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Abstract

This paper studies methods that automat-
ically detectaction-itemsin e-mail, an
important category for assisting users in
identifying new tasks, tracking ongoing
ones, and searching for completed ones.
Since action-items consist of a short span
of text, classifiers that detect action-items
can be built from a document-level or a
sentence-level view. Rather than com-
mit to either view, we adapt a context-
sensitive metaclassification framework to
this problem to combine thenkingspro-
duced by different algorithms as well as
different views. While this framework is

From: Henry Hutchinschhutchins@innovative.company.com

To: Sara Smith; Joe Johnson; William Woolings

Subject: meeting with prospective customers

Hi All,

I'd like to remind all of you that the group from GRTY wil
be visiting us next Friday at 4:30 p.m. The schedule is:

+ 9:30 a.m. Informal Breakfast and Discussion in Cafeterig
+ 10:30 a.m. Company Overview

+ 11:00 a.m. Individual Meetings (Continue Over Lunch)
+ 2:00 p.m. Tour of Facilities

+ 3:00 p.m. Sales Pitch

In order to have this go off smoothly, | would like to practi¢
the presentation well in advancas a result, | will need each
of your parts by Wednesday.
Keep up the good work!
—Henry

known to work well for standard classi-
fication, its suitability for fusing rankers
has not been studied. In an empirical eval-
uation, the resulting approach yields im-
proved rankings that are less sensitive to
training set variation, and furthermore, the
theoretically-motivated reliability indica-
tors we introduce enable the metaclassi-
fier to now be applicable in any problem
where the base classifiers are used.

Figure 1:An E-mail with Action-Item (italics added).

likelihood of containing “to-do” olction-itemscan
alleviate a user’s time burden and is the subject of
ongoing research throughout the literature.

In particular, an e-mail user may not always pro-
cess all e-mails, but even when one does, some
emails are likely to be of greater response urgency
than others. These messages often contain action-
items. Thus, while importance and urgency are not
equal to action-item content, an effective action-item
From business people to the everyday person, detection system can form one prominent subcom-
mail plays an increasingly central role in a moderponent in a larger prioritization system.
lifestyle. With this shift, e-mail users desire im- Action-item detection differs from standard text
proved tools to help process, search, and organiztassification in two important ways. First, the user
the information present in their ever-expanding inis interested both in detecting whether an email
boxes. A system that ranks e-mails according to theontains action-items and in locating exactly where
T Thie work v these action-item requests are contained within the
email body. Second, action-item detection attempts

1 Introduction

This work was performed primarily while the first author
was supported by Carnegie Mellon University.
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to recover the sender’s intent — whether she meamwgialitative nature of the labeled data and the applica-
to elicit response or action on the part of the receivetion of the learned base models differ. Furthermore,
In this paper, we focus on the primary problenwe improve upon work on context-sensitive com-
of presenting e-mails in @nked orderaccording to bination by introducing reliability indicators which
their likelihood of containing an action-item. Sincemodel the sensitivity of a classifier’s output around
action-items typically consist of a short text span —the current prediction point. Finally, we focus on the
a phrase, sentence, or small passage — supervisgtplication of these methods to action-item data —
input to a learning system can either come at the growing area of interest which has been demon-
document-levelvhere an e-mail is labeled yes/nostrated to behave differently than more standard text
as to whether it contains an action-item or at thelassification problemse(g. topi¢ in the literature
sentence-levelvhere each span that is an action{Bennett and Carbonell, 2005).
item is explicitly identified. Then, a corresponding i i
document-level classifier or aggregated predictiorisl Action-item Detection
from a sentence-level classifier can be used to esfihere are three basic problems for action-item de-
mate the overall likelihood for the e-mail. tection. (1)Document detectiorClassify an e-mail
Rather than commit to either view, we use a comas to whether or not it contains an action-item. (2)
bination technique to capture the information eacPocument ranking Rank the e-mails such that all
viewpoint has to offer on the current example. Th&-mail containing action-items occur as high as pos-
STRIVE approach (Bennetét al, 2005) has been sible in the ranking. (3pentence detectio€lassify
shown to provide robust combinations of heterogeeach sentence in an e-mail as to whether or not it is
neous models for standard topic classification bgn action-item.
capturing areas of high and low reliability via the Here we focus on the document ranking problem.
use of reliability indicators. Improving the overall ranking not only helps users

