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Abstract forms. Thus, the recognition vocabulary can sim-
ply consist of a list of words observed in the training
We analyze subword-based language ext, andn-gram language models (LMs) are esti-

models (LMs) in large-vocabulary mated over word sequences. The applicability of the
continuous  speech recognition across  yord-based approach to morphologically richer lan-
four “morphologically rich” languages: guages has been questioned. In highly compounding
Finnish, Estonian, Turkish, and Egyptian  |anguages, such as the Germanic languages German,
Colloquial Arabic. By estimating.-gram Dutch and Swedish, decomposition of compound
LMs over sequences ohorphs instead words can be carried out to reduce the vocabulary

of words, better vocabulary coverage  sjze. Highly inflecting languages are found, e.g.,
and reduced data sparsity is obtained.  among the Slavic, Romance, Turkic, and Semitic
Standard word LMs suffer from high language families. LMs incorporating morphologi-
out-of-vocabulary (OOV) rates, whereas 5| knowledge about these languages can be applied.
the morph LMs can recognize previously A further challenging category comprises languages
unseen word forms by concatenating  that are both highly inflecting and compounding,

morphs. We show that the morph LMs  gych as the Finno-Ugric languages Finnish and Es-
generally outperform the word LMs and tonian.

that they perform fairly well on OOVs
without compromising the accuracy
obtained for in-vocabulary words.

Morphology modeling aims to reduce the out-
of-vocabulary (OOV) rate as well as data sparsity,
thereby producing more effective language mod-
_ els. However, obtaining considerable improvements
1 Introduction in speech recognition accuracy seems hard, as is

As automatic speech recognition systems are beigmonstrate_d by the fairly meager improvements
developed for an increasing number of language 1-4 % r_elatlve) over standard word-based models
there is growing interest in language modeling apccomplished by, e.g., Berton et al. (1996), Ordel-

proaches that are suitable for so-called “morphologlan et al. (2003), Kirchhoff et al. (2006), Whit-
ically rich” languages. In these languages, the nuni@ker and Woodland (2000), Kwon and Park (2003),

ber of possible word forms is very large becaus@nd Shafran and Hall (2006) for Dutch, Arabic, En-
of many productive morphological processes; wordglish, Korean, and Czech, or even the worse perfor-
are formed through extensive use of, e.g., inflectioAnance reported by Larson et al. (2000) for German

derivation and compounding (such as the EnglisRnd Byrne et al. (2001) for Czech. Nevertheless,
words ‘rooms’, ‘roomy’, ‘bedroom’, which all stem clear improvements over a word baseline have been

from the noun ‘room’). achieved for Serbo-Croatian (Geutner et al., 1998),

For some languages, language modeling based Einish, Estonian (Kurimo et al., 2006b) and Turk-

surface forms of words has proven successful, or igh (Kurimo et al., 2006a).
least satisfactory. The most studied language, En-In this paper, subword language models in the
glish, is not characterized by a multitude of wordrecognition of speech of four languages are ana-
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lyzed: Finnish, Estonian, Turkish, and the dialece.1 MAP Optimization Criterion

of Arabic spoken in Egypt, Egyptian Colloquial| glightly simplified form, the optimization crite-
Arabic (ECA). All these languages are considereds, yiilized in the model corresponds to the maxi-

“morphologically rich”, but the benefits of using mnization of the following posterior probability:
subword-based LMs differ across languages. We at-

tempt to discover explanations for these differences. P(lexicon| corpug o

In particular, the focus is on the analysis of OOVs: P(lexicon) - P(corpus| lexicon) =

A perceived strength of subword models, when con-

trasted with word models, is that subword models [T ) I P (1)

. . lett h
can generalize to previously unseen word forms by etersa morpnsy

recognizing them as sequences of shorter familigrhe lexicon consists of all distinct morphs spelled

word fragments. out; this forms a long string of lettes, in which
each morph is separated from the next morph using
2 Morfessor a morph boundary character. The probability of the

