Combining Reinforcement L earning with I nfor mation-State Update Rules*

Peter A. Heeman
Center for Spoken Language Understanding
Oregon Health & Science University
Beaverton OR, 97006, USA
heeman@sl u. ogi . edu

Abstract

Reinforcement learning gives a way to
learn under what circumstances to per-
form which actions. However, this ap-
proach lacks a formal framewaork for spec-
ifying hand-crafted restrictions, for speci-
fying the effects of the system actions, or
for specifying the user simulation. The in-
formation state approach, in contrast, al-
lows system and user behavior to be spec-
ified as update rules, with preconditions
and effects. This approach can be used
to specify complex dialogue behavior in
a systematic way. We propose combining
these two approaches, thus allowing a for-
mal specification of the dialogue behavior,
and allowing hand-crafted preconditions,
with remaining ones determined via rein-
forcement learning so as to minimize dia-
logue cost.

to apply the rule. The effects specify how the state
changes as a result of applying the rule. At a mini-
mum, two sets of update rules are used: onewset,
derstanding rulesspecify the effect of an utterance
on the agent’s state and a second aetjon rules,
specify which speech action can be performed next.
For example, a precondition for asking a question is
that the agent does not know the answer to the ques-
tion. An effect of an answer to a question is that the
hearer now knows the answer. One problem with
this approach is that although necessary precondi-
tions for speech actions are easy to code, there are
typically many speech actions that can be applied at
any point in a dialogue. Determining which one is
the optimal one is a daunting task for the dialogue
designer.

The second approach for building spoken dia-
logue systems is to useinforcement learningRL)
to automatically determine what action to perform
in each different dialogue state so as to minimize
some cost function (e.g. Walker, 2000; Levin et al.,
2000). The problem with this approach, however, is

that it lacks the framework of IS to specify the man-
Two different roaches have becom lar 7 in which the internal state is updated. Further-
o diffierent approaches have become popu'a omore, sometimes no preconditions are even speci-

fied for the actions, even though they are obvious

1 Introduction

Qef|ngd in a formal logic, |_n terms of the Sltuatlonsover a much larger search space, even over dialogue
in which they can be applied, and what effect the

il h th ker 4 the list) X trategies that do not make any sense. This not only
Wit have on Ihe speaxers and e IStener s men ubstantially slows down the learning procedure, but
state (Cohen and Perrault, 1979; Allen and Perrault, . .)

1980). O £ th hes is i i also increases the chance of being caught in a locally
). One of these approaches is rmation optimal solution, rather than the global optimal. Fur-
state(lS) approach (Larsson and Traum, 2000). Th : N
knowledge of the agent is formalized as the state ermore, this large search space will limit the com-
: lexity of the domains to which RL can be applied.
The IS state is updated by way opdate rules prexity ! Wh Pl

) " : In thi , ining | RL.
which havepreconditionsandeffects The precondi- n this paper, we propose combining 1S and
. . . IS update rules are formulated for both the system
tions specify what must be true of the state in order

and the simulated user, thus allowing RL to use a
_ The author wishes to thank Fan Yang and Michael Enrich formalism for specifying complex dialogue pro-
glish for helpful conversations. Funding from the National . Th diti th ti | f
Science Foundation under grant 11S-0326496 is gratefudly a C€SSING. € preconditions on the ac_ Ion rules o
knowledged. the system, however, only need to specify the neces-

