrase length should be for extraction. To inves-
tigate this issue, we ran experiments on the devel-

3These experiments also used the default pruning from the
Pharaoh decoder, allowing only the 10 best output phrases to be
considered for each input phrase. This simple global pruning
cannot be substituted for the competitive linking described here.
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Figure 3: Scaling the maximum phrase length.

opment set. Figure 3 shows a comparison of the
full phrase table to local competitive linking as the
maximum phrase length is varied. Local competi-
tive linking consistently outperforms the full table
and the difference in BLEU score seems to increase
with the length. The growth in the size of the phrase
translation table seems to be linear with maximum
phrase length in both cases, with the table size grow-
ing at a slower rate under local competitive linking.

To verify these results, we tested the model
trained with the full phrase translation table against
the model trained with the table selected by local
competitive linking on the heldout test data. Both ta-
bles included phrases up to length 7 and the models
were tested on a set of 2000 unseen sentence pairs.
The results matched the development experiments.
The full system scored 26.78 while the local linking
achieved 28.30, a difference of 1.52 BLEU points.

5 Discussion

The most closely related work attempts to create
higher quality phrase translation tables by learning
a generative model that directly incorporates phrase
pair selection. The original approach (Marcu and
Wong, 2002) was limited due to computational con-
straints but recent work (DeNero et al., 2006; Birch
et al., 2006) has improved the efficiency by using
word alignments as constraints on the set of possible
phrase pairs. The best results from this line of work

allow for a significantly smaller phrase translation
table, but never improve translation performance.

In this paper, we presented an algorithm that
improves translation quality by selecting a smaller
phrase translation table. We hope that this work
highlights the need to think carefully about the qual-
ity of the phrase translation table, which is the cen-
tral knowledge source for most modern statistical
machine translation systems. The methods used in
the experiments are so simple that we believe that
there is significant potential for improvement by us-
ing better methods for scoring phrase pairs and se-
lecting phrase pairs based those scores.
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Abstract

We present the first known empirical study
on speech summarization without lexi-
cal features for Mandarin broadcast news.
We evaluate acoustic, lexical and struc-
tural features as predictors of summary
sentences. We find that the summarizer
yields good performance at the average F-
measure of 0.5646 even by using the com-
bination of acoustic and structural features
alone, which are independent of lexical
features. In addition, we show that struc-
tural features are superior to lexical fea-
tures and our summarizer performs sur-
prisingly well at the average F-measure
of 0.3914 by using only acoustic features.
These findings enable us to summarize
speech without placing a stringent demand
on speech recognition accuracy.

1 Introduction

Speech summarization, a technique of extracting
key segments that convey the main content from
a spoken document or audio document, has be-
come a new area of study in the last few years.
There has been much significant progress made in
speech summarization for English or Japanese text
and audio sources (Hori and Furui, 2003; Inoue et
al., 2004; Koumpis and Renals, 2005; Maskey and
Hirschberg, 2003; Maskey and Hirschberg, 2005).
Some research efforts have focused on summariz-
ing Mandarin sources (Chen et al., 2006; Huang

et al., 2005), which are dependent on lexical fea-
tures. Considering the difficulty in obtaining high
quality transcriptions, some researchers proposed
speech summarization systems with non-lexical fea-
tures (Inoue et al., 2004; Koumpis and Renals,
2005; Maskey and Hirschberg, 2003; Maskey and
Hirschberg, 2006). However, there does not exist
any empirical study on speech summarization with-
out lexical features for Mandarin Chinese sources.
In this paper, we construct our summarizer with
acoustic and structural features, which are indepen-
dent of lexical features, and compare acoustic and
structural features against lexical features as predic-
tors of summary sentences.

In Section 2 we review previous work on broad-
cast news summarization. We describe the Mandarin
broadcast news corpus on which our system operates
in Section 3. In Section 4 we describe our summa-
rizer and these features used in experiments. We set
up our experiments and evaluate the results in Sec-
tion 5, followed by our conclusion in Section 6.

