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Abstract

Standard pairwise coreference resolution
systems are subject to errors resulting
from their performing anaphora identifi-
cation as an implicit part of coreference
resolution. In this paper, we propose
an integer linear programming (ILP) for-
mulation for coreference resolution which
models anaphoricity and coreference as a
joint task, such that each local model in-
forms the other for the final assignments.
This joint ILP formulation providesf -
score improvements of 3.7-5.3% over a
base coreference classifier on the ACE
datasets.

1 Introduction

The task of coreference resolution involves impos-
ing a partition on a set of entity mentions in a docu-
ment, where each partition corresponds to some en-
tity in an underlying discourse model. Most work
treats coreference resolution as a binary classifica-
tion task in which each decision is made in a pair-
wise fashion, independently of the others (McCarthy
and Lehnert, 1995; Soon et al., 2001; Ng and Cardie,
2002b; Morton, 2000; Kehler et al., 2004).

There are two major drawbacks with most sys-
tems that make pairwise coreference decisions. The
first is that identification of anaphora is doneimplic-
itly as part of the coreference resolution. Two com-
mon types of errors with these systems are cases
where: (i) the system mistakenly identifies an an-
tecedent for non-anaphoric mentions, and (ii) the

system does not try to resolve an actual anaphoric
mention. To reduce such errors, Ng and Cardie
(2002a) and Ng (2004) use ananaphoricityclassi-
fier –which has the sole task of saying whether or
not any antecedents should be identified for each
mention– as a filter for their coreference system.
They achieve higher performance by doing so; how-
ever, their setup uses the two classifiers in a cascade.
This requires careful determination of an anaphoric-
ity threshold in order to not remove too many men-
tions from consideration (Ng, 2004). This sensi-
tivity is unsurprising, given that the tasks are co-
dependent.

The second problem is that most coreference sys-
tems make each decision independently of previous
ones in a greedy fashion (McCallum and Wellner,
2004). Clearly, the determination of membership of
a particular mention into a partition should be condi-
tioned on how well it matches the entity as a whole.
Since independence between decisions is an unwar-
ranted assumption for the task, models that consider
a more global context are likely to be more appropri-
ate. Recent work has examined such models; Luo et
al. (2004) using Bell trees, and McCallum and Well-
ner (2004) using conditional random fields, and Ng
(2005) using rerankers.

In this paper, we propose to recast the task of
coreference resolution as an optimization problem,
namely an integer linear programming (ILP) prob-
lem. This framework has several properties that
make it highly suitable for addressing the two afore-
mentioned problems. The first is that it can uti-
lize existing classifiers; ILP performs global infer-
ence based on their output rather than formulating a
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new inference procedure for solving the basic task.
Second, the ILP approach supports inference over
multiple classifiers, without having to fiddle with
special parameterization. Third, it is much more
efficient than conditional random fields, especially
when long-distance features are utilized (Roth and
Yih, 2005). Finally, it is straightforward to create
categorical global constraints with ILP; this is done
in a declarative manner using inequalities on the as-
signments to indicator variables.

This paper focuses on the first problem, and
proposes to model anaphoricity determination and
coreference resolution as a joint task, wherein the
decisions made by each locally trained model are
mutually constrained. The presentation of the ILP
model proceeds in two steps. In the first, interme-
diary step, we simply use ILP to find a global as-
signment based on decisions made by the corefer-
ence classifier alone. The resulting assignment is
one that maximally agrees with the decisions of the
classifier, that is, whereall and only the links pre-
dicted to be coreferential are used for constructing
the chains. This is in contrast with the usual clus-
tering algorithms, in which auniqueantecedent is
typically picked for each anaphor (e.g., the most
probable or the most recent). The second step pro-
vides the joint formulation: the coreference classi-
fier is now combined with an anaphoricity classifier
and constraints are added to ensure that the ultimate
coreference and anaphoricity decisions are mutually
consistent. Both of these formulations achieve sig-
nificant performance gains over the base classifier.
Specifically, the joint model achievesf -score im-
provements of 3.7-5.3% on three datasets.

We begin by presenting the basic coreference
classifier and anaphoricity classifier and their per-
formance, including an upperbound that shows the
limitation of using them in a cascade. We then give
the details of our ILP formulations and evaluate their
performance with respect to each other and the base
classifier.

