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Abstract

Letter-to-phoneme conversion generally
requires aligned training data of letters
and phonemes. Typically, the align-
ments are limited to one-to-one align-
ments. We present a novel technique of
training with many-to-many alignments.
A letter chunking bigram prediction man-
ages double letters and double phonemes
automatically as opposed to preprocess-
ing with fixed lists. We also apply
an HMM method in conjunction with
a local classification model to predict a
global phoneme sequence given a word.
The many-to-many alignments result in
significant improvements over the tradi-
tional one-to-one approach. Our system
achieves state-of-the-art performance on
several languages and data sets.

Introduction

}@cs.ualberta.ca

in spelling correction (Toutanova and Moore, 2001).
Unfortunately, proper nouns and unseen words pre-
vent a table look-up approach. Itis infeasible to con-
struct a lexical database that includes every word in
the written language. Likewise, orthographic com-
plexity of many languages prevents us from using
hand-designed conversion rules. There are always
exceptional rules that need to be added to cover a
large vocabulary set. Thus, an automatic L2P sys-
tem is desirable.

Many data-driven technigues have been proposed
for letter-to-phoneme conversion systems, including
pronunciation by analogy (Marchand and Damper,
2000), constraint satisfaction (Van Den Bosch and
Canisius, 2006), Hidden Markov Model (Taylor,
2005), decision trees (Black et al., 1998), and
neural networks (Sejnowski and Rosenberg, 1987).
The training data usually consists of written words
and their corresponding phonemes, which are not
aligned; there is no explicit information indicating
individual letter and phoneme relationships. These
relationships must be postulated before a prediction
model can be trained.

Letter-to-phoneme (L2P) conversion requires a sys- Previous work has generally assumed one-to-one
tem to produce phonemes that correspond to a givatignment for simplicity (Daelemans and Bosch,
written word. Phonemes are abstract representd997; Black et al., 1998; Damper et al., 2005).
tions of how words should be pronounced in naturahn expectation maximization (EM) based algo-

speech, while letters or graphemes are representithm (Dempster et al., 1977) is applied to train the
tions of words in written language. For example, thaligners. However, there are several problems with
phonemes for the worphoenixare [fintk s]. this approach. Letter strings and phoneme strings
The L2P task is a crucial part of speech synthesmre not typically the same length, so null phonemes
systems, as converting input text (graphemes) intand null letters must be introduced to make one-
phonemes is the first step in representing sound®-one-alignments possible, Furthermore, two letters
L2P conversion can also help improve performanciequently combine to produce a single phoneme
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(double letters), and a single letter can sometimasnethod to the local prediction results. The results

produce two phonemes (double phonemes). of experiments on several language data sets are dis-
To help address these problems, we propose anssed in Section 5. We conclude and propose future

automatic many-to-many aligner and incorporate ivork in Section 6.

into a generic classification predictor for letter-to-

phoneme conversion. Our many-to-many aligne? Letter-phoneme alignment

automatically discovers double phonemes and do

Y"1 One-to-one alignment
ble letters, as opposed to manually preprocessin

data by merging phonemes using fixed lists. To ou‘F%ere are two main problems with one-to-one align-

knowledge, applying many-to-many alignments tgnents:

letter-to-phonem nversion is novel.

etier-to-pnoneme conversion is no eI_ 1. Double letters: two letters map to one phoneme
Once we have our many-to-many alignments, we