Morfessor is an unsupervised, data-driven, methd&xicon is the product of the probability of each let-

for the segmentation of words into morpheme-likd€r in this string. Analogously, the corpus is repre-
units. The general idea is to discover as corsented as a sequence of morphs, which corresponds

pact a description of the input text corpus as pOSS§Q a particular segmentation of the words in the cor-

ble. Substrings occurring frequently enough in seyRUS: The probability of this segmentation equals the
eral different word forms are proposed m®rphs product of the probability of each morph token

and the words in the corpus are then representé@tter and morph probabilities are maximum likeli-

as a concatenation of morphs, e.g., ‘hand, hand+200d estimates (empirical Bayes).

left+hand+ed, hand+ful’. Through maximum a pos» 5 Erom Morphs to n-Grams
teriori optimization (MAP), an optimal balance is
sought between the compactness of the inventory
morphs, i.e., thenorph lexiconversus the compact-
ness of the representation of the corpus.

Among others, de Marcken (1996), Brent (1999)

a result of the probabilistic (or MDL) approach,
the morph inventory discovered by the Morfessor
Baseline algorithm is larger the more training data
there is. In some speech recognition experiments,

Goldsmith (2001), Creutz and Lagus (2002), an owever, it has been desirable to restrict the size of

Creutz (2006) have shown that models based & e morph inventory. This has been achieved by §et-
the above approach produce segmentations that fg a freq%’e”CY threshold on the words on Whlc.h
semble linguistic morpheme segmentations, whe orfessor is trained, such that the rarest words will

formulated mathematically in a probabilistic frame-nOt affect the learning process. Nonetheless, the

work or equivalently using the Minimum Descrip- rgrﬁsthwordsdc?rll be S%“tt')nto morp?}s |(1/Iac%<.)rd|ance
tion Length (MDL) principle (Rissanen, 1989).Wlt the model learned, by using the Viterbi algo-

Similarly, Goldwater et al. (2006) use a hierarchicaJIthm to .setlject. t:\ed r_no:t I|keI3{ segmentation. The
Dirichlet model in combination with morph bigram process s depicted in Figure L.

probabilities. 2.3 Grapheme-to-Phoneme Mapping

The Morfessor. model has been -developed OVefrhe mapping between graphemes (letters) and
the years, and different model versions exist. The

model used in the speech recognition experiments Bponemes is straightforward in the languages stud-

: o led in the current paper. More or less, there is
the current paper is the original, so-callbtbrfes-
. : Lo . . a one-to-one correspondence between letters and
sor Baselinealgorithm, which is publicly available

for download!. The mathematics of the Morfessorphonemes' Thatis, the spelling of a word indicates

: o : . . the pronunciation of the word, and when splitting the
Baseline model is briefly outlined in the following; word into parts. the bronunciation of the parts in iSo-
consult Creutz (2006) for details. parts, P P

lation does not differ much from the pronunciation
Iht tp: //ww ci s. hut. fi/ proj ect s/ mor pho/ of the parts in context. However, a few exceptions
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Freq“efpcy sists of news broadcasts read by one single female

cut-o
Extract speaker (Finl), as well as an audio book read by an-

Morfessor LM
F words other female speaker (Fin2, Fin3, Fin4). The Finnish
Morph T

. : acoustic mod . -
Textcorpus  inventhry|  Text with words els are speaker dependent (SD). Mono
‘ + probs,, segmented into

phones (mon) were used in the earlier experiments
Vierb 1PN (Fin1, Fin2), but these were later replaced by cross-
segm. n—-grams context triphones (tri).
The Estonian speech data has been collected from
Figure 1: How to train a segmentation model usin@ large number of speakers and consists of sen-
the Morfessor Baseline algorithm, and how to furtences from newspapers as well as names and dig-
ther train am-gram model based on morphs. its read aloud. The acoustic models are speaker-
independent triphones (Sl tri) adapted online using

have been treated more rigorously in the Arabi XCepstral Mean Subtraction and Constrained Maxi-
9 y abIC €% im Likelihood Linear Regression. Also the Turk-

periments: e.g., in some contexts the same (spelle@1 . . .
morph can have multiple possible pronunciations. ISh acoustic training data contams speech from hun-
dreds of speakers. The test set is composed of news-
paper text read by one female speaker. Speaker-
independent triphones are used as acoustic models.
The goal of the conducted experiments is to com- The Finnish, Estonian, and Turkish data sets con-
paren-gram language models based on morphs t@in planned speech, i.e., written text read aloud.
standard worch-gram models in automatic speechBy contrast, the Arabic data consists of transcribed

