
Proceedings of NAACL HLT 2007, pages 372–379,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Applying Many-to-Many Alignments and Hidden Markov Models to
Letter-to-Phoneme Conversion

Sittichai Jiampojamarn, Grzegorz Kondrak and Tarek Sherif
Department of Computing Science,

University of Alberta,
Edmonton, AB, T6G 2E8, Canada

{sj,kondrak,tarek }@cs.ualberta.ca

Abstract

Letter-to-phoneme conversion generally
requires aligned training data of letters
and phonemes. Typically, the align-
ments are limited to one-to-one align-
ments. We present a novel technique of
training with many-to-many alignments.
A letter chunking bigram prediction man-
ages double letters and double phonemes
automatically as opposed to preprocess-
ing with fixed lists. We also apply
an HMM method in conjunction with
a local classification model to predict a
global phoneme sequence given a word.
The many-to-many alignments result in
significant improvements over the tradi-
tional one-to-one approach. Our system
achieves state-of-the-art performance on
several languages and data sets.

1 Introduction

Letter-to-phoneme (L2P) conversion requires a sys-
tem to produce phonemes that correspond to a given
written word. Phonemes are abstract representa-
tions of how words should be pronounced in natural
speech, while letters or graphemes are representa-
tions of words in written language. For example, the
phonemes for the wordphoenixare [f i n I k s].

The L2P task is a crucial part of speech synthesis
systems, as converting input text (graphemes) into
phonemes is the first step in representing sounds.
L2P conversion can also help improve performance

in spelling correction (Toutanova and Moore, 2001).
Unfortunately, proper nouns and unseen words pre-
vent a table look-up approach. It is infeasible to con-
struct a lexical database that includes every word in
the written language. Likewise, orthographic com-
plexity of many languages prevents us from using
hand-designed conversion rules. There are always
exceptional rules that need to be added to cover a
large vocabulary set. Thus, an automatic L2P sys-
tem is desirable.

Many data-driven techniques have been proposed
for letter-to-phoneme conversion systems, including
pronunciation by analogy (Marchand and Damper,
2000), constraint satisfaction (Van Den Bosch and
Canisius, 2006), Hidden Markov Model (Taylor,
2005), decision trees (Black et al., 1998), and
neural networks (Sejnowski and Rosenberg, 1987).
The training data usually consists of written words
and their corresponding phonemes, which are not
aligned; there is no explicit information indicating
individual letter and phoneme relationships. These
relationships must be postulated before a prediction
model can be trained.

Previous work has generally assumed one-to-one
alignment for simplicity (Daelemans and Bosch,
1997; Black et al., 1998; Damper et al., 2005).
An expectation maximization (EM) based algo-
rithm (Dempster et al., 1977) is applied to train the
aligners. However, there are several problems with
this approach. Letter strings and phoneme strings
are not typically the same length, so null phonemes
and null letters must be introduced to make one-
to-one-alignments possible, Furthermore, two letters
frequently combine to produce a single phoneme

372

(double letters), and a single letter can sometimes
produce two phonemes (double phonemes).

To help address these problems, we propose an
automatic many-to-many aligner and incorporate it
into a generic classification predictor for letter-to-
phoneme conversion. Our many-to-many aligner
automatically discovers double phonemes and dou-
ble letters, as opposed to manually preprocessing
data by merging phonemes using fixed lists. To our
knowledge, applying many-to-many alignments to
letter-to-phoneme conversion is novel.

Once we have our many-to-many alignments, we
use that data to train a prediction model. Many
phoneme prediction systems are based on local pre-
diction methods, which focus on predicting an indi-
vidual phoneme given each letter in a word. Con-
versely, a method like pronunciation by analogy
(PbA) (Marchand and Damper, 2000) is considered
a global prediction method: predicted phoneme se-
quences are considered as a whole. Recently, Van
Den Bosch and Canisius (2006) proposed trigram
class prediction, which incorporates a constraint sat-
isfaction method to produce a global prediction for
letter-to-phoneme conversion. Both PbA and tri-
gram class prediction show improvement over pre-
dicting individual phonemes, confirming that L2P
systems can benefit from incorporating the relation-
ship between phonemes in a sequence.

