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Abstract

Motivated by psycholinguistic findings,
we are currently investigating the role of
eye gaze in spoken language understand-
ing for multimodal conversational sys-
tems. Our assumption is that, during hu-
man machine conversation, a user’s eye
gaze on the graphical display indicates
salient entities on which the user’s atten-
tion is focused. The specific domain infor-
mation about the salient entities is likely
to be the content of communication and
therefore can be used to constrain speech
hypotheses and help language understand-
ing. Based on this assumption, this paper
describes an exploratory study that incor-
porates eye gaze in salience modeling for
spoken language processing. Our empiri-
cal results show that eye gaze has a poten-
tial in improving automated language pro-
cessing. Eye gaze is subconscious and in-
voluntary during human machine conver-
sation. Our work motivates more in-depth
investigation on eye gaze in attention pre-
diction and its implication in automated
language processing.

1 Introduction

Psycholinguistic experiments have shown that eye
gaze is tightly linked to human language process-
ing. Eye gaze is one of the reliable indicators of
what a person is “thinking about” (Henderson and
Ferreira, 2004). The direction of gaze carries infor-
mation about the focus of the users attention (Just
and Carpenter, 1976). The perceived visual context
influences spoken word recognition and mediates
syntactic processing (Tanenhaus et al., 1995; Roy

and Mukherjee, 2005). In addition, directly before
speaking a word, the eyes move to the mentioned
object (Griffin and Bock, 2000).

Motivated by these psycholinguistic findings, we
are currently investigating the role of eye gaze in
spoken language understanding during human ma-
chine conversation. Through multimodal interfaces,
a user can look at a graphic display and converse
with the system at the same time. Our assumption
is that, during human machine conversation, a user’s
eye gaze on the graphical display can indicate salient
entities on which the user’s attention is focused. The
specific domain information about the salient enti-
ties is likely linked to the content of communication
and therefore can be used to constrain speech hy-
potheses and influence language understanding.

Based on this assumption, we carried out an ex-
ploration study where eye gaze information is in-
corporated in a salience model to tailor a language
model for spoken language processing. Our prelim-
inary results show that eye gaze can be useful in im-
proving spoken language processing and the effect
of eye gaze varies among different users. Because
eye gaze is subconscious and involuntary in human
machine conversation, our work also motivates sys-
tematic investigations on how eye gaze contributes
to attention prediction and its implications in auto-
mated language processing.

2 Related Work

Eye gaze has been mainly used in human machine
interaction as a pointing mechanism in direct manip-
ulation interfaces (Jacob, 1990; Jacob, 1995; Zhai
et al., 1999), as a facilitator in computer supported
human human communication (Velichkovsky, 1995;
Vertegaal, 1999); or as an additional modality dur-
ing speech or multimodal communication (Starker
and Bolt, 1990; Campana et al., 2001; Kaur et al.,
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2003; Qvarfordt and Zhai, 2005). This last area of
investigation is more related to our work.

In the context of speech and multimodal commu-
nication, studies have shown that speech and eye
gaze integration patterns can be modeled reliably for
users. For example, by studying patterns of eye gaze
and speech in the phrase “move it there”, researchers
found that the gaze fixation closest to the intended
object begins, with high probability, before the be-
ginning of the word “move” (Kaur et al., 2003). Re-
cent work has also shown that eye gaze has a poten-
tial to improve reference resolution in a spoken dia-
log system (Campana et al., 2001). Furthermore, eye
gaze also plays an important role in managing dia-
log in conversational systems (Qvarfordt and Zhai,
2005).

Salience modeling has been used in both natural
language and multimodal language processing. Lin-
guistic salience describes entities with their accessi-
bility in a hearer’s memory and their implications in
language production and interpretation. Linguistic
salience modeling has been used for language in-
terpretations such as reference resolution (Huls et
al., 1995; Eisenstein and Christoudias, 2004). Vi-
sual salience measures how much attention an en-
tity attracts from a user based on its visual proper-
ties. Visual salience can tailor users’ referring ex-
pressions and thus can be used for multimodal refer-
ence resolution (Kehler, 2000). Our recent work has
also investigated salience modeling based on deic-
tic gestures to improve spoken language understand-
ing (Chai and Qu, 2005; Qu and Chai, 2006).

3 Data Collection

We conducted user studies to collect speech and eye
gaze data. In the experiments, a static 3D bedroom
scene was shown to the user. The system verbally
asked a user a list of questions one at a time about
the bedroom and the user answered the questions by
speaking to the system. Fig.1 shows the 14 questions
in the experiments. The user’s speech was recorded
through an open microphone and the user’s eye gaze
was captured by an Eye Link II eye tracker. From 7
users’ experiments, we collected 554 utterances with
a vocabulary of 489 words. Each utterance was tran-
scribed and annotated with entities that were being
talked about in the utterance.