use that data to train a prediction model. Many (e.g.sh-[J] ph-[f]).
phoneme prediction systems are based on local pre2  pouble phonemes: one letter maps to two
diction methods, which focus on predicting anindi-  phonemes (e.k-[ks],u-[ju]).
vidual phoneme given each letter in a word. Con-
versely, a method like pronunciation by analogy First, consider the double letter problem. In most
(PbA) (Marchand and Damper, 2000) is consideredases when the grapheme sequence is longer than
a global prediction method: predicted phoneme séhe phoneme sequence, it is because some letters are
guences are considered as a whole. Recently, Vaitent. For example, in the wo@bode pronounced
Den Bosch and Canisius (2006) proposed trigrao b o d ], the lettere produces a null phoneme)(
class prediction, which incorporates a constraint sat-is is well captured by one-to-one aligners. How-
isfaction method to produce a global prediction foever, the longer grapheme sequence can also be gen-
letter-to-phoneme conversion. Both PbA and trierated by double letters; for example, in the word
gram class prediction show improvement over preking, pronounced [ ki ], the lettersng together
dicting individual phonemes, confirming that L2Pproduce the phonemey(]. In this case, one-to-one
systems can benefit from incorporating the relatioraligners using null phonemes will produce an in-
ship between phonemes in a sequence. correct alignment. This can cause problems for the
In order to capitalize on the information foundphoneme prediction model by training it to produce
in phoneme sequences, we propose to apply anull phoneme from either of the lettetsor g.
HMM method after a local phoneme prediction pro- In the double phoneme case, a new phoneme is
cess. Given a candidate list of two or more possibltroduced to represent a combination of two (or
phonemes, as produced by the local predictor, theore) phonemes. For example, in the wdudhe
HMM will find the best phoneme sequence. Usingvith phoneme sequence [ fju m ], the letiepro-
this approach, our system demonstrates an improvadces both the [ j ] and [ u ] phonemes. There
ment on several language data sets. are two possible solutions for constructing a one-
The rest of the paper is structured as followsto-one alignment in this case. The first is to cre-
We describe the letter-phoneme alignment method@ge a new phoneme by merging the phonemes [ j ]
including a standard one-to-one alignment methodnd [ u ]. This requires constructing a fixed list of
and our many-to-many approach in Section 2. Theew phonemes before beginning the alignment pro-
alignment methods are used to align grapheme®ss. The second solution is to add a null letter in
and phonemes before the phoneme prediction mothe grapheme sequence. However, the null letter not
els can be trained from the training examples. lonly confuses the phoneme prediction model, but
Section 3, we present a letter chunk predictiomlso complicates the the phoneme generation phase.
method that automatically discovers double letters For comparison with our many-to-many ap-
in grapheme sequences. It incorporates our mangroach, we implement a one-to-one aligner based on
to-many alignments with prediction models. Inthe epsilon scattering method (Black et al., 1998).
Section 4, we present our application of an HMMThe method applies the EM algorithm to estimate
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Algorithm 1: Pseudocode for a many-to-many
expectation-maximization algorithm.

Algorithm 2: Pseudocode for a many-to-many
expectation algorithm.

Algorithm: EM-many2many

Input: J:T,yv,maxX, mazxY

Output: v

forall mapping operations do
v(z) =0

foreach sequence paifz”,y"') do
Expectation-many2maty”, "', maz X, maz, )

Maximization-Stefy)

Algorithm: Expectation-many2many
Input: J:T,yv,maxX, maxY,y
Output: v
a := Forward-many2manyz” | V', maz X, mazY’)
B := Backward-many2many:” v, max X, mazy’)
if (CYT,V = 0) then
return
for t =0...T do

for v =0...V do
if t >0ADELX)then
fori = 1...maxX stt —i > 0do
atfi,v(;(mzfi*»lve)ﬁt,v
ar v

the probability of mapping a lettdrto a phoneme

p, P(l,p). The initial probability table starts by
mapping all possible alignments between letters and
phonemes for each word in the training data, in-
troducing all possible null phoneme positions. For
example, the word/phoneme-sequence pdiode

[ 2 b o d] has five possible positions where a null
phoneme can be added to make an alignment.

The training process uses the initial probability ta-
ble P(I,p) to find the best possible alignments for
each word using the Dynamic Time Warping (DTW)task at hand, we set bothaz X andmazY to 2.)
algorithm (Sankoff and Kruskal, 1999). At each it-The Maximization-stegunction simply normalizes
eration, the probability tabl&(i, p) is re-calculated the partial counts to create a probability distribution.
based on the best alignments found in that iteratioNormalization can be done over the whole table to
Finding the best alignments and re-calculating thereate a joint distribution or per grapheme to create
probability table continues iteratively until there isa conditional distribution.
no change in the probability table. The final proba- TheForward-many2manjunction (Algorithm 3)
bility table P(l, p) is used to find one-to-one align- fills in the tableq, with each entryx(t, v) being the
ments given graphemes and phonemes. sum of all paths through the transducer that gen-

erate the sequence pdit!, y?). Analogously, the
2.2 Many-to-Many alignment Backward-many2marfynction fills in 8, with each

We present a many-to-many alignment algorithngntry 3(¢,v) being the sum of all paths through the
that overcomes the limitations of one-to-one aligntransducer that generate the sequence(pairy, ).