In order to capitalize on the information found
in phoneme sequences, we propose to apply an
HMM method after a local phoneme prediction pro-
cess. Given a candidate list of two or more possible
phonemes, as produced by the local predictor, the
HMM will find the best phoneme sequence. Using
this approach, our system demonstrates an improve-
ment on several language data sets.

The rest of the paper is structured as follows.
We describe the letter-phoneme alignment methods
including a standard one-to-one alignment method
and our many-to-many approach in Section 2. The
alignment methods are used to align graphemes
and phonemes before the phoneme prediction mod-
els can be trained from the training examples. In
Section 3, we present a letter chunk prediction
method that automatically discovers double letters
in grapheme sequences. It incorporates our many-
to-many alignments with prediction models. In
Section 4, we present our application of an HMM

method to the local prediction results. The results
of experiments on several language data sets are dis-
cussed in Section 5. We conclude and propose future
work in Section 6.

2 Letter-phoneme alignment

2.1 One-to-one alignment

There are two main problems with one-to-one align-
ments:

1. Double letters: two letters map to one phoneme
(e.g.sh- [S], ph - [f]).

2. Double phonemes: one letter maps to two
phonemes (e.g.x - [k s], u - [j u]).

First, consider the double letter problem. In most
cases when the grapheme sequence is longer than
the phoneme sequence, it is because some letters are
silent. For example, in the wordabode, pronounced
[@ b o d], the lettere produces a null phoneme (ε).
This is well captured by one-to-one aligners. How-
ever, the longer grapheme sequence can also be gen-
erated by double letters; for example, in the word
king, pronounced [kI N], the lettersng together
produce the phoneme [N]. In this case, one-to-one
aligners using null phonemes will produce an in-
correct alignment. This can cause problems for the
phoneme prediction model by training it to produce
a null phoneme from either of the lettersn or g.

In the double phoneme case, a new phoneme is
introduced to represent a combination of two (or
more) phonemes. For example, in the wordfume
with phoneme sequence [f j u m], the letteru pro-
duces both the [j] and [u] phonemes. There
are two possible solutions for constructing a one-
to-one alignment in this case. The first is to cre-
ate a new phoneme by merging the phonemes [j]
and [u]. This requires constructing a fixed list of
new phonemes before beginning the alignment pro-
cess. The second solution is to add a null letter in
the grapheme sequence. However, the null letter not
only confuses the phoneme prediction model, but
also complicates the the phoneme generation phase.

For comparison with our many-to-many ap-
proach, we implement a one-to-one aligner based on
the epsilon scattering method (Black et al., 1998).
The method applies the EM algorithm to estimate

373

Algorithm 1 : Pseudocode for a many-to-many
expectation-maximization algorithm.

Algorithm: EM-many2many

Input : xT , yV , maxX, maxY
Output : γ

forall mapping operationsz do
γ(z) := 0

foreachsequence pair(xT , yV) do
Expectation-many2many(xT , yV , maxX, maxY, γ)

Maximization-Step(γ)

the probability of mapping a letterl to a phoneme
p, P (l, p). The initial probability table starts by
mapping all possible alignments between letters and
phonemes for each word in the training data, in-
troducing all possible null phoneme positions. For
example, the word/phoneme-sequence pairabode
[@ b o d] has five possible positions where a null
phoneme can be added to make an alignment.

The training process uses the initial probability ta-
ble P (l, p) to find the best possible alignments for
each word using the Dynamic Time Warping (DTW)
algorithm (Sankoff and Kruskal, 1999). At each it-
eration, the probability tableP (l, p) is re-calculated
based on the best alignments found in that iteration.
Finding the best alignments and re-calculating the
probability table continues iteratively until there is
no change in the probability table. The final proba-
bility table P (l, p) is used to find one-to-one align-
ments given graphemes and phonemes.

