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Abstract system does not try to resolve an actual anaphoric
o _ mention. To reduce such errors, Ng and Cardie
Standard pairwise coreference resolut_lon (2002a) and Ng (2004) use amaphoricityclassi-
systems are subject to errors resulting  fier _\hich has the sole task of saying whether or
from their performing anaphora identifi- not any antecedents should be identified for each
cation as an implicit part of coreference  mention— as a filter for their coreference system.
resolution. In this paper, we propose  They achieve higher performance by doing so; how-
an integer linear programming (ILP) for- ever, their setup uses the two classifiers in a cascade.
mulation for coreference resolution which g requires careful determination of an anaphoric-
models anaphoricity and coreference as a iy threshold in order to not remove too many men-
joint task, such that each local model in- ions from consideration (Ng, 2004). This sensi-

forms the other for the final assignments. ity is unsurprising, given that the tasks are co-
This joint ILP formulation providesf- dependent.

score improvements of 3.7-5.3% over a .
o The second problem is that most coreference sys-
base coreference classifier on the ACE L .
datasets. tems make each deC|s!on independently of previous
ones in a greedy fashion (McCallum and Wellner,
_ 2004). Clearly, the determination of membership of
1 Introduction a particular mention into a partition should be condi-
The task of coreference resolution involves impostioned on how well it matches the entity as a whole.
ing a partition on a set of entity mentions in a docuSince independence between decisions is an unwar-
ment, where each partition corresponds to some efanted assumption for the task, models that consider
tity in an underlying discourse model. Most worka more global context are likely to be more appropri-
treats coreference resolution as a binary classificate. Recent work has examined such models; Luo et
tion task in which each decision is made in a pair@l- (2004) using Bell trees, and McCallum and Well-
wise fashion, independently of the others (McCarthj?€r (2004) using conditional random fields, and Ng
and Lehnert, 1995; Soon et al., 2001; Ng and Cardié2005) using rerankers.
2002b; Morton, 2000; Kehler et al., 2004). In this paper, we propose to recast the task of
There are two major drawbacks with most syseoreference resolution as an optimization problem,
tems that make pairwise coreference decisions. Tiiamely an integer linear programming (ILP) prob-
firstis that identification of anaphora is dongplic- lem. This framework has several properties that
itly as part of the coreference resolution. Two commake it highly suitable for addressing the two afore-
mon types of errors with these systems are casesentioned problems. The first is that it can uti-
where: (i) the system mistakenly identifies an anlize existing classifiers; ILP performs global infer-
tecedent for non-anaphoric mentions, and (ii) thence based on their output rather than formulating a
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new inference procedure for solving the basic taskng a selection algorithm that will single out a unique
Second, the ILP approach supports inference oveandidate out of the subset of candidatés which
multiple classifiers, without having to fiddle with the probabilityP~(CORER(3, j)) reaches a particu-
special parameterization. Third, it is much mordar value (typically .5).
efficient than conditional random fields, especially We use a maximum entropy model for the coref-
when long-distance features are utilized (Roth andrence classifier. Such models are well-suited for
Yih, 2005). Finally, it is straightforward to create coreference, because they are able to handle many
categorical global constraints with ILP; this is dondifferent, potentially overlapping learning features
in a declarative manner using inequalities on the asvithout making independence assumptions. Previ-
signments to indicator variables. ous work on coreference using maximum entropy
This paper focuses on the first problem, anéhcludes (Kehler, 1997; Morton, 1999; Morton,
proposes to model anaphoricity determination ang000). The model is defined in a standard fashion
coreference resolution as a joint task, wherein thas follows:
decisions made by each locally trained model are

mutually constrained. The presentation of the ILP exp( > e frx({(i,7), CORER)
model proceeds in two steps. In the first, intermePr (CORER (i, j)) = —~=" —

diary step, we simply use ILP to find a global as- Z((i,))
signment based on decisions made by the corefer- (1)

ence classifier alone. The resulting assignment
one that maximally agrees with the decisions of thgomes COREF and —CORER. Model parameters

classifier, that is, wherall and onlythe links pre- are estimated using maximum entropy (Berger et al.,

:jr:ctecrj] t? be _(Fﬁ.refergntlal ?re tUS?t?] i(;r constrlucltm 996). Specifically, we estimate parameters with
€ chains. This IS in contrast wi € usual ClUSsq jimited memory variable metric algorithm imple-
tering algorithms, in which ainiqgueantecedent is

. . mented in the Toolkit for Advanced Discriminative
typically picked for each anaphor (e.g.,

the mOSM : . :
odeling" (Malouf, 2002). We use a Gaussian prior
probable or the most recent). The second step pre; g ( ) P

ides the ioint f lation: th ¢ |assi jith a variance of 1000 — no attempt was made to
vides the joint formulation: the coreference Cass"optimize this value.