2 Base models: coreference classifier

The classification approach tackles coreference
in two steps by: (i) estimating the probability,
PC(COREF|〈i, j〉), of having a coreferential out-
come given a pair of mentions〈i, j〉, and (ii) apply-

ing a selection algorithm that will single out a unique
candidate out of the subset of candidatesi for which
the probabilityPC(COREF|〈i, j〉) reaches a particu-
lar value (typically .5).

We use a maximum entropy model for the coref-
erence classifier. Such models are well-suited for
coreference, because they are able to handle many
different, potentially overlapping learning features
without making independence assumptions. Previ-
ous work on coreference using maximum entropy
includes (Kehler, 1997; Morton, 1999; Morton,
2000). The model is defined in a standard fashion
as follows:

PC(COREF|〈i, j〉) =
exp(

n∑
k=1

λkfk(〈i, j〉, COREF))

Z(〈i, j〉)
(1)

Z(〈i, j〉) is a normalization factor over both out-
comes (COREF and ¬COREF). Model parameters
are estimated using maximum entropy (Berger et al.,
1996). Specifically, we estimate parameters with
the limited memory variable metric algorithm imple-
mented in the Toolkit for Advanced Discriminative
Modeling1 (Malouf, 2002). We use a Gaussian prior
with a variance of 1000 — no attempt was made to
optimize this value.

Training instances for the coreference classifier
are constructed based on pairs of mentions of the
form 〈i, j〉, wherej and i are the descriptions for
an anaphor and one of its candidate antecedents, re-
spectively. Each such pair is assigned either a label
COREF(i.e. a positive instance) or a label¬COREF

(i.e. a negative instance) depending on whether or
not the two mentions corefer. In generating the train-
ing data, we followed the method of (Soon et al.,
2001) creating for each anaphor: (i) apositive in-
stancefor the pair〈i, j〉 wherei is the closest an-
tecedent forj, and (ii) anegative instancefor each
pair 〈i, k〉 wherek intervenes betweeni andj.

Once trained, the classifier is used to create a set
of coreferential links for each test document; these
links in turn define a partition over the entire set of
mentions. In the system of Soon et. al. (2001) sys-
tem, this is done by pairing each mentionj with each
preceding mentioni. Each test instance〈i, j〉 thus

1Available fromtadm.sf.net .
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formed is then evaluated by the classifier, which re-
turns a probability representing the likelihood that
these two mentions are coreferential. Soon et. al.
(2001) use “Closest-First” selection: that is, the pro-
cess terminates as soon as an antecedent (i.e., a test
instance with probability> .5) is found or the be-
ginning of the text is reached. Another option is to
pick the antecedent with the best overall probability
(Ng and Cardie, 2002b).

Our features for the coreference classifier fall into
three main categories: (i) features of the anaphor, (ii)
features of antecedent mention, and (iii) relational
features (i.e., features that describe properties which
hold between the two mentions, e.g. distance). This
feature set is similar (though not equivalent) to that
used by Ng and Cardie (2002a). We omit details
here for the sake of brevity — the ILP systems we
employ here could be equally well applied to many
different base classifiers using many different fea-
ture sets.

3 Base models: anaphoricity classifier

As mentioned in the introduction, coreference clas-
sifiers such as that presented in section 2 suf-
fer from errors in which (a) they assign an an-
tecedent to a non-anaphor mention or (b) they as-
sign no antecedents to an anaphoric mention. Ng
and Cardie (2002a) suggest overcoming such fail-
ings by augmenting their coreference classifier with
an anaphoricity classifier which acts as a filter dur-
ing model usage. Only the mentions that are deemed
anaphoric are considered for coreference resolu-
tion. Interestingly, they find a degredation in per-
formance. In particular, they obtain significant im-
provements in precision, but with larger losses in
recall (especially for proper names and common
nouns). To counteract this, they addad hoccon-
straints based on string matching and extended men-
tion matching which force certain mentions to be
resolved as anaphors regardless of the anaphoric-
ity classifier. This allows them to improve overall
f -scores by 1-3%. Ng (2004) obtainsf -score im-
provements of 2.8-4.5% by tuning the anaphoricity
threshold on held-out data.

The task for the anaphoricity determination com-
ponent is the following: one wants to decide for each
mentioni in a document whetheri is anaphoric or

not. That is, this task can be performed using a sim-
ple binary classifier with two outcomes:ANAPH and
¬ANAPH. The classifier estimates the conditional
probabilitiesP (ANAPH|i) and predictsANAPH for i
whenP (ANAPH|i) > .5.