1 Describe this room.
2 What do you like/dislike about the arrangement?
3 Describe anything in the room that seems strange to

you.
4 Is there a bed in this room?
5 How big is the bed?
6 Describe the area around the bed.
7 Would you make any changes to the area around the

bed?
8 Describe the left wall.
9 How many paintings are there in this room?
10 Which is your favorite painting?
11 Which is your least favorite painting?
12 What is your favorite piece of furniture in the room?
13 What is your least favorite piece of furniture in the

room?
14 How would you change this piece of furniture to make

it better?

Figure 1: Questions for users in experiments

The collected raw gaze data consists of the screen
coordinates of each gaze point sampled at 4 ms.
As shown in Fig.2a, this raw data is not very use-
ful for identifying fixated entities. The raw gaze
data are processed to eliminate invalid and saccadic
gaze points, leaving only pertinent eye fixations.
Invalid gaze points occur when users look off the
screen. Saccadic gaze points occur during ballis-
tic eye movements between fixations. Vision stud-
ies have shown that no visual processing occurs dur-
ing saccades (i.e., saccadic suppression). It is well
known that eyes do not stay still, but rather make
small, frequent jerky movements. In order to best
determine fixation locations, nearby gaze points are
averaged together to identify fixations. The pro-
cessed eye gaze fixations can be seen in Fig.2b.

Fig.3 shows an excerpt of the collected speech
and gaze fixation with fixated entities. In the speech
stream, each word starts at a particular timestamp. In
the gaze stream, each gaze fixation f has a starting
timestamp tf and a duration Tf . Gaze fixations can
have different durations. An entity e on the graphi-
cal display is fixated by gaze fixation f if the area of
e contains the fixation point of f . One gaze fixation
can fall on multiple entities or no entity.

4 Salience Driven Language Modeling

Our goal is to use the domain specific information
about the salient entities on a graphical display, as
indicated by the user’s eye gaze, to help recognition
of the user’s utterances. In particular, we incorporate
this salient domain information in speech recogni-
tion via salience driven language modeling.
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(a) Raw gaze points (b) Processed gaze fixations

Figure 2: Gaze fixations on a scene
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Figure 3: An excerpt of speech and gaze stream data

We first briefly introduce speech recognition. The
task of speech recognition is to, given an observed
spoken utterance O, find the word sequence W ∗

such that W ∗ = arg max
W

p(O|W )p(W ), where

p(O|W ) is the acoustic model and p(W ) is the
language model. The acoustic model provides the
probability of observing the acoustic features given
hypothesized word sequences while the language
model provides the probability of a word sequence.
The language model is represented as:

p(W ) = p(wn
1 ) =

n∏
k=1

p(wk|wk−1
1 ) (1)

Using first-order Markov assumption, the above lan-
guage model can be approximated by a bigram
model:

p(wn
1 ) =

n∏
k=1

p(wk|wk−1) (2)

In the following sections, we first introduce the
salience modeling based on eye gaze, then present
how the gaze-based salience models can be used to
tailor language models.

4.1 Gaze-based Salience Modeling
We first define a gaze fixation set F t0+T

t0 (e), which
contains all gaze fixations that fall on entity e within
a time window t0 ∼ (t0 + T ):

F t0+T
t0 (e) = {f |f falls on e within t0 ∼ (t0 + T )}

We model gaze-based salience in two ways.

4.1.1 Gaze Salience Model 1
Salience model 1 is based on the assumption that

when an entity has more gaze fixations on it than
other entities, this entity is more likely attended by
the user and thus has higher salience:

pt0,T (e) =
#elements in F t0+T

t0 (e)∑
e(#elements in F t0+T

t0 (e))
(3)

Here, pt0,T (e) tells how likely it is that the user is
focusing on entity e within time period t0 ∼ (t0+T )
based on how many gaze fixations are on e among
all gaze fixations that fall on entities within t0 ∼
(t0 + T ).

4.1.2 Gaze Salience Model 2
Salience model 2 is based on the assumption that

when an entity has longer gaze fixations on it than
other entities, this entity is more likely attended by
the user and thus has higher salience:

pt0,T (e) =
Dt0+T

t0 (e)∑
e Dt0+T

t0 (e)
(4)

where
Dt0+T

t0 (e) =
∑

f∈F
t0+T
t0

(e)

Tf (5)

Here, pt0,T (e) tells how likely it is that the user is
focusing on entity e within time period t0 ∼ (t0 + t)
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based on how long e has been fixated by gaze fixa-
tions among the overall time length of all gaze fixa-
tions that fall on entities within t0 ∼ (t0 + T ).