2.2 Many-to-Many alignment

We present a many-to-many alignment algorithm
that overcomes the limitations of one-to-one align-
ers. The training of the many-to-many aligner is
an extension of the forward-backward training of a
one-to-one stochastic transducer presented in (Ris-
tad and Yianilos, 1998). Partial counts are counts of
all possible mappings from letters to phonemes that
are collected in theγ table, while mapping probabil-
ities (initially uniform) are maintained in theδ table.
For each grapheme-/phoneme-sequence pair(x, y),
theEM-many2manyfunction (Algorithm 1) calls the
Expectation-many2manyfunction (Algorithm 2) to
collect partial counts.T andV are the lengths ofx
andy respectively. ThemaxX andmaxY variables
are the maximum lengths of subsequences used in
a single mapping operation forx and y. (For the

Algorithm 2 : Pseudocode for a many-to-many
expectation algorithm.

Algorithm: Expectation-many2many

Input : xT , yV , maxX, maxY, γ
Output : γ

α := Forward-many2many(xT , yV , maxX, maxY)
β := Backward-many2many(xT , yV , maxX, maxY)

if (αT,V = 0) then
return

for t = 0...T do
for v = 0...V do

if (t > 0 ∧DELX) then
for i = 1...maxX st t− i ≥ 0 do

γ(xt
t−i+1, ε)+ =

αt−i,vδ(xt
t−i+1,ε)βt,v

αT,V

if (v > 0 ∧DELY) then
for j = 1...maxY st v − j ≥ 0 do

γ(ε, yv
v−j+1)+ =

αt,v−jδ(ε,yv
v−j+1)βt,v

αT,V

if (v > 0 ∧ t > 0) then
for i = 1...maxX st t− i ≥ 0 do

for j = 1...maxY st v − j ≥ 0 do

γ(xt
t−i+1, y

v
v−j+1)+ =

αt−i,v−jδ(xt
t−i+1,yv

v−j+1)βt,v

αT,V

task at hand, we set bothmaxX andmaxY to 2.)
The Maximization-stepfunction simply normalizes
the partial counts to create a probability distribution.
Normalization can be done over the whole table to
create a joint distribution or per grapheme to create
a conditional distribution.

TheForward-many2manyfunction (Algorithm 3)
fills in the tableα, with each entryα(t, v) being the
sum of all paths through the transducer that gen-
erate the sequence pair(xt

1, y
v
1). Analogously, the

Backward-many2manyfunction fills inβ, with each
entryβ(t, v) being the sum of all paths through the
transducer that generate the sequence pair(xT

t , yV
v).

The constantsDELX andDELY indicate whether
or not deletions are allowed on either side. In our
system, we allow letter deletions (i.e. mapping of
letters to null phoneme), but not phoneme deletions.

Expectation-many2manyfirst calls the two func-
tions to fill the α and β tables, and then uses the
probabilities to calculate partial counts for every
possible mapping in the sequence pair. The par-
tial count collected at positionst and v in the se-
quence pair is the sum of all paths that generate the
sequence pair and go through (t, v), divided by the
sum of all paths that generate the entire sequence
pair (α(T, V)).

Once the probabilities are learned, the Viterbi

374

Algorithm 3 : Pseudocode for a many-to-many
forward algorithm.

Algorithm: Forward-many2many

Input : (xT , yV , maxX, maxY)
Output : α

α0,0 := 1
for t = 0...T do

for v = 0...V do
if (t > 0 ∨ v > 0) then

αt,v = 0
if (t > 0 ∧DELX) then

for i = 1...maxX st t− i ≥ 0 do
αt,v+ = δ(xt

t−i+1, ε)αt−i,v

if (v > 0 ∧DELY) then
for j = 1...maxY st v − j ≥ 0 do

αt,v+ = δ(ε, yv
v−j+1)αt,v−j

if (v > 0 ∧ t > 0) then
for i = 1...maxX st t− i ≥ 0 do

for j = 1...maxY st v − j ≥ 0 do
αt,v+ = δ(xt

t−i+1, y
v
v−j+1)αt−i,v−j

algorithm can be used to produce the most likely
alignment as in the following equations. Back point-
ers to maximizing arguments are kept at each step so
the alignment can be reconstructed.