3 Experiments and Analysis

recognition across languages. spontaneous telephone conversatinshich are
" characterized by disfluencies and by the presence
3.1 Data Sets and Recognition Systems of “non-speech”, such as laugh and cough sounds.

The results from eight different tests have been arFhere are multiple speakers in the Arabic data, and
alyzed. Some central properties of the test configanline speaker adaptation has been performed.
urations are shown in Table 1. The Finnish, Esto-
nian, and Turkish test configurations are slight vari3-1-2 Text Data and Language Models
ations of experiments reported earlier in Hirsimaki The n-gram language models are trained using
et al. (2006) (Finl: ‘News task’, Fin2: ‘Book task’), the SRILM toolkit (Stolcke, 2002) (Finl, Fin2,
Kurimo et al. (2006a) (Fin3, Turl), and Kurimo etTurl, Tur2, ECA) or similar software developed
al. (2006b) (Fin4, Est, Tur2). at HUT (Siivola and Pellom, 2005) (Fin3, Fin4,
Three different recognition platforms have beerkst). All models utilize the Modified Interpolated
used, all of which are state-of-the-art large vocabkneser-Ney smoothing technique (Chen and Good-
ulary continuous speech recognition (LVCSR) sysman, 1999). The Arabic LM is trained on the
tems. The Finnish and Estonian experiments haw&ame corpus that is used for acoustic training. This
been run on the HUT speech recognition system deata set is regrettably small (160 000 words), but it
veloped at Helsinki University of Technology. matches the test set well in style, as it consists of
The Turkish tests were performed using thédranscribed spontaneous speech. The LM training
AT&T decoder (Mohri and Riley, 2002); the acous-corpora used for the other languages contain fairly
tic features were produced using the HTK front endarge amounts of mainly news and book texts and
(Young et al., 2002). The experiments on Egyptiaonceivably match the style of the test data well.
Colloquial Arabic (ECA) were carried out using the In the morph-based models, words are split into
SRI DeciphefM speech recognition system. morphs using Morfessor, and statistics are collected

. for morph n-grams. As the desired output of the
3.1.1 Speech Data and Acoustic Models

IC: http://ww. | dc. upenn. edu/ Cat al og/ Cat al ogEntry. jsp?

one language to another. The Finnish data CORat al ogl d=LDC97545
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Table 1: Test configurations

Finl Fin2 Fin3 Fin4 Est Turl Tur2 ECA
Recognizer HUT HUT HUT HUT HUT AT&T AT&T SRI
Speech data
Type of speech read read read read read read read spont.
Training set [kwords] 20 49 49 49 790 230 110 160
Speakers in training set 1 1 1 1 1300 550 250 310
Test set [kwords] 4.3 1.9 1.9 1.9 3.7 7.0 7.0 16
Speakers in test set 1 1 1 1 50 1 1 57
Text data
LM training set [Mwords] 36 36 32 150 53 17 27 0.16
Models
Acoustic models SDmon SDmon SDtri SDtri  Sltri  Sltri Sitri @i
Morph lexicon [kmorphs] 66 66 120 25 37 52 34 6.1
Word lexicon [kwords] 410 410 410 - 60 120 50 18
Out-of-vocabulary words
OOQV LM training set[%] 5.0 5.0 5.9 - 14 5.3 9.6 0.61
OO0V test set [%)] 5.0 7.2 7.3 - 19 5.5 12 9.9
New words in test set [%] 2.7 3.0 3.1 15 3.4 1.6 15 9.8

speech recognizer is a sequence of words rather thizng LMs, but typically the morpm-gram LMs are
morphs, the LM explicitly models word breaks assmaller than the corresponding wategram LMs.
special symbols occurring in the morph sequence.