4.2 Salience Driven N-gram Model

Salience models can be incorporated in different lan-
guage models, such as bigram models, class-based
bigram models, and probabilistic context free gram-
mar. Among these language models, the salience
driven bigram model based on deictic gesture has
been shown to achieve best performance on speech
recognition (Qu and Chai, 2006). In our initial in-
vestigation of gaze-based salience, we incorporate
the gaze-based salience in a bigram model.

The salience driven bigram probability is given
by:

ps(wi|wi−1) = (1− λ)p(wi|wi−1) +
λ

∑
e p(wi|wi−1, e)pt0,T (e) (6)

where pt0,T (e) is the salience distribution as mod-
eled in equations (3) and (4). In applying the
salience driven bigram model for speech recogni-
tion, we set t0 as the starting timestamp of the ut-
terance and T as the duration of the utterance. The
priming weight λ decides how much the original
bigram probability will be tailored by the salient
entities indicated by eye gaze. Currently, we set
λ = 0.67 empirically. We also tried learning the
priming weight with an EM algorithm. However,
we found out that the learned priming weight per-
formed worse than the empirical one in our exper-
iments. This is probably due to insufficient devel-
opment data. Bigram probabilities p(wi|wi−1) were
estimated by the maximum likelihood estimation us-
ing Katz’s backoff method (Katz, 1987) with a fre-
quency cutoff of 1. The same method was used to es-
timate p(wi|wi−1, e) from the users’ utterance tran-
scripts with entity annotation of e.

5 Application of Salience Driven LMs

The salience driven language models can be inte-
grated into speech processing in two stages: an early
stage before a word lattice (n-best list) is generated
(Fig.4a), or in a late stage where the word lattice
(n-best list) is post-processed (Fig.4b).

For the early stage integration, the gaze-based
salience driven language model is used together with

word lattice

(n-best list)speech

eye gaze

Speech Decoder

Language 

Model

Acoustic 

Model

(a) Early stage integration

word lattice

(n-best list) n-best list

eye gaze

Rescorer
speech

Speech Decoder

Language 

Model

Acoustic 

Model

Language 

Model

(b) Late stage integration

Figure 4: Integration of gaze-based salience driven
language model in speech processing

the acoustic model to generate the word lattice, typ-
ically by Viterbi search.

For the late stage integration, the gaze-based
salience driven language model is used to rescore the
word lattice generated by a speech recognizer with
a basic language model not involving salience mod-
eling. A* search can be applied to find the n-best
paths in the word lattice.

6 Evaluation

The evaluations were conducted on data collected
from user studies (Sec. 3). We evaluated the gaze-
based salience driven bigram models when applied
for speech recognition at early and late stages.

6.1 Evaluation Results
Users’ speech was first segmented, then recognized
by the CMU Sphinx-4 speech recognizer using dif-
ferent language models. Evaluation was done by
a 14-fold cross validation. We compare the per-
formances of the early and late applications of two
gaze-based salience driven language models:
• S-Bigram1 – salience driven language model

based on salience modeling 1 (Sec. 4.1.1)

• S-Bigram2 – salience driven language model
based on salience modeling 2 (Sec. 4.1.2)

Table 1 and Table 2 show the results of early and
late application of the salience driven language mod-
els based on eye gaze. We can see that all word error
rates (WERs) are high. In the experiments, users
were instructed to only answer systems questions
one by one. There was no flow of a real conversa-
tion. In this setting, users were more free to express
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themselves than in the situation where users believed
they were conversing with a machine. Thus, we ob-
serve much longer sentences that often contain dis-
fluencies. Here is one example:

System: “How big is the bed?”

User: “I would to have to offer a guess that the bed,

if I look the chair that’s beside it [pause] in a rel-

ative angle to the bed, it’s probably six feet long,

possibly, or shorter, slightly shorter.”

The high WER was mainly caused by the com-
plexity and disfluencies of users’ speech. Poor
speech recording quality is another reason for the
bad recognition performance. It was found that
the trigram model performed worse than the bigram
model in the experiment. This is probably due to the
sparseness of trigrams in the corpus. The amount of
data available is too small considering the vocabu-
lary size.