2 Previous Work

There have been many research efforts on speech
summarization. Some methods dependent on lexi-
cal features are presented (Inoue et al., 2004; Chen
et al., 2006; Huang et al., 2005). (Inoue et al.,
2004) uses statistical methods to identify words to
include in a summary, based on linguistic and acous-
tic/prosodic features of the Japanese broadcast news
transcriptions; while (Chen et al., 2006) proposes
the use of probabilistic latent topical information for
extractive summarization of Mandarin spoken docu-
ments. (Huang et al., 2005) presents Mandarin spo-
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ken document summarization scheme using acous-
tic, prosodic, and semantic information. Alterna-
tively, some methods which are independent of lex-
ical features are presented (Maskey and Hirschberg,
2003; Maskey and Hirschberg, 2006). (Maskey
and Hirschberg, 2003) extracts structural informa-
tion from audio documents to help summarization.
(Maskey and Hirschberg, 2006) focuses on how to
use acoustic information alone to help predict sen-
tences to be included in a summary and shows a
novel way of using continuous HMMs for summa-
rizing speech documents without transcriptions.

It is advantageous to build speech summarization
models without using lexical features: we can sum-
marize speech data without placing a stringent de-
mand on the speech recognition accuracy. In this pa-
per, we propose one such model on Mandarin broad-
cast news and compare the effectiveness of acous-
tic and structural features against lexical features as
predictors of summary sentences.

3 The Corpus and Manual Summaries

We use a portion of the 1997 Hub4 Mandarin corpus
available via LDC as experiment data. The related
audio data were recorded from China Central Tele-
vision(CCTV) International News programs. They
include 23-day broadcast from 14th January, 1997
to 21st April, 1997, which contain 593 stories and
weather forecasts. Each broadcast lasts approxi-
mately 32 minutes, and has been hand-segmented
into speaker turns. For evaluation, we manually
annotated these broadcast news, and extracted seg-
ments as reference summaries. We divide these
broadcast news stories into 3 types: one-turn news,
weather forecast, and several-turns news. The con-
tent of each several-turn news is presented by more
than one reporter, and sometimes interviewees. We
evaluate our summarizer on the several-turns news
corpus. The corpus has 347 stories which contain
4748 sentences in total.

4 Features and Methodology

4.1 Acoustic/Prosodic Features
Acoustic/prosodic features in speech summarization
system are usually extracted from audio data. Re-
searchers commonly use acoustic/prosodic variation
– changes in pitch, intensity, speaking rate – and du-

ration of pause for tagging the important contents
of their speeches (Hirschberg, 2002). We also use
these features for predicting summary sentences on
Mandarin broadcast news.

Our acoustic feature set contains thirteen features:
DurationI, DurationII, SpeakingRate, F0I, F0II,
F0III, F0IV, F0V, EI, EII, EIII, EIV and EV. Du-
rationI is the sentence duration. DurationII is the
average phoneme duration. General phonetic stud-
ies consider that the speaking rate of sentence is re-
flected in syllable duration. So we use average syl-
lable duration for representing SpeakingRate. F0I is
F0’s minimum value. F0II is F0’s maximum value.
F0III equals to the difference between F0II and F0I.
F0IV is the mean of F0. F0V is F0 slope. EI is min-
imum energy value. EII is maximum energy value.
EIII equals to the difference between EII and EI.
EIV is the mean of energy value. EV is energy slope.
We calculate DurationI from the annotated manual
transcriptions that align the audio documents. We
then obtain DurationII and SpeakingRate by pho-
netic forced alignment. Next we extract F0 fea-
tures and energy features from audio data by using
Praat (Boersma and Weenink, 1996).

4.2 Structural Features

Each broadcast news of the 1997 Hub4 Mandarin
corpus has similar structure, which starts with an an-
chor, followed by the formal report of the story by
other reporters or interviewees.

Our structural feature set consists of 4 features:
Position, TurnI, TurnII and TurnIII. Position is de-
fined as follows: one news has k sentences, then we
set (1− (0/k)) as Position value of the first sentence
in the news, and set (1−((i−1)/k)) as Position value
of the ith sentence. TurnI is defined as follows: one
news has m turns, then we set (1− (0/m)) as TurnI
value of the sentences which belong to the first turn’s
content, and set (1−((j−1)/m)) as TurnI values of
the sentences which belong to the jth turn’s content.
TurnII is the previous turn’s TurnI value. TurnIII is
the next turn’s TurnI value.