However, usingSTRIVE in order to produce im- find e-mails with action-items CIUiCker (Bennett and
proved rankings has not been previously studiedzarbonell, 2005) but can decrease response times
Furthermore, while they introduce some reliabil-and help ensure that key e-mails are not overlooked.
ity indicators that are general for text classification Since a typical user will eventually process all
problems as well as ones specifically tied tavea received mail, we assume that producing a quality
Bayes models, they do not address other classificeenking will more directly measure the impact on
tion models. We introduce a series of reliability in-the user than accuracy or F1. Therefore, we focus on
dicators connected to areas of high/low reliability ifROC curves and area under the curve (AUC) since
kNN, SVMs, and decision trees to allow the combiboth reflect the quality of the ranking produced.
nation model to include such factors as the sparse- - o . -
ness of training example neighbors around thlz Cu?_.z Combining Classifiers with Metaclassifiers
rent example being classified. In addition, we proOne of the most common approaches to classi-
vide a more formal motivation for the role these varifier combination is stacking (Wolpert, 1992). In
ables play in the resulting metaclassification modefhis approach, a metaclassifier observes a past his-

Empirical evidence demonstrates that the resulfory of classifier predictions to learn how to weight
ing approach yields a context-sensitive combinatioi€ classifiers according to their demonstrated ac-
model that improves the quality of rankings genercuracies and interactions. To build the history,
ated as well as reducing the variance of the ranking©ss-validation over theraining set is used to ob-

quality across training splits. tain predictions from each base classifier. Next, a
metalevel representation of the training set is con-
2 Problem Approach structed where each example consists of the class

label and the predictions of the base classifiers. Fi-
In contrast to related combination work, we focus omally, a metaclassifier is trained on the metalevel rep-
improving rankingsthrough the use of a metaclass+esentation to learn a model of how to combine the
ification framework. In addition, rather than sim-base classifiers.
ply focusing on combining models from different However, it might be useful to augment the his-
classification algorithms, we also examine combintory with information other than the predicted prob-
ing models that have differemtews in that both the abilities. For example, during peer review, reviewers
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Figure 2:Architecture ofSTRIVE In STRIVE an additional layer of learning is added where the metaclassifier cahaisentext
established by the reliability indicators and the output of the base classifietaki® an improved decision.

typically provide both d-5 acceptance rating and a Assume we restrict our choice of metaclassifier to

1-5 confidence. The first of these is related to an es linear model. One natural choice is to rank the

timate of class membership)( “accept” | paper), e-mails according to the estimated posterior proba-

but the second is closer to a measure of expertise bifity, P(class = action item | x), but in a linear

a self-assessment of the reviewer’s reliability on anombination framework it is actually more conve-

example-by-example basis. nient to work with the estimated log-odds or logit
Automatically deriving such self-assessments fatransform which is monotone in the posteriér,:

classification algorithms is non-trivial. Ti&acked |, P(class=action item|x) (Kahn, 2004).

Reliability I ndicatorVariableEnsemble framework, 1~ P(class=action item|x) B _

or STRIVE demonstrates how to extend stacking by Now, consider applying a metaclassifier to a sin-

incorporating such self-assessments as a layer of @€ base classifier. Given only a classifier's probabil-

liability indicators and introduces a candidate set ofY estimates, a metaclassifier cannotimprove on the

functions (Bennetét al, 2005). estimates if they are well-calibrated .(l_)eGrooft and
The sTRIVEarchitecture is depicted in Figure 2.Fienberg, 1986). Thus a metaclassifier applied to