fier is now cpmbined with an anaphoricity Classi.fier Training instances for the coreference classifier
and constraints are added to ensure that the ultim ® constructed based on pairs of mentions of the

coreference and anaphoricity decisions are mutual Yrm (i, ), wherej andi are the descriptions for

consistent. Both of these formulations achieve si :n anaphor and one of its candidate antecedents, re-

nifica_n.t performa.n(_:e gains over _the base CI&.ISSiﬁegpectively. Each such pair is assigned either a label
Specifically, the joint model achievesscore im- COREF(i.e. a positive instance) or a labeCOREF

- )
provement.s of 3.7-5.3% 9” three datgsets. (i.e. a negative instance) depending on whether or
We begin by presenting the basic coreferency e two mentions corefer. In generating the train-
classifier and anaphoricity classifier and their peri-ng data, we followed the method of (Soon et al.

formance, including an upperbound that shows thsn1) creating for each anaphor: (i)pasitive in-
limitation of using them in a cascade. We then 9iveyancefor the pair (i, j) wherei is the closest an-
the details of our ILP formulations and evaluate theif, .o qent forj, and (ii) anegative instancéor each

performance with respect to each other and the baﬁﬁir (i, k)
classifier. ’

§(<i,j)) is a normalization factor over both out-

wherek intervenes betweeinand;.

Once trained, the classifier is used to create a set
. of coreferential links for each test document; these
2 Base models: coreference classifier links in turn define a partition over the entire set of

The classification approach tackles coreferencrgem'ons' In the system of Soon et. al. (2001) sys-

o s by ) simang e sty TSI P
Pc(COREH(i, 7)), of having a coreferential out- P 9 ' »J

come given a pair of mentions, j), and (ii) apply- !Available fromtadm.sf.net
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formed is then evaluated by the classifier, which reaot. That is, this task can be performed using a sim-
turns a probability representing the likelihood thaple binary classifier with two outcomesNAPH and
these two mentions are coreferential. Soon et. ahANAPH. The classifier estimates the conditional
(2001) use “Closest-First” selection: that is, the proprobabilitiesP(ANAPH|i) and predictANAPH for 4
cess terminates as soon as an antecedent (i.e., a tesen P(ANAPH[i) > .5.

instance with probability> .5) is found or the be- ~ We use the following model for our anaphoricity
ginning of the text is reached. Another option is taclassifier:

pick the antecedent with the best overall probability

(Ng and Cardie, 2002b). exp( > Ak fr(i, ANAPH))
Our features for the coreference classifier fall into  p, (aNAPH|i) = k=1 . (2)
three main categories: (i) features of the anaphor, (ii) (i)

features of antecedent mention, and (jii) relationa+hiS model is trained in the same manner as the

features (i.e., features that describe properties Whi%’%reference classifier, also with a Gaussian prior

hold between the two mentions, e.g. distance). Thﬁith a variance of 1000

feature set is similar (though not equivalent) to that The features used for the anaphoricity classifier

used by Ng and Cardie (2002a). We omit deta”%re quite simple. They include information regard-

here for the sake of brevity — the ILP §ystems Werng (1) the mention itself, such as the number of
employ here could be equaII_y well apph_ed 0 ManY,ords and whetheritis a pronoun, and (2) properties
different base classifiers using many different feac')f the potential antecedent set, such as the number of
ture sets. preceding mentions and whether there is a previous

.. . mention with a matching string.
3 Base models: anaphoricity classifier

. . . ) 4 Base model results
As mentioned in the introduction, coreference clas-

sifiers such as that presented in section 2 sufhis section provides the performance of the pair-
fer from errors in which (a) they assign an anwise coreference classifier, both when used alone
tecedent to a non-anaphor mention or (b) they agecoOREFPAIRWISE) and when used in a cascade
sign no antecedents to an anaphoric mention. Nghere the anaphoricity classifier acts as a filter on
and Cardie (2002a) suggest overcoming such faiwvhich mentions should be resolvest{-CASCADE).
ings by augmenting their coreference classifier witln both systems, antecedents are determined in the
an anaphoricity classifier which acts as a filter dummanner described in section 2.
ing model usage. Only the mentions that are deemedTo demonstrate the inherent limitations of cas-
anaphoric are considered for coreference resolgading, we also give results for an oracle sys-
tion. Interestingly, they find a degredation in pertem,ORACLE-LINK , which assumegerfect linkage
formance. In particular, they obtain significant im-That is, it always picks the correct antecedent for
provements in precision, but with larger losses imn anaphor. Its only errors are due to being un-
recall (especially for proper names and commoable to resolve mentions which were marked as non-
nouns). To counteract this, they add hoccon- anaphoric (by the imperfect anaphoricity classifier)
straints based on string matching and extended mewhen in fact they were anaphoric.
tion matching which force certain mentions to be We evaluate these systems on the datasets from
resolved as anaphors regardless of the anaphoritbe ACE corpus (Phase 2). This corpus is di-
ity classifier. This allows them to improve overallvided into three parts, each corresponding to a dif-
f-scores by 1-3%. Ng (2004) obtairfsscore im- ferent genre: newspaper textsPAPER), newswire
provements of 2.8-4.5% by tuning the anaphoricityexts (\wIRE), and broadcasted news transcripts
threshold on held-out data. (BNEWS). Each of these is split into &ain