We use the following model for our anaphoricity
classifier:

PA(ANAPH|i) =
exp(

n∑
k=1

λkfk(i, ANAPH))

Z(i)
(2)

This model is trained in the same manner as the
coreference classifier, also with a Gaussian prior
with a variance of 1000.

The features used for the anaphoricity classifier
are quite simple. They include information regard-
ing (1) the mention itself, such as the number of
words and whether it is a pronoun, and (2) properties
of the potential antecedent set, such as the number of
preceding mentions and whether there is a previous
mention with a matching string.

4 Base model results

This section provides the performance of the pair-
wise coreference classifier, both when used alone
(COREF-PAIRWISE) and when used in a cascade
where the anaphoricity classifier acts as a filter on
which mentions should be resolved (AC-CASCADE).
In both systems, antecedents are determined in the
manner described in section 2.

To demonstrate the inherent limitations of cas-
cading, we also give results for an oracle sys-
tem,ORACLE-LINK , which assumesperfect linkage.
That is, it always picks the correct antecedent for
an anaphor. Its only errors are due to being un-
able to resolve mentions which were marked as non-
anaphoric (by the imperfect anaphoricity classifier)
when in fact they were anaphoric.

We evaluate these systems on the datasets from
the ACE corpus (Phase 2). This corpus is di-
vided into three parts, each corresponding to a dif-
ferent genre: newspaper texts (NPAPER), newswire
texts (NWIRE), and broadcasted news transcripts
(BNEWS). Each of these is split into atrain
part and adevtest part. Progress during the de-
velopment phase was determined by using cross-
validation on only the training set for theNPAPER
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System BNEWS NPAPER NWIRE

R P F R P F R P F
COREF-PAIRWISE 54.4 77.4 63.9 58.1 80.7 67.6 53.8 78.2 63.8
AC-CASCADE 51.1 79.7 62.3 53.7 79.0 63.9 53.0 81.8 64.3
ORACLE-LINK 69.4 100 82.0 71.2 100 83.1 66.7 100 80.0

Table 1: Recall (R), precision (P), andf -score (F) on the three ACE datasets for the basic coreference system
(COREF-PAIRWISE), the anaphoricity-coreference cascade system (AC-CASCADE), and the oracle which
performs perfect linkage (ORACLE-LINK ). The first two systems make strictly local pairwise coreference
decisions.

section. No human-annotated linguistic information
is used in the input. The corpus text was prepro-
cessed with the OpenNLP Toolkit2 (i.e., a sentence
detector, a tokenizer, a POS tagger, and a Named
Entity Recognizer).

In our experiments, we consider only thetrue
ACE mentions. This is because our focus is on eval-
uating pairwise local approaches versus the global
ILP approach rather than on building a full coref-
erence resolution system. It is worth noting that
previous work tends to be vague in both these re-
spects: details on mention filtering or providing
performance figures for markable identification are
rarely given.

Following common practice, results are given in
terms of recall and precision according to the stan-
dard model-theoretic metric (Vilain et al., 1995).
This method operates by comparing the equivalence
classes defined by the resolutions produced by the
system with the gold standard classes: these are the
two “models”. Roughly, the scores are obtained by
determining the minimal perturbations brought to
one model in order to map it onto the other model.
Recall is computed by trying to map the predicted
chains onto the true chains, while precision is com-
puted the other way around. We test significant dif-
ferences with pairedt-tests (p < .05).

The anaphoricity classifier has an average accu-
racy of 80.2% on the three ACE datasets (using a
threshold of.5). This score is slightly lower than
the scores reported by Ng and Cardie (2002a) for
another data set (MUC).

Table 1 summarizes the results, in terms of recall
(R), precision (P), andf -score (F) on the three ACE
data sets. As can be seen, theAC-CASCADE system

2Available fromopennlp.sf.net .

generally provides slightly better precision at the ex-
pense of recall than theCOREF-PAIRWISE system,
but the performance varies across the three datasets.
The source of this variance is likely due to the fact
that we applied a uniform anaphoricity threshold
of .5 across all datasets; Ng (2004) optimizes this
threshold for each of the datasets: .3 forBNEWS

and NWIRE and .35 forNPAPER. This variance re-
inforces our argument for determining anaphoricity
and coreference jointly.

The limitations of the cascade approach are also
shown by the oracle results. Even if we had a sys-
tem that can pick the correct antecedents for all truly
anaphoric mentions, it would have a maximum re-
call of roughly 70% for the different datasets.