From left to right: (1) a bag-of-words representatiort single base classifier corresponds to recalibration
of the document is extracted and used by the ba&éahn, 2004).
classifiers to predict class probabilities; (2) reliabil- Assume each of the base models gives an un-
ity indicator functions use the predicted probabilicalibrated log-odds estimat®;. Then the com-
ties and the features of the document to characteribination model would have the form*(x) =
whether this document falls within the “expertise”WO(x)+z?: L I/Vi(x);\i(x) where tha¥; are exam-
of the classifiers; (3) a metalevel classifier uses thgle dependent weight functions that the combination
base classifier predictions and the reliability indicamodel learns. The obvious implication is that our
tors to make a more reliable combined prediction. reliability indicators can be informed by the optimal
From the perspective of improving action-itemvalues for the weighting functions.
rankings, we are interested in whether stacking  \ve can determine the optimal weights in a sim-
striving can improve the quality of rankings. How-pjified case with a single base classifier by assuming
ever, we hypothesize that striving will perform bettefye are given “true” log-odds values, and a family
since it can learn a model that varies the combinatiogy gistributions A such thatAy = p(z | x)
rule based on the current example and thus, bettghcodes what is local te by giving the probability
capture when a particular classifier at the documengf grawing a point: near tox. We useA instead of
level or sentence-level, bag-of-wordsiegramrep- - A for notational simplicity. Sinced encodes the
resentationetc. will produce a reliable prediction.  example dependent nature of the weights, we can
drop x from the weight functions. To find weights
that minimize the squared difference between the
While STRIVE has been shown to provide robustrue log-odds and the estimated log-odds in the
combination for topic classification, a formal moti-vicinity of x, we can solve a standard regression

vation is lacking for the type of reliability indicators . ( 3 )2
J - o roblem, E A —A) .
that are the most useful in classifier combination. P ATGIMIyy 4y HA | (W1 A Wo

2.3 Formally Motivating Reliability Indicators

Under the assumptioAR A N = 0, this yields:
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wo = EA[A]—leAN @) .

covald A g
Wy = T3 T T PAA (2) °of °5 0P
VARA[A] % </
where s and p are the stdev and correlation co- /A\\“

efficient underA, respectively. The first parame-
ter is a measure of calibration that addresses the
guestion, “How far off on average is the estimated
log-odds from the true log-odds in the local con- agl—
text?” The second is a measure of correlation, “How

closely does the estimated log-odds vary with thglgure 3:lllustration of thekNN shifts produced for a predic-

" tion pointx using the numbered points as its neighborhood.

true log-odds?” Note that the second parameter de-

pends on the local sensitivity of the base classifier,
VARY? N — o5. Although we do not have true  Given this definition ofA, it is now straight-
log-odds, wecanintroduce local density models to forward to compute thekNN based  reliabil-

estimate the local sensitivity of the model. ity 1i/r12d[cators: EalAenn(z) — Aen(x)] and
In particular, we introduce a series of relia-Vary " [Aun(z) — Ak (x)].
bility indicators by first defining aA distribu-  Similarly, we define variables for the SVM class-

tion and either computing/AR » [5\} E [5\] or fier by considering a document's locality in terms
of nearby support vectors from the set of support

the closely related term&/ARa [;\(z) — A(x)|, vectors,V. To determined;, we define it in terms

. . _ of the closest support vector M to d. Let e be
Ena [)‘(Z) - /\(X)}' We use the resulting values forp ¢ yne distance to the nearest pointini.e. € =

an example as features for a linear metaclassifie%(.minvev |v —d||. Thens; = ﬁ.l Thus, the

Thus we use a context-dependent bias term but leagfitt vectors are all rescaled to have the same length.
the more general model for future work. Now, we must define a probability for the shift. We
- . use a simple exponential based omand the rela-
24 Model-Based Reliability Indicators tive distancpe frorg the document to the support vec-
As discussed in Section 2.3, we wish to define locabr defining this shift. Letl; ~ A wherePa(d;)
distributions in order to compute the local sensitivi%xp(_Hvi —d|| + 2¢) andzz‘/zl Pa(d;) =12
and similar terms for the base classification models. Gjven this definition of A, we compute the
To do so, we define local distributions that have them based reliability indicatorsEa [Asyn(z) —
same “flavor” as the base classification model. Ssva(x)] an dVarlA/Q[ Asva(z) — Asva(x)]