Language Model Lattice-WER WER
Bigram 0.613 0.707
Trigram 0.643 0.719

S-Bigram 1 0.605 0.690
S-Bigram 2 0.604 0.689

Table 1: WER of early application of LMs

Language Model Lattice-WER WER
S-Bigram 1 0.643 0.709
S-Bigram 2 0.643 0.710

Table 2: WER of late application of LMs

The S-Bigram1 and S-Bigram2 achieved similar
results in both early application (Table 1) and late
application (Table 2). In early application, the S-
Bigram1 model performed better than the trigram
model (t = 5.24, p < 0.001, one-tailed) and the
bigram model (t = 3.31, p < 0.001, one-tailed).
The S-Bigram2 model also performed better than the
trigram model (t = 5.15, p < 0.001, one-tailed)
and the bigram model (t = 3.33, p < 0.001, one-
tailed) in early application. In late application, the
S-Bigram1 model performed better than the trigram
model (t = 2.11, p < 0.02, one-tailed), so did
the S-Bigram2 model (t = 1.99, p < 0.025, one-
tailed). However, compared to the bigram model,
the S-Bigram1 model did not change the recogni-
tion performance significantly (t = 0.38, N.S., two-

tailed) in late application, neither did the S-Bigram2
model (t = 0.50, N.S., two-tailed).

We also compare performances of the salience
driven language models for individual users. In early
application (Fig.5a), both the S-Bigram1 and the S-
Bigram2 model performed better than the baselines
of the bigram and trigram models for all users except
user 2 and user 7. T-tests have shown that these are
significant improvements. For user 2, the S-Bigram1
model achieved the same WER as the bigram model.
For user 7, neither of the salience driven language
models improved recognition compared to the bi-
gram model. In late application (Fig.5b), only for
user 3 and user 4, both salience driven language
models performed better than the baselines of the bi-
gram and trigram models. These improvements have
also been confirmed by t-tests as significant.
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(a) WER of early application

1 2 3 4 5 6 7
0.4

0.5

0.6

0.7

0.8

0.9

1

User ID

W
E

R

bigram trigram s−bigram1 s−bigram2

(b) WER of Late application

Figure 5: WERs of LMs for individual users

Comparing early and late application of the
salience driven language models, it is observed that
early application performed better than late applica-
tion for all users except user 3 and user 4. T-tests
have confirmed that these differences are significant.
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It is interesting to see that the effect of gaze-based
salience modeling is different among users. For
two users (i.e., user 3 and user 4), the gaze-based
salience driven language models consistently out-
performed the bigram and trigram models in both
early application and late application. However, for
some other users (e.g., user 7), this is not the case. In
fact, the gaze-based salience driven language mod-
els performed worse than the bigram model. This
observation indicates that during language produc-
tion, a user’s eye gaze is voluntary and unconscious.
This is different from deictic gesture, which is more
intentionally delivered by a user. Therefore, incor-
porating this “unconscious” mode of modality in
salience modeling requires more in-depth research
on the role of eye gaze in attention prediction during
multimodal human computer interaction.

6.2 Discussion

Gaze-based salience driven language models are
built on the assumption that when a user is fixat-
ing on an entity, the user is saying something re-
lated to the entity. With this assumption, gaze-based
salience driven language models have the potential
to improve speech recognition by biasing the speech
decoder to favor the words that are consistent with
the entity indicated by the user’s eye gaze, especially
when the user’s utterance contains words describing
unique characteristics of the entity. These particular
characteristics could be the entity’s name or physical
properties (e.g., color, material, size).

Utterance: “a tree growing from the floor”

Gaze salience:
p(bedroom) = 0.2414 p(plant willow) = 0.2414
p(chair soft) = 0.2414 p(door 1) = 0.1378
p(bed 8) = 0.1378

Bigram n-best list:
sheet growing from a four
sheet growing from a for
sheet growing from a floor
. . .

S-Bigram2 n-best list:
a tree growing from the floor
a tree growing from the for
a tree growing from the floor a
. . .

Figure 6: N-best lists of utterance “a tree growing
from the floor”

Fig.6 shows an example where the S-Bigram2

model in early application improved recognition of
the utterance “a tree growing from the floor”. In
this example, the user’s gaze fixations accompany-
ing the utterance resulted in a list of candidate enti-
ties with fixating probabilities (cf. Eqn. (4)), among
which entities bedroom and plant willow were as-
signed higher probabilities. Two n-best lists, the Bi-
gram n-best list and the S-Bigram2 n-best list, were
generated by the speech recognizer when the bigram
model and the S-Bigram2 model were applied sep-
arately. The speech recognizer did not get the cor-
rect recognition when the bigram model was used,
but got the correct result when the S-Bigram2 model
was used.