The task for the anaphoricity determination compart and adevtest part. Progress during the de-
ponent is the following: one wants to decide for eackelopment phase was determined by using cross-
mentioni in a document whetheris anaphoric or validation on only the training set for thePAPER
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System BNEWS NPAPER NWIRE

R P F R P F R P F
COREFPAIRWISE 544 77.4 63.9 58.1 80.7 67.6 53.8 78.2 63.8
AC-CASCADE 51.1 79.7 623 53.7 79.0 63.9 53.0 81.8 64.3
ORACLE-LINK 69.4 100 82.0 71.2 100 83.1 66.7 100 80.0

Table 1: Recall (R), precision (P), aifescore (F) on the three ACE datasets for the basic coreference system
(COREFPAIRWISE), the anaphoricity-coreference cascade systeoi@ASCADE), and the oracle which
performs perfect linkageoRACLE-LINK). The first two systems make strictly local pairwise coreference
decisions.

section. No human-annotated linguistic informatiorgenerally provides slightly better precision at the ex-
is used in the input. The corpus text was preprgeense of recall than theOREFPAIRWISE system,
cessed with the OpenNLP Toolkifi.e., a sentence but the performance varies across the three datasets.
detector, a tokenizer, a POS tagger, and a Namddhe source of this variance is likely due to the fact
Entity Recognizer). that we applied a uniform anaphoricity threshold
In our experiments, we consider only tihie of .5 across all datasets; Ng (2004) optimizes this
ACE mentions. This is because our focus is on evathreshold for each of the datasets: .3 BENEWS
uating pairwise local approaches versus the globahdNwIRE and .35 forNPAPER This variance re-
ILP approach rather than on building a full coref-inforces our argument for determining anaphoricity
erence resolution system. It is worth noting thaand coreference jointly.
previous work tends to be vague in both these re- The limitations of the cascade approach are also
spects: details on mention filtering or providingshown by the oracle results. Even if we had a sys-
performance figures for markable identification aréem that can pick the correct antecedents for all truly
rarely given. anaphoric mentions, it would have a maximum re-
Following common practice, results are given ircall of roughly 70% for the different datasets.
terms of recall and precision according to the stan-
dard model-theoretic metric (Vilain et al., 1995).5 Integer programming formulations

This method operates by comparing the equivalence _ _ .
classes defined by the resolutions produced by tHde results in the previous section demonstrate the

system with the gold standard classes: these are #if@itations of a cascading approach for determin-
two “models”. Roughly, the scores are obtained bjd anaphoricity and coreference with separate mod-
determining the minimal perturbations brought t$!S- The other thing to note is that the results in
one model in order to map it onto the other model@€neral provide a lot of room for improvement —
Recall is computed by trying to map the predicteé]h's is true for other state-of-the-art systems as well.
chains onto the true chains, while precision is coml N€ integer programming formulation we provide
puted the other way around. We test significant dif?€ré has qualities which address both of these is-
ferences with paire¢itests < .05). sues. In particular, we define two objective func-
The anaphoricity classifier has an average accljons for coreference resolution to be optimized with
racy of 80.2% on the three ACE datasets (using P. The first_qses only information from the c_oref-
threshold of.5). This score is slightly lower than €"€Nce classifierdorREFILP) and the second inte-

the scores reported by Ng and Cardie (2002a) iSyrates both anaphoricity and coreference in a joint
another data set (MUC). formulation §OINT-ILP). Our problem formulation

Table 1 summarizes the results, in terms of recaﬂﬂOI use of ILP are based on both (Roth and Yih,

(R), precision (P), and-score (F) on the three ACE 2004) and (Barzilay and Lapata, 2006).

data sets. As can be seen, @ CASCADEsystem  FOf solving the ILP problem, we usig_solve, -
an open-source linear programming solver which

2Available fromopennlp.sf.net . implements the simplex and the Branch-and-Bound
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methods® In practice, each test document is pro5.2 JOINT-ILP: joint anaphoricity-coreference
cessed to define a distinct ILP problem that is then  formulation
submitted to the solver.