ers. The training of the many-to-many aligner isThe constant® £ L X andDFELY indicate whether

an extension of the forward-backward training of &r not deletions are allowed on either side. In our
one-to-one stochastic transducer presented in (Rigystem, we allow letter deletions (i.e. mapping of
tad and Yianilos, 1998). Partial counts are counts détters to null phoneme), but not phoneme deletions.
all possible mappings from letters to phonemes that Expectation-many2marfyrst calls the two func-
are collected in the table, while mapping probabil- tions to fill the o and 3 tables, and then uses the
ities (initially uniform) are maintained in thetable. probabilities to calculate partial counts for every
For each grapheme-/phoneme-sequence(pay), possible mapping in the sequence pair. The par-
theEM-many2manfunction (Algorithm 1) calls the tial count collected at positionsandv in the se-
Expectation-many2marfynction (Algorithm 2) to quence pair is the sum of all paths that generate the
collect partial countsT andV are the lengths of  sequence pair and go through«), divided by the
andy respectively. Thenaz X andmaxzY variables sum of all paths that generate the entire sequence
are the maximum lengths of subsequences usedpair ((7',V)).

a single mapping operation far andy. (For the Once the probabilities are learned, the Viterbi

Y(@i—iv1,€)+ =
if (v>0ADELY)then
for j = 1...mazY stv—j > 0do
e o) = )
if (v>0At>0)then
fori = 1...maxX stt —i > 0do
for j = 1...mazxY stv —j > 0do
at—i.’u—j‘;(l'ifH,l7?!573'4,1)5t,’u
ar v

7($§—i+1yyg—j+1)+ =
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Algorithm 3: Pseudocode for a many-to-many Phonemes for a single letter, while at other times

forward algorithm. the prediction model should make a prediction based
Algorithm: Forward-many2many on a pair of letters. In order to distinguish between
Input: (27, 4", mazX, mazy) these two cases, we propose a method called “letter
Output: « chunking”.
Qg0 =1 Once many-to-many alignments are built across
forfgrzvo;g d‘c/’ do graphemes and phonemes, each word contains a set
if (t >0V v > 0) then of letter chunks, each consisting of one or two let-
i (?gloiAODELX) then ters allg_ned with phonemes. Ea_ch letter ch_unk can
fori — 1..mazX stt —i > 0do be considered as a grapheme unit that contains either
Aot = 8(h_i 1, )i one or two letters. In the same way, each phoneme
if (v >0ADELY)then chunk can be considered as a phoneme unit consist-
for j = 1...mazY stv—j > 0do .
Qet = 8(6, 57— ;41) 00y ing of one or two phonemes. Note that the double
if (v>0At>0)then letters and double phonemes are implicitly discov-
for i =1..maxX stt —7 > 0do ered by the alignments of graphemes and phonemes.

for j = 1...maxY stv —j > 0do

ot = 0(@oir 1, Yoojr1) Ui They are not necessarily consistent over the train-

ing data but based on the alignments found in each
word.

algorithm can be used to produce the most likely Inthe phoneme generation phase, the system has
alignment as in the following equations. Back pointonly graphemes available to predict phonemes, so
ersto maximizing arguments are kept at each step taere is no information about letter chunk bound-

the alignment can be reconstructed. aries. We cannot simply merge any two letters that
have appeared as a letter chunk in the training data.
«(0,0) =1 (1) For example, although the letter painis usually
5(2si1s )i pronounced as a §ing|e phoneme 'in English (e.g.
a(t,v) = _max { 6(e,ty5_]-+1)at,u_j () gash[ g ae [ ]), this is not true universally (_e.g.
1<j<maxy | O0(Ttoiv1, Yo—ji1)Q—iv—j gasholder] g ac s h o 1 do r]). Therefore, we im-

plement a letter chunk prediction model to provide
Given a set of words and their phonemes, aligrehunk boundaries given only graphemes.
ments are made across graphemes and phonemesn our system, a bigram letter chunking predic-
For example, the worghoenix with phonemes [fi tion automatically discovers double letters based on
niks],is aligned as: instance-based learning (Aha et al., 1991). Since the
ph oe n i z many-to-many alignments are drawn from 1-0, 1-1,
1-2, 2-0, and 2-1 relationships, each letter in a word
I O N NS
f i n 1 ks can form a chunk with its neighbor or stand alone
as a chunk itself. We treat the chunk prediction as
] X a binary classification problem. We generate all the
ter problem (mapping to the single phoneme [f])bigrams in a word and determine whether each bi-
while the letterx is an example of the double oo should be a chunk based on its context. Table 1

phoneme problem (mapping to both [_k] and [s hows an example of how chunking prediction pro-
in the phoneme sequence). These alignments PrOseds for the wortbngs Lettersl; o, ; 1,11, and

vide more accurate grapheme-to-phoneme relatioii:r2 are the context of the bigrahy chunk — 1 if

ships for a phoneme prediction model. the letter bigrand; is a chunk. Otherwise, the chunk
simply consists of an individual letter. In the exam-
ple, the word is decomposed Hs|ng|s, which can
Our new alignment scheme provides more accue aligned with its pronunciation [|lo | 5| z]. If
rate alignments, but it is also more complex —the model happens to predict consecutive overlap-
sometimes a prediction model should predict tweing chunks, only the first of the two is accepted.