268

Proceedings of NAACL HLT 2007, pages 268-275,
Rochester, NY, April 2007. (©)2007 Association for Computational Linguistics

sary preconditions that are obvious to the dialoguterred value of the parameterThe system can ask
designer. Thus, preconditions on the system’s agvhether the user is flexible on the values for parame-
tions might not uniquely identify a single action thatter p with ‘askrelaxp’, and the user will answer with
should be performed in a given state. Instead, Rlkelax p a’, wherea is either ‘yes’ or ‘no’. The sys-
is used to determine which of the applicable actiontem can do a database query, ‘dbquery’, to determine
minimizes a dialogue cost function. whether any flights match the current parameters. If
In the rest of the paper, we first present an exammo flights exactly match, ‘dbquery’ will check if any
ple domain. Section 3 gives an overview of applyflights match according to the relaxed restrictions,
ing RL to dialogue strategy and Section 4 gives aby ignoring parameters that the system knows the
overview of IS. Section 5 demonstrates that IS canser is flexible on. The system can display the found
be used for simulating a dialogue between the sy#lights with ‘output’. It can also quit at any time. A
tem and a user. Section 6 demonstrates how IS caample dialogue is given in Fig. 1.
be used with RL. Section 7 gives results on using
hand-crafted preconditions specified in the IS updaté Reinforcement Learning (RL)

rules to _Simp”fY learning di_alogue strategies WithGiven a set of system actions, a set of states, and a
RL. Section 8 gives concluding comments. cost function that measures the quality of a dialogue,
RL searches for an optimal dialogue policy (Sutton
and Barto, 1998; Levin et al., 2000).

To illustrate our proposed approach, we use thgog Function: The cost function assesses how

flight information domain, similar to that of Levin good a dialogue is: the lower the cost, the better the
et al. (2000). The goal of the system is to displayjalogue. RL uses the cost function to provide feed-
a short list of flights that meets the user’'s requirepck in its search for an optimal strategy. The cost
ments. The user is assumed to have a flight in ming,ction is specified by the dialogue designer, and
in terms of its destination, origin, airline, departure;an take into account any number of factors, typi-

time, and number of stops. The user might be flexjea)ly including dialogue length and solution quality.

ble on some of the parameters. Itis assumed that t stem Actions. RL takes as input a finite number

user W.'” not change his or her mind depending O%f actions, and for each state, learns which action is
what flights are found.

In thi ¢ . dial best to perform. The dialogue designer decides what
N thiS paper, we are 1ocusing on dialogue Mang, . ions will be, both in terms of how much to

agement issues, and so we use a semantic represen-_, -
tation for both the input and outout of th N combine into a single action, and how specific each
ation for bo e input and output of the system, ... o4 pe.

The system can ask the user the value of parame-) _ .
ter p with ‘askconstrainty’, and the user will an- State Variables: RL learns what system action to

swer with ‘constrairp v', wherew is the user's pre- perform in each state. The RL states are defined in
' terms of a set of state variables: different values for
the variables define the different states that can exist.

2 Flight Information Application

system askconstraint from

user constrain from niam The state variables need to include all information
system askconstraint to that the dialogue designer thinks will be relevant in
user constrain to sacramento determining what action to perform next. Any infor-
system askconstraint departure
user constrain departure 6pm mation that is thought to be irrelevant is excluded in
system dbquery niani sacrenento - 6pm order to keep the search space small.
system askconstraint airline - . .
user constrain airline united Trangtions. RL treats a dialogue as a succession
system dbquery miani sacrenento united ... of states, with actions causing a transition from one
system askrel ax departure state to the next. The transition thus encompasses
user rel ax departure yes .
system dbquery niam sacremento united ... the effect of the system making the speech act,
system output {918 11671 13288} _—]] .
system finish In contrast to Levin, over-answering by the user is not al-
. . . lowed. The system also does not have a general greeting, to
Figure 1: Sample dialogue which the user can answer with any of the flight parameters.