5 Integer programming formulations

The results in the previous section demonstrate the
limitations of a cascading approach for determin-
ing anaphoricity and coreference with separate mod-
els. The other thing to note is that the results in
general provide a lot of room for improvement —
this is true for other state-of-the-art systems as well.
The integer programming formulation we provide
here has qualities which address both of these is-
sues. In particular, we define two objective func-
tions for coreference resolution to be optimized with
ILP. The first uses only information from the coref-
erence classifier (COREF-ILP) and the second inte-
grates both anaphoricity and coreference in a joint
formulation (JOINT-ILP). Our problem formulation
and use of ILP are based on both (Roth and Yih,
2004) and (Barzilay and Lapata, 2006).

For solving the ILP problem, we uselp solve,
an open-source linear programming solver which
implements the simplex and the Branch-and-Bound
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methods.3 In practice, each test document is pro-
cessed to define a distinct ILP problem that is then
submitted to the solver.

5.1 COREF-ILP : coreference-only formulation

Barzilay and Lapata (2006) use ILP for the problem
of aggregation in natural language generation: clus-
tering sets of propositions together to create more
concise texts. They cast it as a set partitioning prob-
lem. This is very much like coreference, where
each partition corresponds to an entity in a discourse
model.

COREF-ILP uses an objective function that is
based ononly the coreference classifier and the
probabilities it produces. Given that the classifier
produces probabilitiespC = PC(COREF|i, j), the
assignment cost of commiting to a coreference link
is cC

〈i,j〉 = −log(pC). A complement assignment

costcC
〈i,j〉 = −log(1−pC) is associated with choos-

ing not to establish a link. In what follows,M de-
notes the set of mentions in the document, andP the
set of possible coreference links over these mentions
(i.e., P = {〈i, j〉|〈i, j〉 ∈ M × M andi < j}). Fi-
nally, we use indicator variablesx〈i,j〉 that are set to
1 if mentionsi andj are coreferent, and0 otherwise.
The objective function takes the following form:

min
∑

〈i,j〉∈P

cC
〈i,j〉 · x〈i,j〉 + cC

〈i,j〉 · (1− x〈i,j〉) (3)

subject to:

x〈i,j〉 ∈ {0, 1} ∀〈i, j〉 ∈ P (4)

This is essentially identical to Barzilay and Lapata’s
objective function, except that we consider only
pairs in which thei precedes thej (due to the struc-
ture of the problem). Also, we minimize rather than
maximize due to the fact we transform the model
probabilities with−log (like Roth and Yih (2004)).

This preliminary objective function merely guar-
antees that ILP will find a global assignment that
maximally agrees with the decisions made by the
coreference classifier. Concretely, this amounts to
taking all (and only) those links for which the classi-
fier returns a probability above.5. This formulation
does not yet take advantage of information from a
classifier that specializes in anaphoricity; this is the
subject of the next section.

3Available fromhttp://lpsolve.sourceforge.net/ .

5.2 JOINT -ILP : joint anaphoricity-coreference
formulation

Roth and Yih (2004) use ILP to deal with the joint
inference problem of named entity and relation iden-
tification. This requires labeling a set of named enti-
ties in a text with labels such aspersonand loca-
tion, and identifying relations between them such
asspouseof andwork for. In theory, each of these
tasks would likely benefit from utilizing the infor-
mation produced by the other, but if done as a cas-
cade will be subject to propogation of errors. Roth
and Yih thus set this up as problem in which each
task is performed separately; their output is used to
assign costs associated with indicator variables in an
objective function, which is then minimized subject
to constraints that relate the two kinds of outputs.
These constraints express qualities of what a global
assignment of values for these tasks must respect,
such as the fact that the arguments to thespouseof
relation must be entities withpersonlabels. Impor-
tantly, the ILP objective function encodes not only
the best label produced by each classifier for each
decision; it utilizes the probabilities (or scores) as-
signed to each label and attempts to find a global
optimum (subject to the constraints).

The parallels to our anaphoricity/coreference sce-
nario are straightforward. The anaphoricity problem
is like the problem of identifying the type of entity
(where the labels are nowANAPH and¬ANAPH),
and the coreference problem is like that of determin-
ing the relations between mentions (where the labels
are nowCOREFor¬COREF).