First, conspler the:NN clasglf!er. Slnc_e we are Space prevents us from presenting all the deriva-
concerned with how the decision function wouldtio

chanae as we move locally around the current pra- ns here. However, we also define decision-tree
nang y Prased variables where the locality distribution gives

snigh probability to documents that would land in
nearby leaves. For a multinomialina Bayes model
?I(IB), we define a distribution of documents iden-
: tical to the prediction document except having an
We use the largesd; such that the closest ne"~:’hboroccurrence of a single feature deleted. For the

to the new point is the_ original do_cumemIe. the multivariate Bernoulli nive Bayes (MBNB) model
boundary of the Voronoi cell (see Figure 3). Clearly,
G; will not exceed).5, and we can find it efficiently ~ *we assume that the minimum distance is not zero. If it is
using a simple bisection algorithm. Now, L&t be zero, then we return zero for all of the variables.

on .
. fo P - : As is standard to handle different document lengths, we
a uniform point-mass distribution over the Shlﬂed{ake the distance between documents after they have been nor-

points and\,x, the output score of teNN model.  malized to the unit sphere.

defined by thé: neighbors. In particular, lel; de-
note the document that has been shifted by a fact
G; toward theith neighborj.e. d; = d+ §;(n; —d).
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that models feature presence/absence, we useofathe terms with a distance-weighted vote of the
distribution over all documents that has one presieighbors to compute the outpuk was set to be
ence/absence bit flipped from the prediction docu2([log, N'| + 1) whereN is the number of training
ment. It is interesting to note that the variables fronpoints. 2 The score used as the uncalibrated log-
the ndve Bayes models can be shown to be equivasdds estimate of being an action-item is:

lent to variables introduced by Bennettal. (2005)

— although those were derived in a different fashiorf ¥\~ (X) = D cos(x, n) - > cos(x, n).
by analyzing the weight a single feature carries with nekNN(x)[e(n)={T0"  nekNN(x)[e(n) A"
respect to the overall prediction. SVM

Furthermore, from this starting point, we go on toMe used a linear SVM as implemented in the
define similar variables of possible interest. Includsym9ht package v6.01 (Joachims, 1999) with a
ing the two for each model described here, we definfidf feature representation and L2-norm. All de-
10 kNN variables5 SVM variables2 decision-tree fault settings were used. SVM’s margin score,
variables NB model based variables, aGMBNB " o,y K(x;,x;), has been shown to empirically
variables. We describe these variables as well as irsehave like an uncalibrated log-odds estimate (Platt,
plementation details and computational complexity 999).

results in (Bennett, 2006). Decision Trees

3 Experimental Analysis For the decision-tree implementation, we used the
WinMine toolkit and refer to this aBnetbelow (Mi-
3.1 Data crosoft Corporation, 2001). Dnet builds decision

Our corpus consists of e-mails obtained from volirees using a Bayesian machine learning algorithm
unteers at an educational institution and coveréhickeringet al, 1997; Heckermart al, 2000).
subjects such as: organizing a research work-he estimated log-odds is computed from a Laplace
Shop, arranging for job_candidate interviews, pubCOl'reCtion to the empirical prObablllty at aleaf node.
lishing proceedings, and talk announcements. Af-

ter eliminating duplicate e-mails, the corpus conpgive Bayes

_tains 744 messages with a total of 6301 automajye use a multinomial rige Bayes (NB) and a mul-
ically segmented sentences. A human panel 1gyariate Bernoulli nive Bayes classifier (MBNB)
beled each phrase or sentence that contained @cCallum and Nigam, 1998). For these classifi-
explicit request for information or action. 416 €-gr5 e smoothed word and class probabilities us-
mails have no action-items and 328 e-mails conpg 5 Bayesian estimate (with the word prior) and
tain action-items.  Additional information such 4 Laplace m-estimate, respectively. Since these are

as annotator agreement, distribution of messaggqpapilistic, they issue log-odds estimates directly.
length, etc. can be found in (Bennett and Car-

bonell, 2005). An anonymized corpus is available.4 Sentence-Level Classifiers

at http:/iwww.cs.cmu.edu/"pbennett/action-item-dataset.html Egch e-mail is automatically segmented into sen-
tences using RASP (Carroll, 2002). Since the cor-
pus has fine grained labels, we can train classifiers
We use two types of feature representation: a bagp classify a sentence. Each classifier in Section 3.3
of-words representation which uses all unigram tds also used to learn a sentence classifier. However,
kens as the feature pool; and a bagreirams we then must make a document-level prediction.
wheren includes alln-grams wheren < 4. For In order to produce a ranking score, the con-

both representations at both the document-level afidience that the document contains an action-item is:
sentence-level, we used only the top 300 features by