α(0, 0) = 1 (1)

α(t, v) = max
1≤i≤maxX,
1≤j≤maxY

8<: δ(xt
t−i+1, ε)αt−i,v

δ(ε, yv
v−j+1)αt,v−j

δ(xt
t−i+1, y

v
v−j+1)αt−i,v−j

(2)

Given a set of words and their phonemes, align-
ments are made across graphemes and phonemes.
For example, the wordphoenix, with phonemes [f i
n I k s], is aligned as:

ph oe n i x
| | | | |
f i n I ks

The lettersph are an example of the double let-
ter problem (mapping to the single phoneme [f]),
while the letter x is an example of the double
phoneme problem (mapping to both [k] and [s]
in the phoneme sequence). These alignments pro-
vide more accurate grapheme-to-phoneme relation-
ships for a phoneme prediction model.

3 Letter chunking

Our new alignment scheme provides more accu-
rate alignments, but it is also more complex —
sometimes a prediction model should predict two

phonemes for a single letter, while at other times
the prediction model should make a prediction based
on a pair of letters. In order to distinguish between
these two cases, we propose a method called “letter
chunking”.

Once many-to-many alignments are built across
graphemes and phonemes, each word contains a set
of letter chunks, each consisting of one or two let-
ters aligned with phonemes. Each letter chunk can
be considered as a grapheme unit that contains either
one or two letters. In the same way, each phoneme
chunk can be considered as a phoneme unit consist-
ing of one or two phonemes. Note that the double
letters and double phonemes are implicitly discov-
ered by the alignments of graphemes and phonemes.
They are not necessarily consistent over the train-
ing data but based on the alignments found in each
word.

In the phoneme generation phase, the system has
only graphemes available to predict phonemes, so
there is no information about letter chunk bound-
aries. We cannot simply merge any two letters that
have appeared as a letter chunk in the training data.
For example, although the letter pairsh is usually
pronounced as a single phoneme in English (e.g.
gash [g ae S]), this is not true universally (e.g.
gasholder[g ae s h o l d@ r]). Therefore, we im-
plement a letter chunk prediction model to provide
chunk boundaries given only graphemes.

In our system, a bigram letter chunking predic-
tion automatically discovers double letters based on
instance-based learning (Aha et al., 1991). Since the
many-to-many alignments are drawn from 1-0, 1-1,
1-2, 2-0, and 2-1 relationships, each letter in a word
can form a chunk with its neighbor or stand alone
as a chunk itself. We treat the chunk prediction as
a binary classification problem. We generate all the
bigrams in a word and determine whether each bi-
gram should be a chunk based on its context. Table 1
shows an example of how chunking prediction pro-
ceeds for the wordlongs. Lettersli−2, li−1, li+1, and
li+2 are the context of the bigramli; chunk = 1 if
the letter bigramli is a chunk. Otherwise, the chunk
simply consists of an individual letter. In the exam-
ple, the word is decomposed asl|o|ng|s, which can
be aligned with its pronunciation [l| 6 | N | z]. If
the model happens to predict consecutive overlap-
ping chunks, only the first of the two is accepted.

375

li−2 li−1 li li+1 li+2 chunk

lo n g 0
l on g s 0

l o ng s 1
o n gs 0

Table 1: An example of letter chunking prediction.

4 Phoneme prediction

Most of the previously proposed techniques for
phoneme prediction require training data to be
aligned in one-to-one alignments. Those models
approach the phoneme prediction task as a classi-
fication problem: a phoneme is predicted for each
letter independently without using other predictions
from the same word. These local predictions assume
independence of predictions, even though there are
clearly interdependencies between predictions. Pre-
dicting each phoneme in a word without considering
other assignments may not satisfy the main goal of
finding a set of phonemes that work together to form
a word.

A trigram phoneme prediction with constraint sat-
isfaction inference (Van Den Bosch and Canisius,
2006) was proposed to improve on local predictions.
From each letter unit, it predicts a trigram class that
has the target phoneme in the middle surrounded by
its neighboring phonemes. The phoneme sequence
is generated in such a way that it satisfies the tri-
gram, bigram and unigram constraints. The over-
lapping predictions improve letter-to-phoneme per-
formance mainly by repairing imperfect one-to-one
alignments.