269

the user’s response to the system’s speech act, amger, so that RL can decide when it should be per-
the system’s understanding of the user’'s responsiermed. There is also an output and a finish action.
Hence, the transition incorporatesiser simulation State Variables: We use the following variables
In applying RL to dialogue policies, the transitionfor the RL state. The variable ‘fromP’ indicates
from a state-action pair to the next state is usuallwhether the origin has been given by the user and
modeled as a probability distribution, and is not furthe variable ‘fromR’ indicates whether the user has
ther decomposed (e.g. Levin et al., 2000). been asked if the origin can be relaxed, and if so,
Palicy Exploration: RL searches the space of po-what the answer is. Similar variables are used for the
lices by determining) for each state-action pas& other parameters. The variable ‘dbqueried’ indicates
a, which is the minimal cost to get to the final statevhether the database has been queried. The variable
from states starting with actioru. From the@ val- ‘current’ indicates whether no new parameters have
ues, a policy can be determined: for each state been given or relaxed since the last database query.
choose the action that has the maximur value. The variable ‘NData’ indicates the number of items

Q is determined in an iterative fashion. The curthat were last returned from the database quantized
rent estimates fof) for each state-action are used tanto 5 groups: none, 1-5, 6-12, 13-30, more than 30).
determine the current dialogue policy. The policy;The variable ‘outputP’ indicates whether any flights
in conjunction with the transition probabilities, arehave been given to the user. Note that the actual val-
used to produce a dialogue run, which is a sequences of the parameters are not included in the state.
of state-action pairs, each pair having an associatdhis helps limit the size of the search space, but pre-
cost to get to the next state-action pair. Thus, for eludes the values of the parameters from being used
dialogue run, the cost from each state-action pair i deciding what action to perform next.
the final state can be determined. These costs aB®st Function: Our cost function is the sum of
used to revise th€) estimates. four components. Each speech action has a cost of

To produce a dialogue run, thegreedy method 1. A database query has a cost of 2 plus 0.01 for each
is often used. In this approach, with probability flight found. Displaying flights to the user costs 0O for
an action other than the action specified by the cug or fewer flights, 8 for 12 or fewer flights, 16 for 30
rent policy is chosen. This helps ensure that newr fewer flights, and 25 for 30 or more flights. The
estimates are obtained for all state-action pairs, nist cost is the solution cost. This cost takes into ac-
just ones in the current policy. Typically, a numbercount whether the user’s preferred flight is even in
of dialogue runs, amepoch are made before th@ the database, and if so, whether it was shown to the
values and dialogue policy are updated. With eactiser. The solution cost is zero if appropriate infor-
successive epoch, a better dialogue policy is useghation is given to the user, and 90 points otherwise.
and thus thé&) estimates will approach their true val-)
ues, which in turn, ensures that the dialogue policy-2 Related Work in RL
is approaching the optimal one. In the work of Levin, Pieraccini, and Eckert (2000),

))) RL was used to choose between all actions. Actions

31 Flight Information Task in RL that resulted in infelicitous speech act sequences
Toillustrate how RL learns a dialogue policy, we usavere allowed, such as asking the value of a parame-
the flight information task from Section 2. ter that is already known, asking if a parameter can
Actions. The system actions were given in Sectiorbe relaxed when the value of the parameter is not
2. The queries for the destination, origin, airline, deeven known, or displaying values when a database
parture time, number of stops are each viewed as dijuery has not yet been performed.
ferent actions so that RL can reason about the indi- In other work, RL has been used to choose among
vidual parameters. There are also 5 separate quergessubset of the actions in certain states (Walker,
for checking whether each parameter can be relaxe2000; Singh et al., 2002; Scheffler and Young, 2002;
There is also a database query to determine whidinglish and Heeman, 2005). However, no for-
flights match the current parameters. This is inmal framework is given to specify which actions to
cluded as an RL action, even though it is not to thehoose from.

270

Furthermore, none of the approaches used a fasay next and whether it will keep the turn.
mal specification for updating the RL variables afteControl Strategy: The control strategy specifies
a speech action, nor for expressing the user simulaow the update rules should be processed. In our ex-
tion. As RL is applied to more complex tasks, withample, the control strategy specifies that the under-
more complex speech actions, this will lead to diffistanding rules are processed first, and then the action
culty in encoding the correct behavior. rules if the system has the turn. The control strategy
Georgila, Henderson, and Lemon (2005) advoalso specifies which rules should be applied: (a) just
cated the use of IS to specify the dialogue contexhe first applicable rule, (b) all applicable rules, or
for learning user simulations needed in RL. How{c) randomly choose one of the applicable rules.
ever, they did not combine hand-crafted with learned Although there is a toolkit available for building
preconditions, and it is unclear whether they used I8 systems (Larsson and Traum, 2000), we built a

to update the dialogue context, simple version in Tcl. Update rules are written using
) Tcl code, which allows for simple interpretation of
4 Information State (1) the rules. The state is saved as Tcl variables, and