3.2 Feature Representation

the chi-squared statistic. A(d) = {n(id) Ysedin(sy=1 As), Fsed|r(s) =1
3.3 Document-Level Classifiers ) MaXsed A(5) 0.w.
kNN 3This rule is not guaranteed be optimal for a particular value

_ ; ; of N but is motivated by theoretical results which show such a
We used as-cut variant of kNN common in text rule converges to the optimal classifier as the number of training

classification (Yang, 1999) and a tfidf-weightingpoints increases (Devroy al, 1996).
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wheres is a sentence in documedt 7 is the class- useful for topic classification. This yields a total of
ifier's 1/0 prediction ) is the score the classifier as-138 reliability-indicators {38 = 58 4+ 20 4 58 + 2).
signs as its confidence thafs) = 1, andn(d) is  With the20 classifier outputs, there are a totall68
the greater of 1 and the number of (unigram) toinput features for striving to handle.

kens in the document. In other words, when any As with stacking, we use svight with default
sentence is predicted positive, the document scogettings and normalize the inputs to this classifier to
is the length normalized sum of the sentence scor@gsve zero mean and a scaled variance.

above threshold. When no sentence is predicted pos-

itive, the document score is the maximum sentenc&7 Performance Measures

score normalized by length. The length normalizay,,

: . ““We wish to improve the rankings of the e-mails in
tion compensates fc_Jr the fact that we are more_llke%e inbox such that action-item e-mails occur higher
to emit a false positive the longer a document is.

in the inbox. Therefore, we use the area under the
3.5 Stacking curve (AUC) of an ROC curve as a measure of rank-
ing performance. AUC is a measure of overall model
‘and ranking quality that has gained wider adoption
recently and is equivalent to the Mann-Whitney-
Wilcoxon sum of ranks test (Hanley and McNeil,

(2 representations*2 viewsx*5 classifiers), we con- 1982). To put improvement in perspective, we can

struct a linear stacking model which uses only th@vrite our relative reduction in residual area (RRA)

base classifier outputs and no reliability indicators asgs 1—&63}}0 . We present gains relative to the

abaseline. For the implementation, we use §, 9. ' pest AUC performer (bRRA), and relative to perfect
with default settings. The inputs to this classifier ar8lynamic selection performance, (dRRA), which as-
normalized to have zero mean and a scaled varian(‘s%mes we could accuratedgynan%icallychc’)ose the

3.6 Striving best classifier per crpss-validation run. _
The F1 measure is the harmonic mean of preci-
on and recall and is common throughout text class-
ification (Yang and Liu, 1999). Although we are not
. ) i : concerned with F1 performance here, some users of
puting the ygrlables in Section 2.4 for the documen?he system might be interested in improving rank-
Ie\flltrc]lassrl]fltehrs&é% :dQI*b[G +d6 '+d1'0 Jtr 5+ 2])'d p ing while having negligible negative effect on F1.
oug € model-based indicators are de Ine"flherefore, we examine F1 to ensure that an improve-

for each sentence prediction, to use th'em at ﬂ}ﬁentin ranking will not come at the cost of a statis-
document-level we must somehow combine the r‘?l'cally significant decrease in F1
! )

liability indicators over each sentence. The simples
method is to average each classifier-based indicatglg  Experimental Methodology

across the sentences in the document. We do so and o
thus obtain anotheis reliability indicators. To evaluate performance of the combination sys-

Furthermore, our model might benefit from somd€ms, we performo-fold cross-validation and com-
of the structure a sentence-level classifier offergute the average performance. For significance tests,
when combining document predictions. Analogou¥/® Use a two-tailed t-test (Yang and Liu, 1999)
to the sensitivity of each base model, we can cof® compare the values obtained during each cross-
sider such indicators as the mean and standard g&lidation fold with ap-value of0.05. .
viation of the classifier confidences across the sen- We examine two hypotheses: Stacking will out-
tences within a document. For each sentence-levegrform all of the base classifiers; Striving will out-
base classifier, these become two more indicatoR@rform all the base classifiers and stacking.
which we can benefit from when combining docu- . .
ment predictions. This introduc@8 more variables 3.9 Results & Discussion
(20 = 2 representations * 2 * 5 classifiers). Table 1 presents the summary of results. The best
Finally, we include the2 basic voting statistic performer in each column is in bold. If a combi-
reliability-indicators PercentPredictingPositivand nation method statistically significantly outperforms
PercentAgreeWBe@&dhat Bennetet al. (2005) found all base classifiers, it is underlined.