4.3 Reference Lexical Features

Most methods for text summarization mainly utilize
lexical features. We are interested in investigating
the role of lexical features in comparison to other
features. All reference lexical features are extracted
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from the manual transcriptions.
Our lexical feature set contains eight features:

LenI, LenII, LenIII, NEI, NEII, NEIII, TFIDF
and Cosine. For a sentence, we set the number of
words in the sentence as LenI value. LenII is the
previous sentence’s LenI value. LenIII is the next
sentence’s LenI value. For a sentence, we set the
number of Named Entities in the sentence as the
NEI value. We define the number of Named Enti-
ties which appear in the sentence at the first time in
a news as NEII value. NEIII value equals to the ra-
tio of the number of unique Named Entities to the
number of all Named Entities.

TFIDF is the product of tf and idf. tf is the frac-
tion: the numerator is the number of occurrences
of the considered word and the denominator is the
number of occurrences of all words in a story. idf is
the logarithm of the fraction: the numerator is the to-
tal number of sentences in the considered news and
the denominator is the number of sentences where
the considered word appears. Cosine means cosine
similarity measure between two sentence vectors.

4.4 Summarizer

Our summarizer contains the preprocessing stage
and the estimating stage. The preprocessing stage
extracts features and normalizes all features by
equation (1).

Nj =
wj −mean(wj)

dev(wj)
(1)

Here, wj is the original value of feature j which is
used to describe sentence i; mean(wj) is the mean
value of feature j in our training set or test set;
dev(wj) is the standard deviation value of feature
j in our training set or test set.

The estimating stage predicts whether each sen-
tence of the broadcast news is in a summary or not.
We use Radial Basis Function(RBF) kernel for con-
structing SVM classifier as our estimator referring to
LIBSVM (Chang and Lin, 2001), which is a library
for support vector machines.

5 Experiments and Evaluation

We use the several-turn news corpus, described in
Section 3, in our experiments. We use 70% of the
corpus consisting of 3294 sentences as training set

Table 1: Feature set Evaluation by F-measure
Feature Set SR10% SR15% SR20% Ave
Ac+St+Le .5961 .546 .5544 .5655
Ac+St .5888 .5489 .5562 .5646
St .5951 .5616 .537 .5645
Le .5175 .5219 .5329 .5241
Ac .3068 .4092 .4582 .3914
Baseline .21 .32 .43 .32

Ac: Acoustic; St: Structural; Le: Lexical

and the remaining 1454 sentences as held-out test
set, upon which our summarizer is tested.

We measure our summarizer’s performance by
precision, recall, and F-measure (Jing et al., 1998).
We explain these metrics as follows:

precision =
Sman

⋂
Ssum

Ssum
(2)

recall =
Sman

⋂
Ssum

Sman
(3)

F-Measure =
2× precision× recall

precision + recall
(4)

In equation (2), (3) and (4), Sman is the sentence
set of manual summaries or reference summaries;
Ssum is the sentence set of predicted summaries pro-
vided by our summarizer.

We have three versions of reference summaries
based on summarization ratio(SR): 10%, 15% and
20% respectively. So we build three baselines re-
ferring to different versions of reference summaries.
When using SR 10% summaries, we build the base-
lines by choosing the first 10% of sentences from
each story. Our baseline results in F-measure score
are given in Table 1.

We perform three sets of experiments with differ-
ent summarization ratios.

By using acoustic and structural features alone,
the summarizer produces the same performance as
by using all features. We can find the evidence from
Table 1 and Figure 1. On average, the combination
of acoustic and structural features yields good per-
formance: F-measure of 0.5646, 24.46% higher than
the baseline, only 0.09% lower than the average F-
measure produced by using all features. This find-
ing makes it possible to summarize speech without
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Figure 1: Performance comparison on SR10%

placing a stringent demand on the speech recogni-
tion accuracy.

In the same Mandarin broadcast program, the dis-
tribution and flow of summary sentences are rela-
tively consistent. Therefore, compared with speech
summarization on English sources, we can achieve
the different finding that structural features play
a key role in speech summarization for Mandarin
broadcast news. Table 1 shows the evidence. On
average, structural features are superior to lexical
features: F-measure of 0.5645, 24.45% higher than
the baseline and 4,04% higher than the average F-
measure produced by using lexical features.