For comparison, worg-gram models have been3-1-3  Out-of-Vocabulary Words

tested. The vocabulary cannot typically include ev- Table 1 further shows statistics on out-of-
ery word form occurring in the training set (becaus&ocabulary rates in the data sets. This is relevant
of the large number of different words), so the mosfor the assessment of the word models, as the OOV
frequent words are given priority; the actual lexicornrates define the limits of these models.
sizes used in each experiment are shown in Table 1.The OOV rate for the LM training set corresponds
Any word not contained in the lexicon is replaced by the proportion of words replaced by the OOV
a special out-of-vocabulary symbol. symbol in the LM training data, i.e., words that were
As words and morphs are units of different lengthnot included in the recognition vocabulary. The high
their optimal performance may occur at different orOQV rates for Estonian (14 %) and Tur2 (9.6 %) in-
ders of then-gram. The best order of the-gram dicate that the word lexicons have poor coverage of
has been optimized on development test sets in tlieese sets. By contrast, the ECA word lexicon cov-
following cases: Finl, Fin2, Turl, ECA (4-gramsers virtually the entire training set vocabulary.
for both morphs and words) and Tur2 (5-grams for Correspondingly, the test set OOV rate is the pro-
morphs, 3-grams for words). The models have acportion of words that occur in the data sets used
ditionally been pruned using entropy-based pruningpr running the speech recognition tests, but that are
(Turl, Tur2, ECA) (Stolcke, 1998). In the othermissing from the recognition lexicons. This value
experiments (Fin3, Fin4, Est), no fixed maximumis thus theminimum errorthat can be obtained by
value ofn was selectedn-Gram growing was per- the word models, or put differently, the recognizer
formed (Siivola and Pellom, 2005), such that thosg guaranteed to get at least this proportion of words
n-grams that maximize the training set |ike|ih00dwrong_ Again, the values are very high for Estonian
are gradually added to the model. The unrestricted 9 %) and Tur2 (12 %), but also for Arabic (9.9 %)
growth of the model is counterbalanced by an MDLbecause of the insufficient amount of training data.
type complexity term. The highest orderograms  Finally, the figures labeled “new words in test set”
accepted was 7 for Finnish and 8 for Estonian.  denote the proportion of words in the test set that do
Note that the optimization procedure is neutrahot occur in the LM training set. Thus, these values
with respect to morphs vs. words. Roughly théndicate the minimum error achievable agyword
same number of parameters are allowed in the resuitiodel trained on the training sets available.
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100 ‘ ‘ ‘ ; ; vocabulary (IV) reference words (words contained
%L oz @ 5\'\,"\/((’):%25 in the vocabulary of the word model) are put in
sol _ 822 | one partition and the remaining words (OOVSs) are

_ ' put in another partition. Word accuracies are then
X 70p 667 688674667 1 "
= 612 computed separately for the two partitions. Inserted
g 6o s 1 words, i.e., words that are not aligned with any word
g 50 ' in the reference, are put in the IV partition, unless
g 40t they are adjacent to an OOV region, in which case
S 30! they are put in the OOV partition.
20l Figure 3a shows word accuracies for the in-
1ol vocabulary words. Without exception, the accuracy
for the IVs is higher than that of the entire test set vo-