The lettersph are an example of the double let-

3 Letter chunking
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lig | li—1 | li | liy1 | liv2 | chunk ters) and transition likelihood (probability of current
_ _|lo] n g 0 phoneme given previous phonemes) to predict each
_ I on| ¢ S 0 phoneme. Our approach differs from a basic Hidden
I O |ng| s - 1 Markov Model for letter-to-phoneme system (Tay-
0 n | gs| - _ 0 lor, 2005) that formulates grapheme sequences as

observation states and phonemes as hidden states.
The basic HMM system for L2P does not provide
good performance on the task because it lacks con-
4 Phoneme prediction text information on the grapheme side. In fact, a
pronunciation depends more on graphemes than on

Most of the previously proposed techniques fothe neighboring phonemes; therefore, the transition
phoneme prediction require training data to berobability (language model) should affect the pre-
aligned in one-to-one alignments. Those modelgiction decisions only when there is more than one
approach the phoneme prediction task as a clasgiossible phoneme that can be assigned to a letter.
fication problem: a phoneme is predicted for each Our approach is to use an instance-based learn-
letter independently without using other pFEdiCtion%g technique as a local predictor to generate a set
from the same word. These local predictions assumgt phoneme candidates for each letter chunk, given
independence of predictions, even though there afg context in a word. The local predictor produces
clearly interdependencies between predictions. Prepnfidence values for Each candidate phoneme. We
dicting each phoneme in a word without consideringiormalize the confidence values into values between
other assignments may not satisfy the main goal @ and 1, and treat them as the emission probabilities,
finding a set of phonemes that work together to fornyhile the transition probabilities are derived directly
aword. from the phoneme sequences in the training data.

A trigram phoneme prediction with constraintsat- The pronunciation is generated by considering
isfaction inference (Van Den Bosch and Canisiugoth phoneme prediction values and transition prob-
2006) was proposed to improve on local predictiongpijlities. The optimal phoneme sequence is found

From each letter unit, it predicts a trigram class thaith the Viterbi search algorithm. We limit the size
has the target phoneme in the middle surrounded By the context ton = 3 in order to avoid over-

its neighboring phonemes. The phoneme sequengging and minimize the complexity of the model.
is generated in such a way that it satisfies the trisince the candidate set is from the classifier, the
gram, bigram and unigram constraints. The ovelsearch space is limited to a small number of can-
lapping predictions improve letter-to-phoneme pergdidate phonemes (1 to 5 phonemes in most cases).
formance mainly by repairing imperfect one-to-one The HMM postprocessing is independent of local
alignments. predictions from the classifier. Instead, it selects the
However, the trigram class prediction tends to bgest phoneme sequence from a set of possible lo-
more complex as it increases the number of tagal predictions by taking advantage of the phoneme

get classes. For English, there are only 58 unjanguage model, which is trained on the phoneme
gram phoneme classes but 13,005 tri-gram phonemgquences in the training data.

classes. The phoneme combinations in the tri-gram

classes are potentially confusing to the predictio Evaluation

model because the model has more target classes in _

its search space while it has access to the same nuffé evaluated our approaches on CMUDict, Brulex,

ber of local features in the grapheme side. and German, Dutch and English Celex cor-
We propose to apply a supervised HMM methodpOra (Baayen et al.,, 1996). The corpora (except

embedded with local classification to find the mosENdlish Celex) are available as part of the Letter-
likely sequence of phonemes given a word. Aro-Phoneme Conversion PRONALSYL Challehge

Table 1: An example of letter chunking prediction.