Another conclusion we can draw from Table 1
is that acoustic features are important for speech
summarization on Mandarin broadcast news. On
average, even by using acoustic features alone our
summarizer yields competitive result: F-measure of
0.3914, 7.14% higher than the baseline. The similar
conclusion also holds for speech summarization on
English sources (Maskey and Hirschberg, 2006).

6 Conclusion

In this paper, we have presented the results of an
empirical study on speech summarization for Man-
darin broadcast news. From these results, we found
that by using acoustic and structural features alone,
the summarizer produces good performance: aver-

age F-measure of 0.5646, the same as by using all
features. We also found that structural features make
more important contribution than lexical features to
speech summarization because of the relatively con-
sistent distribution and flow of summary sentences
in the same Mandarin broadcast program. Moreover,
we have shown that our summarizer performed sur-
prisingly well by using only acoustic features: av-
erage F-measure of 0.3914, 7.14% higher than the
baseline. These findings also suggest that high qual-
ity speech summarization can be achieved without
stringent requirement on speech recognition accu-
racy.
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Abstract 

In this paper we describe automatic in-

formation nuggetization and its applica-

tion to text comparison. More 

specifically, we take a close look at how 

machine-generated nuggets can be used to 

create evaluation material. A semi-

automatic annotation scheme is designed 

to produce gold-standard data with excep-

tionally high inter-human agreement.  

1 Introduction 

In many natural language processing (NLP) tasks, 

we are faced with the problem of determining the 

appropriate granularity level for information units. 

Most commonly, we use sentences to model indi-

vidual pieces of information. However, more NLP 

applications require us to define text units smaller 

than sentences, essentially decomposing sentences 

into a collection of phrases. Each phrase carries an 

independent piece of information that can be used 

as a standalone unit. These finer-grained informa-

tion units are usually referred to as nuggets.  

When performing within-sentence comparison 

for redundancy and/or relevancy judgments, with-

out a precise and consistent breakdown of nuggets 

we can only rely on rudimentary n-gram segmenta-

tions of sentences to form nuggets and perform 

subsequent n-gram-wise text comparison. This is 

not satisfactory for a variety of reasons. For exam-

ple, one n-gram window may contain several sepa-

rate pieces of information, while another of the 

same length may not contain even one complete 

piece of information.  

Previous work shows that humans can create 

nuggets in a relatively straightforward fashion. In 

the PYRAMID scheme for manual evaluation of 

summaries (Nenkova and Passonneau, 2004), ma-

chine-generated summaries were compared with 

human-written ones at the nugget level. However, 

automatic creation of the nuggets is not trivial. 

Hamly et al. (2005) explore the enumeration and 

combination of all words in a sentence to create the 

set of all possible nuggets. Their automation proc-

ess still requires nuggets to be manually created a 

priori for reference summaries before any sum-

mary comparison takes place. This human in-

volvement allows a much smaller subset of phrase 

segments, resulting from word enumeration, to be 

matched in summary comparisons. Without the 

human-created nuggets, text comparison falls back 

to its dependency on n-grams. Similarly, in ques-

tion-answering (QA) evaluations, gold-standard 

answers use manually created nuggets and com-

pare them against system-produced answers bro-

ken down into n-gram pieces, as shown in 

POURPRE (Lin and Demner-Fushman, 2005) and 

NUGGETEER (Marton and Radul, 2006).  

A serious problem in manual nugget creation is 

the inconsistency in human decisions (Lin and 

Hovy, 2003). The same nugget will not be marked 

consistently with the same words when sentences 

containing multiple instances of it are presented to 

human annotators. And if the annotation is per-

formed over an extended period of time, the con-

sistency is even lower. In recent exercises of the 

PYRAMID evaluation, inconsistent nuggets are 

flagged by a tracking program and returned back to 

the annotators, and resolved manually.  

Given these issues, we address two questions in 

this paper: First, how do we define nuggets so that 

they are consistent in definition? Secondly, how do 
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we utilize automatically extracted nuggets for vari-

ous evaluation purposes?  