To examine the hypothesis that the reliability in
dicators provide utility beyond the information
present in the output of th€0 base classifiers

Since we are constructing base classifiers for bog]
the bag-of-words and bag-efgrams representa-
tions, this givesi8 reliability indicators from com-
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| F1 | AUC | bRRA | dRRA True Positive Rate

Document-Level, Bag-of-Words Representation ° ° ° ° S -
Dnet 0.7398| 0.8423| 1.41 1.78 of . T T T T
NB 0.6905| 0.7537 | 2.27 291

MBNB 0.6729| 0.7745| 2.00 2.49
SVM 0.6918 | 0.8367 | 1.48 1.87
kNN 0.6695| 0.7669 | 2.17 2.74

Document-Level, Ngram Representation
Dnet 0.7412| 0.8473| 1.38 1.77
NB 0.7361| 0.8114| 1.75 2.23
MBNB 0.7534 | 0.8537| 1.30 1.61
SVM 0.7392| 0.8640| 1.24 1.59
kNN 0.7021| 0.8244| 1.62 2.01

Sentence-Level, Bag-of-Words Representation
Dnet 0.7793| 0.8885| 1.00 1.27
NB 0.7731| 0.8645| 1.21 1.50
MBNB 0.7888| 0.8699| 1.14 1.42
SVM 0.6985| 0.8548 | 1.34 1.70
kNN 0.6328 | 0.6823| 2.98 3.88

Sentence-Level, Ngram Representation
Dnet 0.7521| 0.8723| 1.13 1.42

20
T

0

aley 9ANISOd ase

8'0
T

ENETES
Bupjoers

(welbu‘yuas) NAS
(weibu‘yuas) aNgn

)b
NB 0.8012| 0.8723| 1.15 1.46 » ﬁ
MBNB | 0.8010| 0.8777| 1.10 1.38 P %
SVM 0.7842] 0.8620| 1.23 1.58 i ' ' ' '
kNN 0.6811] 0.8078| 1.76 | 2.29

Metaclassifiors Figure 4:ROC curves (rotated).

Stacking | 0.7765| 0.8996 | 0.88 112
STRIVE | 0.7813| 0.9145| 0.76 0.94

ble 1: lassifi q bi ‘ beats the base classifiers. Later in the curve, it dom-
Table 1: Base classifier and combiner performancg, oias | the classifiers. If we examine the curves
using error bars, we see that the variancsTHIVE

drops faster than the other classifiers as we move fur-

_ Now, we turn to j[he issue of whether Combm"’.lt'prfher along ther-axis. ThussTRIVES ranking quality
Improves the ranking of the documents. Examining ies less with changes to the training set.
the results in Table 1, we see tisaRIVEStatistically

significantly beats every other classifier according t
AUC. Stacking outperforms the base classifiers wit
respect to AUC but not statistically significantly.  geyeral researchers have considered text classifi-
Examining F1, we see that neither combinatiogation tasks similar to action-item detection. Co-
method outperforms the best base classifi€B henet al. (2004) describe an ontology of “speech
(sent,ngram) If we examine the hypothesis of acts”, such as “Propose a Meeting”, and attempt
whether this base classifier significantly outperformg predict when an e-mail contains one of these
either combination method, the hypothesis is respeech acts. Corston-Olivaat al. (2004) con-
jected. ThussTRIVE improves the overall ranking sider detecting items in e-mail to “Put on a To-Do
with a negligible effect on F1. List” using a sentence-level classifier. In earlier
Finally, we compare the ROC curves of strivingwork (Bennett and Carbonell, 2005), we demon-
stacking, and two of the most competitive base classtrated that sentence-level classifiers typically out-
ifiers in Figure 4. We see that striving loses by gerform document-level classifiers on this problem
slight amount to stacking early in the curve but stilland examined the underlying reasons why this was
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