IS has been concerned with capturing how to upt_hus allows strings, numbers, booleans, and lists.

date the state of a dialogue system in order to build1 Flight Information Examplein IS

advanced dialogue systems (Larsson and Trau S . .
2000). For example, it has been used to build Sygle now express the flight information system with

tems that allow for both system and user initiative he IS approach. This allows for a precise formaliza-

.) 4 : tion of the actions, both the conditions under which
over answering, confirmations, and grounding (e.qhey should be performed and their effects.

(Bohiin et al., 1999; Matheson et al., 2000)). It USES The IS state variables are similar to the RL ones
a set of state variables, whose values are manipu-

lated by undate rules. run by a control strate given in Section 3. Instead of the variable ‘fromP’,
y up ’ y 9y it includes the variable ‘from’, which has the actual

State Variables: The state variables specify theyajye of the parameter if known, and * otherwise.
knowledge of the system at any point in the diaThe same is true for the destination, airline, depar-
logue. This is similar to the RL variables, except thafyre time, and number of stops. Instead of the RL
they must contain everything that is needed to cOMyyriaple ‘NData’ and ‘outputP, ‘results’ holds the
pletely specify the action that the system should pectyal database and ‘output’ holds the actual flights
form, rather than just enough information to choosgigpjayed to the user.

between competing actions. A number of stan- gigure 2 displays the system’s understanding
dard variables are typically used to interface to othg{es, which are used to update the state variables
modules in the system. The variable ‘lastMove’ hagfter an utterance is said. Although it is common
the semantic representation of what was last said, jractice in IS to use understanding rules even for
ther by the user or the system and ‘lastSpeaker” ifsne's own utterances, the example application is
dicates who spoke the last utterance. Both are reagimple enough to do without this. Understanding
only. The variable ‘nextMove’ is set by the actionyjes are thus only used for understanding the user’s
rules to the semantic representation of the next Mo\gterances: giving a parameter value or specifying
and ‘keepTurn’ is set to indicate whether the currenyhether a parameter can be relaxed. As can be seen,
speaker will keep the turn to make another utterancgpy time the user specifies a new parameter or re-
Update Rules. Update rules have preconditionslaxes a parameter, ‘current’ is set to false.

and effects. The preconditions specify what must Figure 3 gives the action rules for the system.
be true of the state in order to apply the rule. The eRules for querying the destination, departure, and
fects specify how the state should be updated. In thimumber of stops are not shown; neither are the rules
paper, we will use two types of rules. Understandfor querying whether the destination, origin, airline,
ing rules will be used to update the state to take intand number of stops can be relaxed. The effects of
account what was just said, by both the user and thibe rules show how the state is updated if the rule
system. Action rules determine what the system wiiks applied. For most of the rules, this is simply to

271

set ‘nextMove’ and ‘keepTurn’ appropriately. Thequeried. Furthermore, the system may only output
‘dbquery’ action is more complicated: it runs thedata if (a) the number of flights is between 1 and
database query and updates ‘results’. It then updatdsor (b) the number of flights is greater than 5 and
the variables ‘queriedDB’, and ‘current’ appropri-‘airline’ and ‘stops’ have both been asked. These
ately. Note that the actions ‘dbquery’ and ‘output’preconditions are labeled as ‘ps’ in Fig. 3.

specify that the system wants to keep the turn. Basdine. The last group of preconditions (to-