2 Nugget Definition  

 

Based on our manual analysis and computational 

modeling of nuggets, we define them as follows:  

Definition:  

• A nugget is predicated on either an event or 

an entity.  

• Each nugget consists of two parts: the an-

chor and the content.  

The anchor is either:  

• the head noun of the entity, or 

• the head verb of the event, plus the head 

noun of its associated entity (if more than 

one entity is attached to the verb, then its 

subject).  

The content is a coherent single piece of infor-

mation associated with the anchor. Each anchor 

may have several separate contents.  

When a nugget contains nested sentences, this 

definition is applied recursively. Figure 1 shows an 

example. Anchors are marked with square brack-

ets. If the anchor is a verb, then its entity attach-

ment is marked with curly brackets. If the sentence 

in question is a compound and/or complex sen-

tence, then this definition is applied recursively to 

allow decomposition. For example, in Figure 1, 

without recursive decomposition, only two nuggets 

are formed: 1) “[girl] working at the bookstore in 

Hollywood”, and 2) “{girl} [talked] to the diplo-

mat living in Britain”. In this example, recursive 

decomposition produces nuggets with labels 1-a, 1-

b, 2-a, and 2-b.  

2.1 Nugget Extraction 

We use syntactic parse trees produced by the 

Collins parser (Collins, 1999) to obtain the struc-

tural representation of sentences. Nuggets are ex-

tracted by identifying subtrees that are descriptions 

for entities and events. For entity nuggets, we ex-

amine subtrees headed by “NP”; for event nuggets, 

subtrees headed by “VP” are examined and their 

corresponding subjects (siblings headed by “NP”) 

are treated as entity attachments for the verb 

phrases.  

3 Utilizing Nuggets in Evaluations 

In recent QA and summarization evaluation exer-

cises, manually created nuggets play a determinate 

role in judging system qualities. Although the two 

task evaluations are similar, the text comparison 

task in summarization evaluation is more complex 

because systems are required to produce long re-

sponses and thus it is hard to yield high agreement 

if manual annotations are performed. The follow-

ing experiments are conducted in the realm of 

summarization evaluation.  

3.1 Manually Created Nuggets 

During the recent two Document Understanding 

Confereces (DUC-05 and DUC-06) (NIST, 2002–

2007), the PYRAMID framework (Nenkova and 

Passonneau, 2004) was used for manual summary 

evaluations. In this framework, human annotators 

select and highlight portions of reference summa-

ries to form a pyramid of summary content units 

(SCUs) for each docset. A pyramid is constructed 

from SCUs and their corresponding popularity 

scores—the number of reference summaries they 

appeared in individually. SCUs carrying the same 

information do not necessarily have the same sur-

face-level words. Annotators need to make the de-

cisions based on semantic equivalence among 

Figure 1. Nugget definition examples.  

Sentence:  

The girl working at the bookstore in Hollywood 

talked to the diplomat living in Britain.  

 

Nuggets are: 

1) [girl] working at the bookstore in Holly-

wood 

a. [girl] working at the bookstore  

b. [bookstore] in Hollywood 

2) {girl} [talked] to the diplomat living in 

Britain 

a. {girl} [talked] to the diplomat 

b. [diplomat] living in Britian 

 

Anchors: 

1) [girl] 

a. [girl] 

b. [bookstore] 

2) {girl} [talked]: talked is the anchor verb 

and girl is its entity attachment.  

a. {girl} [talked] 

b. [diplomat]  
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various SCUs. To evaluate a peer summary from a 

particular docset, annotators highlight portions of 

text in the peer summary that convey the same in-

formation as those SCUs in previously constructed 

pyramids.  

3.2 Automatically Created Nuggets 

We envisage the nuggetization process being 

automated and nugget comparison and aggregation 

being performed by humans. It is crucial to involve 

humans in the evaluation process because recog-

nizing semantically equivalent units is not a trivial 

task computationally. In addition, since nuggets are 

system-produced and can be imperfect, annotators 

are allowed to reject and re-create them. We per-

form record-keeping in the background on which 

nugget or nugget groups are edited so that further 

improvements can be made for nuggetization.  

The evaluation scheme is designed as follows: 
 

For reference summaries (per docset):  

• Nuggets are created for all sentences;  

• Annotators will group equivalent nuggets.  