However, the trigram class prediction tends to be
more complex as it increases the number of tar-
get classes. For English, there are only 58 uni-
gram phoneme classes but 13,005 tri-gram phoneme
classes. The phoneme combinations in the tri-gram
classes are potentially confusing to the prediction
model because the model has more target classes in
its search space while it has access to the same num-
ber of local features in the grapheme side.

We propose to apply a supervised HMM method
embedded with local classification to find the most
likely sequence of phonemes given a word. An
HMM is a statistical model that combines the obser-
vation likelihood (probability of phonemes given let-

ters) and transition likelihood (probability of current
phoneme given previous phonemes) to predict each
phoneme. Our approach differs from a basic Hidden
Markov Model for letter-to-phoneme system (Tay-
lor, 2005) that formulates grapheme sequences as
observation states and phonemes as hidden states.
The basic HMM system for L2P does not provide
good performance on the task because it lacks con-
text information on the grapheme side. In fact, a
pronunciation depends more on graphemes than on
the neighboring phonemes; therefore, the transition
probability (language model) should affect the pre-
diction decisions only when there is more than one
possible phoneme that can be assigned to a letter.

Our approach is to use an instance-based learn-
ing technique as a local predictor to generate a set
of phoneme candidates for each letter chunk, given
its context in a word. The local predictor produces
confidence values for Each candidate phoneme. We
normalize the confidence values into values between
0 and 1, and treat them as the emission probabilities,
while the transition probabilities are derived directly
from the phoneme sequences in the training data.

The pronunciation is generated by considering
both phoneme prediction values and transition prob-
abilities. The optimal phoneme sequence is found
with the Viterbi search algorithm. We limit the size
of the context ton = 3 in order to avoid over-
fitting and minimize the complexity of the model.
Since the candidate set is from the classifier, the
search space is limited to a small number of can-
didate phonemes (1 to 5 phonemes in most cases).

The HMM postprocessing is independent of local
predictions from the classifier. Instead, it selects the
best phoneme sequence from a set of possible lo-
cal predictions by taking advantage of the phoneme
language model, which is trained on the phoneme
sequences in the training data.

5 Evaluation

We evaluated our approaches on CMUDict, Brulex,
and German, Dutch and English Celex cor-
pora (Baayen et al., 1996). The corpora (except
English Celex) are available as part of the Letter-
to-Phoneme Conversion PRONALSYL Challenge1.

1The PRONALSYL Challenge: http://www.
pascal-network.org/Challenges/PRONALSYL/ .

376

Language Data set Number of words
English CMUDict 112,102
English Celex 65,936
Dutch Celex 116,252
German Celex 49,421
French Brulex 27,473

Table 2: Number of words in each data set.

For the English Celex data, we removed duplicate
words as well as words shorter than four letters. Ta-
ble 2 shows the number of words and the language
of each corpus.

For all of our experiments, our local classifier
for predicting phonemes is the instance-based learn-
ing IB1 algorithm (Aha et al., 1991) implemented
in the TiMBL package (Daelemans et al., 2004).
The HMM technique is applied as post process-
ing to the instance-based learning to provide a se-
quence prediction. In addition to comparing one-to-
one and many-to-many alignments, we also compare
our method to the constraint satisfaction inference
method as described in Section 4. The results are
reported in word accuracy rate based on the 10-fold
cross validation, with the mean and standard devia-
tion values.

Table 3 shows word accuracy performance across
a variety of methods. We show results comparing
the one-to-one aligner described in Section 2.1 and
the one-to-one aligner provided by the PRONAL-
SYL challenge. The PRONALSYS one-to-one
alignments are taken directly from the PRONAL-
SYL challenge, whose method is based on an EM
algorithm. For both alignments, we use instance-
based learning as the prediction model.