Based on these parallels, theJOINT-ILP system
brings the two decisions of anaphoricity and corefer-
ence together by including both in a single objective
function and including constraints that ensure the
consistencyof a solution for both tasks. LetcA

j and
cA
j be defined analogously to the coreference clas-

sifier costs forpA = PA(ANAPH|j), the probability
the anaphoricity classifier assigns to a mentionj be-
ing anaphoric. Also, we have indicator variablesyj

that are set to 1 if mentionj is anaphoric and 0 oth-
erwise. The objective function takes the following
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form:

min
∑

〈i,j〉∈P

cC
〈i,j〉 · x〈i,j〉 + cC

〈i,j〉 · (1−x〈i,j〉)

+
∑
j∈M

cA
j · yj + cA

j · (1−yj) (5)

subject to:

x〈i,j〉 ∈ {0, 1} ∀〈i, j〉 ∈ P (6)

yj ∈ {0, 1} ∀j ∈ M (7)

The structure of this objective function is very sim-
ilar to Roth and Yih’s, except that we do not uti-
lize constraint costs in the objective function itself.
Roth and Yih use these to make certain combina-
tions impossible (like alocationbeing an argument
to a spouseof relation); we enforce such effects in
the constraint equations instead.

The joint objective function (5) does not constrain
the assignment of thex〈i,j〉 andyj variables to be
consistent with one another. To enforce consistency,
we add further constraints. In what follows,Mj is
the set of all mentions preceding mentionj in the
document.
Resolve only anaphors: if a pair of mentions〈i, j〉
is coreferent (x〈i,j〉=1), then mentionj must be
anaphoric (yj=1).

x〈i,j〉 ≤ yj ∀〈i, j〉 ∈ P (8)

Resolve anaphors: if a mention is anaphoric
(yj=1), it mustbe coreferent with at least one an-
tecedent.

yj ≤
∑
i∈Mj

x〈i,j〉 ∀j ∈ M (9)

Do not resolve non-anaphors: if a mention is non-
anaphoric (yj=0), it should have no antecedents.

yj ≥
1

|Mj |
∑
i∈Mj

x〈i,j〉 ∀j ∈ M (10)

These constraints thus directly relate the two
tasks. By formulating the problem this way, the de-
cisions of the anaphoricity classifier are not taken
on faith as they were withAC-CASCADE. Instead,
we optimize over consideration of both possibilities
in the objective function (relative to the probability
output by the classifier) while ensuring that the final
assignments respect the signifance of what it is to be
anaphoric or non-anaphoric.

6 Joint Results

Table 2 summarizes the results for these different
systems. Both ILP systems are significantly better
than the baseline systemCOREF-PAIRWISE. Despite
having lower precision thanCOREF-PAIRWISE, the
COREF-ILP system obtains very large gains in recall
to end up with overallf -score gains of 4.3%, 4.2%,
and 3.0% acrossBNEWS, NPAPER, andNWIRE, re-
spectively. The fundamental reason for the increase
in recall and drop in precision is thatCOREF-ILP can
posit multiple antecedents for each mention. This
is an extra degree of freedom that allowsCOREF-
ILP to cast a wider net, with a consequent risk of
capturing incorrect antecedents. Precision is not
completely degraded because the optimization per-
formed by ILP utilizes the pairwise probabilities of
mention pairs as weights in the objective function
to make its assignments. Thus, highly improbable
links are still heavily penalized and are not chosen
as coreferential.

The JOINT-ILP system demonstrates the benefit
ILP’s ability to support joint task formulations. It
produces significantly betterf -scores by regaining
some of the ground on precision lost byCOREF-
ILP. The most likely source of the improved pre-
cision of JOINT-ILP is that weights corresponding
to the anaphoricity probabilities and constraints (8)
and (10) reduce the number of occurrences of non-
anaphors being assigned antecedents. There are also
improvements in recall overCOREF-ILP for NPAPER

andNWIRE. A possible source of this difference is
constraint (9), which ensures that mentions which
are considered anaphoric must have at least one an-
tecedent.

Compared toCOREF-PAIRWISE, JOINT-ILP dra-
matically improves recall with relatively small
losses in precision, providing overallf -score gains
of 5.3%, 4.9%, and 3.7% on the three datasets.