Fig.7a and 7b show the word lattices of the ut-
terance generated by the speech recognizer using
the bigram model and the S-Bigram2 model respec-
tively. The n-best lists in Fig.6 were generated from
those word lattices. In the word lattices, each path
going from the start node <s> to the end node </s>
forms a recognition hypothesis. The bigram proba-
bilities along the edges are in the logarithm of base
10. In the bigram case, the path “<s> a tree” has a
higher language score (summation of bigram prob-
abilities along the path) than “<s> sheet”, and “a
floor” has a higher language score than “a full”.
However, these correct paths “<s> a tree” and “a
floor” (not exactly correct, but better than “a full”)
do not appear in the best hypothesis in the result-
ing n-best list. This is because the system tries to
find an overall best hypothesis by considering both
language and acoustic score. Because of the noisy
speech, the incorrect hypotheses may happen to have
higher acoustic confidence than the correct ones. Af-
ter tailoring the bigram model with gaze salience,
the salient entity plant willow significantly increases
the probability of “a tree” (from -1.3594 to -0.9913)
and “tree growing” (from -3.1009 to -1.1887), while
it decreases the probability of “sheet growing” (from
-3.0962 to -3.4534). This probability change is made
by the entity conditional probability p(wi|wi−1, e)
in tailoring of bigram by salience (cf. Eqn. (6)).
Probability p(wi|wi−1, e), trained from the anno-
tated utterances, reflects what words are more likely
to be spoken by a user while talking about an entity
e. The increased probabilities of “a tree” and “tree
growing” show that word “tree” appears more likely
than “sheet” when the user is talking about entity
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Figure 7: Word lattices of utterance “a tree growing from the floor”

“plant willow. This is in accordance with our com-
mon sense. Likewise, the salient entity bedroom, of
which floor is a component, makes the probability of
the correct hypothesis “the floor” much higher than
other hypotheses (“the for” and “the forest”). These
enlarged language score differences make the cor-
rect hypotheses “a tree” and “the floor” win out in
the searching procedure despite the noisy speech.

Utterance: “I like the picture with like a forest in it”

Gaze salience:
p(bedroom) = 0.5960 p(chandelier 1) = 0.4040

Bigram n-best list:
and i eight that picture rid like got five
and i eight that picture rid identifiable
and i eight that picture rid like got forest
. . .

S-Bigram2 n-best list:
and i that bedroom it like upside
and i that bedroom it like a five
and i that bedroom it like a forest
. . .

Figure 8: N-best lists of utterance “I like the picture
with like a forest in it”

Unlike the active input mode of deictic gesture,
eye gaze is a passive input mode. The salience in-
formation indicated by eye gaze is not as reliable
as the one indicated by deictic gesture. When the
salient entities indicated by eye gaze are not the
true entities the user is referring to, the salience
driven language model can worsen speech recogni-
tion. Fig.8 shows an example where the S-Bigram2
model in early application worsened the recogni-
tion of a user’s utterance “I like the picture with like
a forest in it” because of wrong salience informa-
tion. In this example, the user was talking about a
picture entity picture bamboo. However, this entity
was not salient, only entities bedroom and chande-
lier 1 were salient. As a result, the recognition with
the S-Bigram2 model becomes worse than the base-
line. The correct word “picture” is missing and the
wrong word “bedroom” appears in the result.

The failure to identify the actual referred entity
picture bamboo as salient in the above example can
also be caused by the visual properties of entities.
Smaller entities on the screen are harder to be fix-
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ated by eye gaze than larger entities. To address this
issue, more reliable salience modeling that takes into
account the visual features is needed.

7 Conclusion

This paper presents an empirical exploration of in-
corporating eye gaze in spoken language processing
via salience driven language modeling. Our prelim-
inary results have shown the potential of eye gaze in
improving spoken language processing. Neverthe-
less, this exploratory study is only the first step in
our investigation. Many interesting research ques-
tions remain. During human machine conversation,
how is eye gaze aligned with speech production?
How reliable is eye gaze for attention prediction?
Are there any other factors such as interface design
and visual properties that will affect eye gaze behav-
ior and therefore attention prediction? The answers
to these questions will affect how eye gaze should be
appropriately modeled and used for language pro-
cessing.

Eye-tracking systems are no longer bulky, sta-
tionary systems that prevent natural human ma-
chine communication. Recently developed dis-
play mounted gaze-tracking systems (e.g., Tobii) are
completely non-intrusive, can tolerate head motion,
and provide high tracking quality. These features
have been demonstrated in several successful appli-
cations (Duchowski, 2002). Integrating eye tracking
with conversational interfaces is no longer beyond
reach. We believe it is time to conduct systematic
investigations and fully explore the additional chan-
nel provided by eye gaze in improving robustness of
human machine conversation.
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