Overall, our one-to-one alignments outperform
the alignments provided by the data sets for all cor-
pora. The main difference between the PRONAL-
SYS one-to-one alignment and our one-to-one align-
ment is that our aligner does not allow a null letter
on the grapheme side. Consider the wordabomina-
tion [@ b 6 m I n e S @ n]: the first six letters and
phonemes are aligned the same way by both align-
ers (abomin- [@ b 6 m I n]). However, the two
aligners produce radically different alignments for
the last five letters. The alignment provided by the
PRONALSYS one-to-one alignments is:

a t i o n
| | | | | | |
e S @ n

while our one-to-one alignment is:

a t i o n
| | | | |
e S @ n

Clearly, the latter alignment provides more informa-
tion on how the graphemes map to the phonemes.

Table 3 also shows that impressive improvements
for all evaluated corpora are achieved by using
many-to-many alignments rather than one-to-one
alignments (1-1 align vs. M-M align). The signif-
icant improvements, ranging from 2.7% to 7.6% in
word accuracy, illustrate the importance of having
more precise alignments. For example, we can now
obtain the correct alignment for the second part of
the wordabomination:

a ti o n
| | | |
e S @ n

Instead of adding a null phoneme in the phoneme
sequence, the many-to-many aligner maps the letter
chunkti to a single phoneme.

The HMM approach is based on the same hy-
pothesis as the constraint satisfaction inference
(CSInf) (Van Den Bosch and Canisius, 2006). The
results in Table 3 (1-1+CSInf vs. 1-1+HMM) show
that the HMM approach consistently improves per-
formance over the baseline system (1-1 align), while
the CSInf degrades performance on the Brulex data
set. For the CSInf method, most errors are caused
by trigram confusion in the prediction phase.

The results of our best system, which combines
the HMM method with the many-to-many align-
ments (M-M+HMM), are better than the results re-
ported in (Black et al., 1998) on both the CMU-
Dict and German Celex data sets. This is true even
though Black et al. (1998) use explicit lists of letter-
phoneme mappings during the alignment process,
while our approach is a fully automatic system that
does not require any handcrafted list.

6 Conclusion and future work

We presented a novel technique of applying many-
to-many alignments to the letter-to-phoneme conver-
sion problem. The many-to-many alignments relax

377

Language Data set PRONALSYS 1-1 align 1-1+CsInf 1-1+HMM M-M align M-M+HMM
English CMUDict 58.3± 0.49 60.3± 0.53 62.9± 0.45 62.1± 0.53 65.1± 0.60 65.6± 0.72
English Celex — 74.6± 0.80 77.8± 0.72 78.5± 0.76 82.2± 0.63 83.6± 0.63
Dutch Celex 84.3± 0.34 86.6± 0.36 87.5± 0.32 87.6± 0.34 91.1± 0.27 91.4± 0.24
German Celex 86.0± 0.40 86.6± 0.54 87.6± 0.47 87.6± 0.59 89.3± 0.53 89.8± 0.59
French Brulex 86.3± 0.67 87.0± 0.38 86.5± 0.68 88.2± 0.39 90.6± 0.57 90.9± 0.45

Table 3: Word accuracies achieved on data sets based on the 10-fold cross validation.PRONALSYS: one-
to-one alignments provided by the PRONALSYL challenge.1-1 align: our one-to-one alignment method
described in Section 2.1.CsInf: Constraint satisfaction inference (Van Den Bosch and Canisius, 2006).
M-M align: our many-to-many alignment method.HMM: our HMM embedded with a local prediction.

the constraint assumptions of the traditional one-to-
one alignments. Letter chunking bigram prediction
incorporates many-to-many alignments into the con-
ventional phoneme prediction models. Finally, the
HMM technique yields global phoneme predictions
based on language models.

Impressive word accuracy improvements are
achieved when the many-to-many alignments are ap-
plied over the baseline system. On several languages
and data sets, using the many-to-many alignments,
word accuracy improvements ranged from 2.7% to
7.6%, as compared to one-to-one alignments. The
HMM cooperating with the local predictions shows
slight improvements when it is applied to the many-
to-many alignments. We illustrated that the HMM
technique improves the word accuracy more con-
sistently than the constraint-based approach. More-
over, the HMM can be easily incorporated into the
many-to-many alignment approach.