7 Related Work

As was just demonstrated, ILP provides a principled
way to model dependencies between anaphoricity
decisions and coreference decisions. In a simi-
lar manner, this framework could also be used to
capture dependencies among coreference decisions
themselves. This option —which we will leave for
future work— would make such an approach akin to
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System BNEWS NPAPER NWIRE

R P F R P F R P F
COREF-PAIRWISE 54.4 77.4 63.9 58.1 80.7 67.6 53.8 78.2 63.8
COREF-ILP 62.2 75.5 68.2 67.1 77.3 71.8 60.1 74.8 66.8
JOINT-ILP 62.1 78.0 69.2 68.0 77.6 72.5 60.8 75.8 67.5

Table 2: Recall (R), precision (P), andf -score (F) on the three ACE datasets for the basic coreference system
(COREF-PAIRWISE), the coreference only ILP system (COREF-ILP), and the joint anaphoricity-coreference
ILP system (JOINT-ILP). All f -score differences are significant (p < .05).

a number of recent global approaches.

Luo et al. (2004) use Bell trees to represent the
search space of the coreference resolution problem
(where each leaf is possible partition). The prob-
lem is thus recast as that of finding the “best” path
through the tree. Given the rapidly growing size of
Bell trees, Luo et al. resort to a beam search al-
gorithm and various pruning strategies, potentially
resulting in picking a non-optimal solution. The re-
sults provided by Luo et al. are difficult to compare
with ours, since they use a different evaluation met-
ric.

Another global approach to coreference is the
application of Conditional Random Fields (CRFs)
(McCallum and Wellner, 2004). Although both are
global approaches, CRFs and ILP have important
differences. ILP uses separate local classifiers which
are learned without knowledge of the output con-
straints and are then integrated into a larger infer-
ence task. CRFs estimate a global model that di-
rectly uses the constraints of the domain. This in-
volves heavy computations which cause CRFs to
generally be slow and inefficient (even using dy-
namic programming). Again, the results presented
in McCallum and Wellner (2004) are hard to com-
pare with our own results. They only consider
proper names, and they only tackled the task of
identifying the correct antecedent only for mentions
which have a true antecedent.

A third global approach is offered by Ng (2005),
who proposes a global reranking over partitions gen-
erated by different coreference systems. This ap-
proach proceeds by first generating 54 candidate
partitions, which are each generated by a differ-
ent system. These different coreference systems
are obtained as combinations over three different
learners (C4.5, Ripper, and Maxent), three sam-

pling methods, two feature sets (Soon et al., 2001;
Ng and Cardie, 2002b), and three clustering al-
gorithms (Best-First, Closest-First, and aggressive-
merge). The features used by the reranker are of
two types: (i) partition-basedfeatures which are
here simple functions of the local features, and (ii)
method-basedfeatures which simply identify the
coreference system used for generating the given
partition. Although this approach leads to significant
gains on the both the MUC and the ACE datasets,
it has some weaknesses. Most importantly, the dif-
ferent systems employed for generating the different
partitions are all instances of the local classification
approach, and they all use very similar features. This
renders them likely to make the same types of errors.

The ILP approach could in fact be integrated with
these other approaches, potentially realizing the ad-
vantages of multiple global systems, with ILP con-
ducting their interactions.

8 Conclusions

We have provided two ILP formulations for resolv-
ing coreference and demonstrated their superiority
to a pairwise classifier that makes its coreference as-
signments greedily.

In particular, we have also shown that ILP pro-
vides a natural means to express the use of both
anaphoricity classification and coreference classifi-
cation in a single system, and that doing so provides
even further performance improvements, specifi-
cally f -score improvements of 5.3%, 4.9%, and
3.7% over the base coreference classifier on the ACE
datasets.

With ILP, it is not necessary to carefully control
the anaphoricity threshold. This is in stark contrast
to systems which use the anaphoricity classifier as a
filter for the coreference classifier in a cascade setup.
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The ILP objective function incorporates the proba-
bilities produced by both classifiers as weights on
variables that indicate the ILP assignments for those
tasks. The indicator variables associated with those
assignments allow several constraints between the
tasks to be straightforwardly stated to ensure consis-
tency to the assignments. We thus achieve large im-
provements with a simple formulation and no fuss.
ILP solutions are also obtained very quickly for the
objective functions and constraints we use.

In future work, we will explore the use of global
constraints, similar to those used by (Barzilay and
Lapata, 2006) to improve both precision and recall.
For example, we expect transitivity constraints over
coreference pairs, as well as constraints on the en-
tire partition (e.g., the number of entities in the doc-
ument), to help considerably. We will also consider
linguistic constraints (e.g., restrictions on pronouns)
in order to improve precision.
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