The preconditions of the update rules specify thgether with the previous preconditions) uniquely

exact conditions under which the rule can be angentify a single action to perform in each state, and
plied. The preconditions on the understanding rules

are straightforward, and simply check the user’s r

sponse. The preconditions on the action rules aré?g:oré?r'grﬁf:'::"gm <
more complex. We divide the preconditions into the $output ==" app
4 groups given below, both to simplify the discusyEff: set nextMove "askconstraint from”
. fth diti db hase set keepTurn false
sion o t e precon itions, and because we use thesgairfine of Fiight
groupings in Section 7. Pre: $airline ==" sg
) . $output == " app
Speech Acts: _ _Some of the. precondltlpns cap- $departure 1= d
ture the conditions under which the action can be $queriedDB == true bade
performed felicitously (Cohen and Perrault, 1979; $current == true base
[llength $results}> 5 base
Allen and Perrault, 1980). Only ask the value Ofgf set nextMove “askconstraint to”
a parameter if you do not know its value. Only as set keepTurn false
if a parameter can be relaxed if you know the valu eéi‘_wggt:;rﬁﬁzaf_“{fe“me can be Relaxed &
of the parameter. Only output the data if it is still ~ ggeparturer == * s
current and more than one flight was found. These $output!=" app
preconditions are labeled as ‘sa’ in Fig. 3. $queriedDB == true bage
$current == true base
Application Restrictions: These preconditions $results =={} base
enforce the specification of the application. FopEf: SetnextMove ‘askrelax from
o set keepTurn false
our application, the system should only output dateguery the Database
once: once data is output, the system should en@re: Scurrent == false sa
the conversation. These preconditions are labeled iggg’;ﬁl}; o app
as ‘app’ in Fig. 3. Eff: set results [DBQuery $from $to $airline ...]
; . " . set queriedDB true
Ffarnal Stra'Fegy. These preconditions add addi- set current true
tion constraints that seem reasonable: ask the ‘t@’, set nextMove dbquery
‘from’, and ‘departure’ parameters first; never rela set keepTurn true
the ‘to’ and ‘from’”; and only ask whether ‘airline’ | QUtPUt Resultsto User
' y Pre: S$current == true a
and ‘stops’ can be relaxed if the database has been $results I={} sa
$output ==" app|
[llength $resultsk 6 || ([llength $results}> 5 ps
Understand Answer to Constrain Question && $airline =" && $stops =)
Pre: [lindex $lastMove 0] == “constrain” Eff. set nextMove “output $results”
Eff: set[lindex LastMove 1] [lindex LastMove 2] set output $results
set current O Finish
Understand Yes Answer to Relax Pre: $output I=" app
Pre: [lindex lastMove 0] == “relax” Eff: set nextMove finish
[lindex lastMove 2] == “yes” Quit
Eff. set[lindex lastMove 1]R yes Pre: S$output==" apy
set current 0 $current == true app
Understand No Answer to Relax $results =={} app
Pre: [lindex lastMove 0] == “relax” $airline =" || $airlineR =" base
[lindex lastMove 2] == “no” $stops =" || $stopsR =" base
Eff: set[lindex lastMove 1]R no Eff: set nextMove finish

Figure 2: Understanding Rules for System

272

Figure 3: Action Rules for System

thus completely specifies a strategy. These are [ginswer Constrain Question

. - . . | Pre: [lindex $lastMove 0] == “askconstraint”
beled as ‘base’ in Fig. 3. The strategy that we giVEssf. set nextMove “constraint [lindex $lastmove 1]
is based on the optimal strategy found by Levin gt [set [lindex $lastmove 1]]”

al. (2000). After the system asks the values for the __SethaveTum 0
. v s . , . . Answer Relax Question
from’, ‘to’, and ‘departure’ variables, it then per- | pre: [iindex $lastMove 0] == “askrelax”
forms a database query. If there are between 1 andli5f: set nextMove “relax [lindex $lastmove 1]
flights found, they are displayed to the user. If therg o [seTt ["”%ex $lastMove 1]R]