Finl Fin2 Fin3 Fin4 Est Turl Tur2 ECA cabulary. One could imagine that the word models
would do better than the morph models on the Vs,
Figure 2: Word accuracies for the different speechince the word models are totally focused on these
recognition test configurations. words, whereas the morph models reserve modeling
capacity for a much larger set of words. The word
accuracies in Fig. 3a also partly seem to support this
3.2 Results and Analysis view. However, Wilcoxon signed-rank tests (level
The morph-based and word-based results of the co-05) show that the superiority of the word model is
ducted speech recognition experiments are shown ftatistically significant only for Arabic and for Fin3.
Figure 2 (for Fin4, no comparable word experiment With few exceptions, it is thus possible to draw
has been carried out). The evaluation measure ustt¢ conclusion thatorph models are capable of
is word accuracy(WAC): the number of correctly modeling a much larger set of words than word
recognized words minus the number of incorrectlynodels without, however, compromising the perfor-
inserted words divided by the number of words ifmance on the limited vocabulary covered by the
the reference transcript. (Another frequently useword models in a statistically significant way
measure is thevord error rate WER, which relates
to word accuracy as WER = 100 % — WAC.) 3'2'_2 Out-of-Vocabulary Words
Figure 2 shows that the morph models perform Since the word model and morph model perform
better than the word models, with the exceptior?qua”y well on the subset of words that are included
of the Arabic experiment (ECA), where the wordin the lexicon of the word model, the overall supe-
model outperforms the morph model. The statistifiority of the morph model needs to come from its
cal significance of these differences is confirmed byuccessful coping with out-of-vocabulary words.
one-tailed paired Wilcoxon signed-rank tests at the !N Figure 3b, word accuracies have been plot-
significance level of 0.05. ted for the out-of-vocabulary words contained in the
Overall, the best performance is observed for thtest set. It is clear that the recognition accuracy for
Finnish data sets, which is explained by the speakdil® OOVs is much lower than the overall accuracy.
dependent acoustic models and clean noise cond}S0, negative accuracy values are observed. This
tions. The Arabic setup suffers from the insufficienf’@PPens when the number of insertions exceeds the

amount of LM training data. number of correctly recognized units.
In Figure 3b, if speaker-dependent and speaker-
3.2.1 In-Vocabulary Words independent setups are considered separately (and

For a further investigation of the outcome of theArabic is left out), there is a tendency for the morph
experiments, the test sets have been partitioned intmodels to recognize the OOVs more accurately, the
regions based on the types of words they contaitigher the OOV rate is. One could say that a morph
The recognition output is aligned with the refer-model has a double advantage over a correspond-
ence transcript, and the regions aligned wiith ing word model: the larger the proportion of OOVs

384



[y
o
o

S, 92,5946 Il Vorphs 100 sog 928

g 90 1 [ IWords || 80F 766, 791 g2

S 79.970.75%8 — 9 1 66.7  68.667.466.7

= 5 .F W79 74.7 1 & e0r 558 51.9 'S

% 733" 71.872.671.771.9 » ’ s

S 70t 15§ 2 40 " | w148 |
9

S 60r 9 20

o

|> 50+ 481 A E\

< 45.6T g 0

8 40 § -20 218 194

Z &

§ 301 < ~40r

% 20 S -60] 1
- 10+ B -80F -74.8 -76.1 -Morphs H
S [ JwWords

= o0 -100 :

Finl Fin2 Fin3 Fin4 Est Turl Tur2 ECA
() (b)

Finl Fin2 Fin3 Find4 Est Turl Tur2 ECA

Figure 3: Word accuracies computed separately for thosdsnarthe test sets that are (a) included in and
(b) excluded from the vocabularies of the word vocabulafyfigures listed on the row “OQV test set” in
Table 1. Together these two partitions make up the entitesé&tsocabulary. For comparison, the results for
the entire sets are shown using gray-shaded bars (alsaykspin Figure 2).

in the word model is, the larger the proportion 0f3.3 Vocabulary Growth and Arabic
words that the morph model can recognize but th?igure 5 shows the development of the size of