We are investigating the possibility of integrat-
ing syllabification information into our system. It
has been reported that syllabification can poten-
tially improve pronunciation performance in En-
glish (Marchand and Damper, 2005). We plan
to explore other sequence prediction approaches,
such as discriminative training methods (Collins,
2004), and sequence tagging with Support Vector
Machines (SVM-HMM) (Altun et al., 2003) to in-
corporate more features (context information) into
the phoneme generation model. We are also inter-
ested in applying our approach to other related areas
such as morphology and transliteration.

Acknowledgements

We would like to thank Susan Bartlett, Colin Cherry,
and other members of the Natural Language Pro-
cessing research group at University of Alberta for

their helpful comments and suggestions. This re-
search was supported by the Natural Sciences and
Engineering Research Council of Canada.

References

David W. Aha, Dennis Kibler, and Marc K. Albert. 1991.
Instance-based learning algorithms.Machine Learn-
ing, 6(1):37–66.

Yasemin Altun, Ioannis Tsochantaridis, and Thomas
Hofmann. 2003. Hidden Markov Support Vector Ma-
chines. InProceedings of the 20th International Con-
ference on Machine Learning (ICML-2003).

Harald Baayen, Richard Piepenbrock, and Leon Gulikers.
1996. The CELEX2 lexical database. LDC96L14.

Alan W. Black, Kevin Lenzo, and Vincent Pagel. 1998.
Issues in building general letter to sound rules. InThe
Third ESCA Workshop in Speech Synthesis, pages 77–
80.

Michael Collins. 2004. Discriminative training meth-
ods for Hidden Markov Models: Theory and experi-
ments with perceptron algorithms. InProceedings of
the Conference on Empirical Methods in Natural Lan-
gauge Processing (EMNLP).

Walter Daelemans and Antal Van Den Bosch. 1997.
Language-independent data-oriented grapheme-to-
phoneme conversion. InProgress in Speech Synthesis,
pages 77–89. Springer, New York.

Walter Daelemans, Jakub Zavrel, Ko Van Der Sloot, and
Antal Van Den Bosch. 2004. TiMBL: Tilburg Mem-
ory Based Learner, version 5.1, reference guide. In
ILK Technical Report Series 04-02.

Robert I. Damper, Yannick Marchand, John DS.
Marsters, and Alexander I. Bazin. 2005. Aligning
text and phonemes for speech technology applications
using an EM-like algorithm.International Journal of
Speech Technology, 8(2):147–160, June.

378

Arthur Dempster, Nan Laird, and Donald Rubin. 1977.
Maximum likelihood from incomplete data via the EM
algorithm. InJournal of the Royal Statistical Society,
pages B:1–38.

Yannick Marchand and Robert I. Damper. 2000. A
multistrategy approach to improving pronunciation by
analogy. Computational Linguistics, 26(2):195–219,
June.

Yannick Marchand and Robert I. Damper. 2005. Can
syllabification improve pronunciation by analogy of
English? InNatural Language Engineering, pages
(1):1–25.

Eric Sven Ristad and Peter N. Yianilos. 1998. Learn-
ing string-edit distance.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532.

David Sankoff and Joseph Kruskal, 1999.Time Warps,
String Edits, and Macromolecules, chapter 2, pages
55–91. CSLI Publications.

Terrence J. Sejnowski and Charles R. Rosenberg. 1987.
Parallel networks that learn to pronounce English text.
In Complex Systems, pages 1:145–168.

Paul Taylor. 2005. Hidden Markov Models for grapheme
to phoneme conversion. InProceedings of the 9th
European Conference on Speech Communication and
Technology 2005.

Kristina Toutanova and Robert C. Moore. 2001. Pro-
nunciation modeling for improved spelling correction.
In ACL ’02: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages
144–151, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Antal Van Den Bosch and Sander Canisius. 2006.
Improved morpho-phonological sequence processing
with constraint satisfaction inference.Proceedings of
the Eighth Meeting of the ACL Special Interest Group
in Computational Phonology, SIGPHON ’06, pages
41–49, June.

379