han 5, the system asks the value of ‘air- et e :
a_tre,more t ’))) Figure 4: Action Rules for User
line” if unknown, otherwise, ‘number of stops’. If

there are 0 items, it tries to relax one of ‘departure’,

‘airline’, and ‘stops’, in that order (but not from’ to which the user needs to react, namely, ‘askcon-

or ‘to’). Any time new information is gained, such traint’ and ‘askrelax’. This domain is simple enough

as a parameter value or a parameter is relaxed, thgyt we do not need separate understanding and ac-

database is requeried, and the process repeats. tion rules, and so we encompass all reasoning in the

action rules, shown in Fig. 4. The first rule is for

5 Implementing the Simulated User answering system queries about the value of a pa-

Normally, with IS, the system is run against an aLc[ameter. The second is for answering queries about
. whether a parameter can be relaxed.

tual user, and so no state variables nor update rules

are coded for the user. To allow the combination of

IS with RL, we need to produce dialogues betweeR Combining IS and RL

the system and a simulated user. As the IS approach _ _
is very general, we will use it for implementing theRL 9ives away to learn the best action to perform in

simulated user as well. In this way, we can code th@"y given state. However, RL lacks a formal frame-
user simulation with a well-defined formalism, thusVork for specifying () the effects of the system’s
allowing complex user behaviors. Hence, two sep&ctions, (b) hand-crafted preconditions of the sys-
rate IS instantiations will be used: one for the systerf£M’S actions, and (c) the simulated user. Hence, we
and one for the user. The system’s rules will updatg®mPine RL and IS to rectify these deficits. IS up-
the system’s state variables, and the user's rules wilpte rules are formulated for both the system and the

update the user's state variables; but the two instafilTulated user, as done in Section 5.1. The precon-
tiations will be in lock-step with each other. ditions on the system’s action rules, however, only

We built a simulator that runs the system’s rule&1€€d t0 specify a subset of the preconditions, ones

against the user's. The simulator (a) runs the undeiat are obvious the dialogue designer. The rest of

standing rules for the system and the user on the 145 Preconditions will be determined by RL, so as to
utterance; then (b) checks who has the turn, and ruf§NiMize & cost function. To combine these two ap-
that agent's action rules; and then (c) updates ‘last8roaches, we need to (a) resolve how the IS and RL

peaker’ and ‘lastMove'. It repeats these three step°§ate transitions relate to each other; (b) resolve how
until the “finish’ speech act is seen. the IS state relates to the RL state; and (c) specify

how utterance costs can be specified in the general
5.1 Flight Information Task framework of IS.

The user has the variables ‘from’, ‘to’, ‘departure’, Transitions:. When using IS for both the system
‘airline’, and ‘stops’, which hold the user’s ideal and user simulation, the state transitions for each
flight, and are set before the dialogue begins. Thare happening in lock-step (Section 5.1). In com-
variables ‘fromR’, ‘toR’, ‘departureR’, ‘airlineR’, bining RL and IS, the RL transitions happen at a
and ‘stopsR’ are also used, and are also set befateurser granularity than the IS transitions, and group
the dialogue begins. No other variables are used. together everything that happens between two suc-

For the flight application, separate update rulesessive system actions. Thus, the RL states are those
are used for the user. There are two types of queri¢S states just before a system action.

273

State Variables: For the system, we add all of the7 Evaluation
RL variables to the IS variables, and remove any du-
plicates. The RL variables are thus a subset of theLI;%)

variables. Some of the variables might be S|mpI|f|caf- . . i
: . . our different sets of action schemes. The first set,
tions of other variables. For our flight example, we . I,

none’, includes no preconditions on any of the sys-

have the exact values of the origin, destination, air- | .
. . tem’s actions. The second through fourth sets cor-
line, departure time, and number of stops, as well as - o R

S o respond to the precondition distinctions in Fig. 3, of
a simplification of each that only indicates whether