• Popularity scores are automatically assigned 

to nugget groups.  

For peer summaries:  

• Nuggets are created for all sentences;  

• Annotators will match/align peer’s nuggets 

with reference nugget groups.  

• Recall scores are to be computed.  

3.3 Consistency in Human Involvement 

The process of creating nuggets has been auto-

mated and we can assume a certain level of consis-

tency based on the usage of the syntactic parser. 

However, a more important issue emerges. When 

given the same set of nuggets, would human anno-

tators agree on nugget group selections and their 

corresponding contributing nuggets? What levels 

of agreement and disagreement should be ex-

pected? Two annotators, one familiar with the no-

tion of nuggetization (C1) and one not (C2), 

participated in the following experiments.  

Figure 2 shows the annotation procedure for 

reference summaries. After two rounds of individ-

ual annotations and consolidations and one final 

round of conflict resolution, a set of gold-standard 

nugget groups is created for each docset and will 

be subsequently used in peer summary annotations. 

The first round of annotation is needed since one 

of the annotators, C2, is not familiar with nuggeti-

zation. After the initial introduction of the task, 

concerns and questions arisen can be addressed. 

Then the annotators proceed to the second round of 

annotation. Naturally, some differences and con-

flicts remain. Annotators must resolve these prob-

lems during the final round of conflict resolution 

and create the agreed-upon gold-standard data.   

Previous manual nugget annotation has used one 

annotator as the primary nugget creator and an-

other annotator as an inspector (Nenkova and Pas-

sonneau, 2004). In our annotation experiment, we 

encourage both annotators to play equally active 

roles. Conflicts between annotators resulting from 

ideology, comprehension, and interpretation differ-

ences helped us to understand that complete 

agreement between annotators is not realistic and 

not achievable, unless one annotator is dominant 

over the other. We should expect a 5-10% annota-

tion variation.  

In Figure 3, we show annotation comparisons 

from first to second round. The x-axis shows the 

nugget groups that C1 and C2 have agreed on. The 

y-axis shows the popularity score a particular nug-

get group received. Selecting from three reference 

summaries, a score of three for a nugget group in-

dicates it was created from nuggets in all three 

 

Figure 2. Reference annotation and gold-standard 

data creation.  
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summaries. The first round initially appears suc-

cessful because the two annotators had 100% 

agreement on nugget groups and their correspond-

ing scores. However, C2, the novice nuggetizer, 

was much more conservative than C1, because 

only 10 nugget groups were created. The geometric 

mean of agreement on all nugget group assignment 

is merely 0.4786. During the second round, differ-

ences in group-score allocations emerge, 0.9192, 

because C2 is creating more nugget groups. The 

geometric mean of agreement on all nugget group 

assignment has been improved to 0.7465.  

After the final round of conflict resolution, 

gold-standard data was created. Since all conflicts 

must be resolved, annotators have to either con-

vince or be convinced by the other. How much 

change is there between an annotator’s second-

round annotation and the gold-standard? Geomet-

ric mean of agreement on all nugget group assign-

ment for C1 is 0.7543 and for C2 is 0.8099. 

Agreement on nugget group score allocation for 

C1 is 0.9681 and for C2 is 0.9333. From these fig-

ures, we see that while C2 contributed more to the 

gold-standard’s nugget group creations, C1 had 

more accuracy in finding the correct number of 

nugget occurrences in reference summaries. This 

confirms that both annotators played an active role. 

Using the gold-standard nugget groups, the annota-

tors performed 4 peer summary annotations. The 

agreement among peer summary annotations is 

quite high, at approximately 0.95. Among the four, 

annotations on one peer summary from the two 

annotators are completely identical.  

4 Conclusion 

In this paper we have given a concrete definition 

for information nuggets and provided a systematic 

implementation of them. Our main goal is to use 

these machine-generated nuggets in a semi-

automatic evaluation environment for various NLP 

applications. We took a close look at how this can 

be accomplished for summary evaluation, using 

nuggets created from reference summaries to grade 

peer summaries. Inter-annotator agreements are 

measured to insure the quality of the gold-standard 

data created. And the agreements are very high by 

following a meticulous procedure. We are cur-

rently preparing to deploy our design into full-

scale evaluation exercises.  
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