word modgl cannot, a priori. In addition, the larget, o vocabulary (unique word forms) for growing
the proportion of OOVs, the more frequent and Morgmqnts of text in different corpora. The corpora
“easily modelable” words are left out of the word,qeq for Finnish, Estonian, and Turkish (planned
model, and the more successfully these words afgeech/text), as well as Arabic (spontaneous speech)
indeed learned by the morph model. are the LM training sets used in the experiments.
Additional sources have been provided for Arabic
and English: Arabic text (planned) from the FBIS
All words present in the training data (some ofcorpus of Modern Standard Arabic (a collection
which are OOVs in the word models) “leave somef transcribed radio newscasts from various radio
trace” in the morph models, in the-gram statistics stations in the Arabic speaking world), as well as
that are collected for morph sequences. How, thegext from the New York Times magazine (English
about new words that occur only in the test set, byslanned) and spontaneous transcribed English tele-
not in the training set? In order to recognize suclhone conversations from the Fisher corpus.
words correctly, the model must combine morphs in The figure illustrates two points: (1) The faster
ways it has not observed before. the vocabulary growth is, the larger the potential ad-
Figure 4 demonstrates that the new unseen worgantage of morph models is in comparison to stan-
are very challenging. Now, also the morph moddard word models, because of OOV and data spar-
els mostly obtain negative word accuracies, whickity problems. The obtained speech recognition re-
means that the number of insertions adjacent to nesults seem to support this hypothesis; the applied
words exceeds the number of correctly recognizedhorph LMs are clearly beneficial for Finnish and
new words. The best results are obtained in cledastonian, mostly beneficial for Turkish, and slightly
acoustic conditions (Fin2, Fin3, Fin4) with only fewdetrimental for ECA. (2) A more slowly growing
foreign names, which are difficult to get right usingvocabulary is used in spontaneous speech than in
typical Finnish phoneme-to-grapheme mappings (g8anned speech (or written text). Moreover, the
the negative accuracy of Finl suggests). Arabic ‘spontaneous’ curve is located fairly close

3.2.3 New Words in the Test Set
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Flgure 4: Word accuracies computed fqr the Wor.df—‘igure 5: Vocabulary growth curves for the differ-

in the test sets that do not occur at all in the tralném corpora of spontaneous and planned speech (or

:Egt setts; E,f.inflgugfs IStT:d ron tri:]e r(r)iw nni\a' Worrdswritten text). For growing amounts of text (word
est s able . or comparison, Ihe g aytokens) the number of unique different word forms

shaded bars show the corresponding results for ttae

entire test sets (also displayed in Figure 2). Word types) occurring in the corpus are plotted.

he Enalish ‘ol g q h bel model is based owhole words(although subword
ot € English planned: curve and much BEIOW, i are used for assigning probabilities to word
the Finnish, Estonian, and Turkish curves. Thu

Sorms in the FLM). This contrasts these models with

even though Arabic is considered a “morphologl-the morph model, which splits words into subword

cally rich” language, this is not manifested througrhnits also in the speech recognition implementation.

a considerable vocabulary growth (and high OO\{t seems that the splitting is a source of errors in this

rate) in the Egyptian Colloqwal Arabg: data used Irlexperimental setup with very little data available.
the current speech recognition experiments. Conse-

quently, .it may not be th_at surprising that thg morply  Dpiscussion
model did not work particularly well for Arabic.

Arabic words consist of a stem surrounded by preAlternative morph-based and word-based ap-
fixes and suffixes, which are fairly successfully segproaches exist. We have tried some, but none of
mented out by Morfessor. However, Arabic alsdhem has outperformed the described morph models
hastemplatic morphology, i.e., the stem is formedfor Finnish, Estonian, and Turkish, or the word and
through the insertion of a vowel pattern into a “con+LM models for Egyptian Arabic (in a statistically
sonantal skeleton”. significant way). The tested models comprise

Additional experiments have been performed ugnore linguistically accurate morph segmentations
ing the ECA data and Factored Language Modelbtained using later Morfessor versions (Categories-
(FLMs) (Kirchhoff et al., 2006). The FLM is a ML and Categories-MAP) (Creutz, 2006), as well
powerful model that makes use of several sourcegs analyses obtained from morphological parsers.
of information, in particular a morphological lexi- Hybrids, i.e., word models augmented with
con of ECA. The FLM incorporates mechanisms fophonemes or other subword units have been pro-
handling templatic morphology, but despite its soposed (Bazzi and Glass, 2000; Galescu, 2003;
phistication, it barely outperforms the standard word®isani and Ney, 2005). In our experiments, such
model: The word accuracy of the FLM is 42.3 % andnodels have outperformed the standard word mod-
that of the word model is 41.8 %. The speech recogls, but not the morph models.
nition implementation of both the FLM and the word  Simply growing the word vocabulary to cover the
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