HMM is a statistical model that combines the obser-itpe  prRONALSYL ~Challenge:  htp:/iwww.
vation likelihood (probability of phonemes given let-pascal-network.org/Challenges/PRONALSYL/
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Language| Data set | Number of words _ _ a t i o mn
English | CMUDict 112,102 I O
English | Celex 65,936 e [ o - _ _ n
Dutch Celex 116,252 while our one-to-one alignment is:
German | Celex 49,421 a t i o n
French Brulex 27,473 o

e - [ 9 n

Clearly, the latter alignment provides more informa-
tion on how the graphemes map to the phonemes.
For the English Celex data, we removed duplicate Taple 3 also shows that impressive improvements
words as well as words shorter than four letters. Tapr a1l evaluated corpora are achieved by using
ble 2 shows the number of words and the Ianguagﬁany_to_many alignments rather than one-to-one
of each corpus. alignments (1-1 align vs. M-M align). The signif-
For all of our experiments, our local classifiericant improvements, ranging from 2.7% to 7.6% in
for predicting phonemes is the instance-based leammord accuracy, illustrate the importance of having
ing IB1 algorithm (Aha et al., 1991) implementedmore precise alignments. For example, we can now
in the TiIMBL package (Daelemans et al., 2004)obtain the correct alignment for the second part of
The HMM technique is applied as post processthe wordabomination
ing to the instance-based learning to provide a se- a ti o n
quence prediction. In addition to comparing one-to- -
one and many-to-many alignments, we also compare e [ 9 n
our method to the constraint satisfaction inferencgstead of adding a null phoneme in the phoneme

method as described in Section 4. The results ag%quence, the many_to_many aligner maps the letter
reported in word accuracy rate based on the 10-folghunkti to a single phoneme.

cross validation, with the mean and standard devia- The HMM approach is based on the same hy-
tion values. pothesis as the constraint satisfaction inference
Table 3 shows word accuracy performance acro¢€SInf) (Van Den Bosch and Canisius, 2006). The
a variety of methods. We show results comparingesults in Table 3 (1-1+CSinf vs. 1-1+HMM) show
the one-to-one aligner described in Section 2.1 arthat the HMM approach consistently improves per-
the one-to-one aligner provided by the PRONALformance over the baseline system (1-1 align), while
SYL challenge. The PRONALSYS one-to-onethe CSinf degrades performance on the Brulex data
alignments are taken directly from the PRONAL-set. For the CSInf method, most errors are caused
SYL challenge, whose method is based on an EMy trigram confusion in the prediction phase.
algorithm. For both alignments, we use instance- The results of our best system, which combines
based learning as the prediction model. the HMM method with the many-to-many align-

Overall, our one-to-one alignments outperfornineénts (M-M+HMM), are better than the results re-
the alignments provided by the data sets for all colorted in (Black et al., 1998) on both the CMU-
SYS one-to-one alignment and our one-to-one aligough Black et al. (1998) use explicit lists of letter-
ment is that our aligner does not allow a null lettePhoneme mappings during the alignment process,
tion[obpminefon]: the first six letters and does notrequire any handcrafted list.
phonemes_ are aligned the same way by both allg%- Conclusion and future work
ers @bomin-[ 9 b o m1 n ]). However, the two
aligners produce radically different alignments foMWe presented a novel technique of applying many-
the last five letters. The alignment provided by théo-many alignments to the letter-to-phoneme conver-
PRONALSYS one-to-one alignments is: sion problem. The many-to-many alignments relax

Table 2: Number of words in each data set.
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Language| Dataset | PRONALSYS 1-1 align 1-1+CsInf | 1-1+HMM M-M align | M-M+HMM
English CMUDict | 58.3+0.49 | 60.3+0.53 | 62.94+0.45 | 62.1+0.53 | 65.1+0.60 | 65.6 £ 0.72
English Celex — 74.6 £0.80 | 77.8+0.72 | 78.5+0.76 | 82.2+0.63 | 83.6 +0.63
Dutch Celex 84.3 £0.34 86.6 £0.36 | 87.5+0.32 | 87.6£0.34 | 91.1 £0.27 | 91.4+£0.24

German | Celex 86.0£0.40 | 86.6+0.54 | 87.6£0.47 | 87.6 £0.59 | 89.3+£0.53 | 89.8 £0.59
French Brulex 86.3 £0.67 | 87.04+0.38 | 86.54+0.68 | 88.24+0.39 | 90.6 +0.57 | 90.9 £0.45

Table 3: Word accuracies achieved on data sets based on the 10-fold cross valRROMALSYS: one-
to-one alignments provided by the PRONALSYL challendel align: our one-to-one alignment method
described in Section 2.1CsInf: Constraint satisfaction inference (Van Den Bosch and Canisius, 2006).
M-M align: our many-to-many alignment methddMM: our HMM embedded with a local prediction.

the constraint assumptions of the traditional one-tdheir helpful comments and suggestions. This re-
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