. speech act’, ‘application’ and ‘partial strategy’.
the parameter has been given or not.)) .
, For each set of action schemas, we trained 30 di-
Rather than have the system’s IS rules updat

all of the variables, we allow variables to be deg‘“ﬁogue policies using an epoch size of 100. Each di-

) L . N alogue was run with the-greedy method, with set
clared as eithgprimitive or derived® Only primitive g g y

variables are updated by the effects of the updataet 0.15. After certain epochs, we ran the learned pol-

rules. The derived variables are re-computed fro Iy 2500 times strictly according to the policy. We

N . ' "% und that policies did not always converge. Hence,
the primitive ones each time an update rule is ap-

.)) [h licies f h f iti
plied. For our flight example, the variables ‘fromP’ we trained the policies for each set of preconditions

. 'for enough epochs so that the average cost no longer
‘toP’, ‘airlineP’, ‘departureP’, ‘stopsP’, ‘outputP’, gh ep 9 9

i . improved. More work is needed to investigate this
and ‘NData’ are derived variables, and these are up- P g

dated via a procedure ISsue.
i ' The results of the simulations are given in Table

As the RL variables are a subset of the IS varly The first row reports the average dialogue cost
ables, the RL states are coarser than .t_he IS_ Stal@3.t the 30 learned policies achieved. We see that all
We do not a]low hand-cr_aft_ed precondltlo_ns In e, conditions achieved an average cost less than
syst_em’s action _rules to distinguish at the_flner 98N paseline strategy of Fig. 3, whichwas 17.17. The
ularity. If they did, we would have an action that iyt res it was achieved by the ‘application’ precon-
only applicable in part of an RL state, and not th%itions. This is probably because ‘partial’ included

rest of it. However, RL needs to find a single aCloNyme constraints that were not optimal, while the

that will work for the entire RL state, and so thatsearch strategy was not adequate to deal with the

action should not be considered. T_o' prevent squrge search space in ‘speech acts’ and ‘none’.
problems, the hand-crafted precondltlons can only The more important result is in the second row
test the valu_es of the RL variables, and not the fu'(!)f Table 1. The more constrained precondition sets
S?F of I_S vanable;. Hence, we rewrote the PreéCONasult in significantly fewer states being explored,
d|t|9ns in the_ actlon_ rL_JIes of Fig. 3 to use the R anging from 275 for the ‘partial’ preconditions, up
variables. This re_strlctlon does not apply to the SYS0 18,206 for no preconditions. In terms of number
tem's understand!ng rules, nor to the user rules, E?)‘cfpotential policies explored (computed as the prod-
those are not subject to RL. uct of the number of actions explored in each state),
Cost Function: RL needs to track the costs in-this ranges fromi0°® to 107931, As can be seen, by
curred in the dialogue. Rather than leaving this tplacing restrictions on the system actions, the space
be specified in an ad-hoc way, we include state varthat needs to be explored is substantially reduced.
ables to track the components of the cost. This way, The restriction in the size of the search space af-
each update rule can set them to reflect the cost tects how quickly RL takes to find a good solution.
the rule. Just as with other interface variables (e.gzigure 5 shows how the average cost for each set of
‘keepTurn’), these are write-only. For our flight ex-

ample, the output action computes the cost of dis None| SA| App.| Partial

playing flights to the user, and the database query Dialogue Cost | 16.65| 16.95| 15.24| 15.68
tion computes the cost of doing the database lookupg4tes Explored 18206| 5261| 4080 275

Policies {og,o) | 7931| 2008| 1380| 58.7

show the usefulness of starting RL with some of
e preconditions hand-crafted, we applied RL using

2This same distinction is sometimes used in the plannin
literature (Poole et al., 1998).

Table 1: Comparison of Preconditions
274

60 T T T T T
| None
55 \ Speech Acts ——----- 1

database or ask for another parameter. RL solves

ol Applicaion | this issue as it can explore the_ space of d_ifferent poli-
45 | LA cies 'Fo arrive at one that minimizes a dialogue cost
ol function.

35 '

0 References

25
J. Allen and C. Perrault. 1980. Analyzing intention in

utterancesArtificial Intelligence 15:143-178.

N 0 100 900 0000 P~ Bohlin, R. Cooper, E. Engdahl, and S. Larsson. 1999.

; . ; Information states and dialogue move engine< o
Figure 5: Average dialogue cost versus epochs ceedings of the IJCAIl Workshop: Knowledge and Rea-
soning in Practical Dialogue Systenysgy. 25-31.

20 p

15

preconditions improved with the number of epochs.
P. Cohen and C. Perrault. 1979. Elements of a plan-based

AS can b_e seen', .b'y |nclud|r.1g more pr.econdltlons theory of speech actsCognitive Scienge3(3):177—
in the action definitions, RL is able to find a good 212,

§0Iutlon more quickly. - For the_ partial’ precondi- M. English and P. Heeman. 2005. Learning mixed ini-
tions, after 10 epochs, RL achieves a cost less thanijative dialog strategies by using reinforcement learn-
17.0. For the ‘application’ setting, this does not hap- ing on both conversants. LT and EMNLP pages
pen until 40 epochs. For ‘speech act’, it takes 1000 1011-1018, Vancouver Canada, October.

epochs, and for ‘none’, it takes 3700 epochs. Sg. Georgila, J. Henderson, and O. Lemon. 2005. Learn-
adding hand-crafted preconditions allows RL to con- ing user simulations for information state update dia-

verge more quickly. logue systems. IEurospeechLisbon Portugal.
S. Larsson and D. Traum. 2000. Information state and di-
8 Conclusion alogue managementin the TRINDI dialogue move en-
gine toolkit. Natural Language Engineering:323—

In this paper, we demonstrated how RL and IS can 340.
be combined. From the RL standpoint, this allows. Levin, R. Pieraccini, and W. Eckert. 2000. A stochas-
the rich formalism of IS update rules to be used for 2_0 ImOd?l (if h_Umf‘é‘éEaTChi”e intt_eractions‘:‘or Iez;rniné;
. ; _ dialog strategies. ransactions on Speech an
fprmahzmg the effec_t§ of the systems speech ac- A Ldio Processingd(1):11-23.
tions, and for formalizing the user simulation, thus .
enabling RL to be applied to domains that requir&- Matheson, M. Poesio, and D. Traum. 2000. Mod-
comolex dialoaue processing. Second. use of IS al- elling grounding and discourse obligations using up-
P } guep - g. o date rules. INAACL Seattle, May.

lows obvious preconditions to be easily formulated Poole. A Mackworth. and R. Goebel. 1998:

- . Poole, A. Mackworth, and R. Goebel. om-
thl:_s _a”OW|E9 EL to;earf:h a much smaller Spa_cil pu;atioqal Intelligence: a logical approachOxford
policies, which enables it to converge more quickly yniversity Press.

to the optimal policy. This should also enable RL tOK. Scheffler and S. J. Young. 2002. Automatic learning

be applied to complex domains with large numbers of dialogue strategy using dialogue simulation and re-
of states and actions. inforcement learning. kLT, pg. 12-18, San Diego.
From the Star.](;IpOInt of IS, use of RL means thaé. Singh, D. Litman, M. Kearns, and M. Walker. 2002.
not all preconditions need be hand-crafted. Pre- optimizing dialogue managment with reinforcement
conditions that capture how one action might be learning: Experiments with the NJfun systerdour-
more beneficial than another can be difficult to deter- nal of Artificial Intelligence Researci6:105-133.
mine for dialogue designers. For example, knowin@. Sutton and A. Barto. 199&Reinforcement Learning
whether to first ask the number of stops or the air- MIT Press, Cambridge MA.
line, depends on the characteristics of the flights if. walker. 2000. An application of reinforcement learn-
the database, and on users’ relative flexibility with ing to dialog strategy selection in a spoken dialogue
. . . . search 12:387-416.
for knowing under which situations to requery the

275