5.1 COREF-ILP: coreference-only formulation

Barzilay and Lapata (2006) use ILP for the problenfR0th @nd Yih (2004) use ILP to deal with the joint
of aggregation in natural language generation: clud2ference problem of named entity and relation iden-
tering sets of propositions together to create mortéflca_tlon. This requires labeling a set of named enti-
concise texts. They cast it as a set partitioning proBi€s in a text with labels such gersonandloca-
lem. This is very much like coreference, wherdion, and identifying relations between them such

each partition corresponds to an entity in a discourses SPouseof andwork for. In theory, each of these
model. tasks would likely benefit from utilizing the infor-

COREFILP uses an objective function that ismation produced by the other, but if done as a cas-

based ononly the coreference classifier and thef@de Will be subject to propogation of errors. Roth
probabilities it produces. Given that the classifieRNd Yih thus set this up as problem in which each
produces probabilitiepc = P (COREHi, j), the task is performed separately; their output is used to
assignment cost of commiting to a coreference linRSsign costs associated with indicator variables in an

is C<Ci‘j> = —log(pc). A complement assignment objective fgnction, which is then minimized subject
g . . , to constraints that relate the two kinds of outputs.
costcy. ., = —log(1—pc) is associated with choos- . "
(.5) These constraints express qualities of what a global

ing not to establish a link. In what follows\/ de- :
. ; assignment of values for these tasks must respect,
notes the set of mentions in the document, &rttie
such as the fact that the arguments to gheuseof

set of possible coreference links over these mentio?glation must be entities withersonlabels, Impor-
(.e., P = {(i,§)|(i,j) € M x M andi < j}). Fi- - Imp

S : tantly, the ILP objective function encodes not onl
nally, we use indicator variables; ; that are set to Y: ) y

1 if mentions: andj are coreferent, anglotherwise. the best label produced by each classifier for each

- . . decision; it utilizes the probabilities (or scores) as-
The objective function takes the following form: . ’ .
) g signed to each label and attempts to find a global

min > ey @+ (1—255) (3)  optimum (subject to the constraints).

(i,j)eP
subject to: The parallels to our anaphoricity/coreference sce-
. nario are straightforward. The anaphoricity problem
L (i,5) S {07 1} v<7'7.7> ep (4)

is like the problem of identifying the type of entity
This is essentially identical to Barzilay and Lapata’fwhere the labels are noWNAPH and —ANAPH),
objective function, except that we consider onlyand the coreference problem is like that of determin-
pairs in which the precedes thg (due to the struc- ing the relations between mentions (where the labels
ture of the problem). Also, we minimize rather tharare nowCOREFOr ~CORER.
maximize due to the fact we transform the model
probabilities with—log (like Roth and Yih (2004)).  Based on these parallels, theINT-ILP system
This preliminary objective function merely guar-prings the two decisions of anaphoricity and corefer-
antees that ILP will find a global assignment thagnce together by including both in a single objective
maximally agrees with the decisions made by thgnction and including constraints that ensure the
coreference classifier. Concretely, this amounts ignsistencyf a solution for both tasks. Le%ft and
taking all (and only) those links for which the classi4 pe defined analogously to the coreference clas-
fier returns a probability abové. This formulation sjifier costs fops = P4(ANAPH]), the probability
does not yet take advantage of information from g, anaphoricity classifier assigns to a menjidre-
classifier that specializes in anaphoricity; this is thqang anaphoric. Also, we have indicator variablgs
subject of the next section. that are set to 1 if mentiopis anaphoric and 0 oth-
3Available fromhttp://Ipsolve.sourceforge.net/ .erwise. The objective function takes the following
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form: 6 Joint Results

min Z Cg7j> "L, —‘l_égJ) (1= ) Table 2 summarizes the results for these different
(i,j)EP systems. Both ILP systems are significantly better
+ Z c;-‘ Cy; EJA - (1—y;) (5) thap the baseline SYStEDDREFPAIRWISE. Despite
jent having lower precision thaosOREFPAIRWISE, the
subiect to: COREFILP system obtains very large gains in recall
) ’ to end up with overallf-score gains of 4.3%, 4.2%,
x5 € 10,1} V(i,j) € P (6) and 3.0% acrosBNEWS, NPAPER andNWIRE, re-
y; € {0,1} VieM (7) spectively. The fundamental reason for the increase

in recall and drop in precision is thabREFILP can

_ o posit multiple antecedents for each mention. This
llar to Roth and Yih's, except that we do not uti-ig 5 extra degree of freedom that allowsrREF
lize constraint costs in the objective function itself,, 5 15 cast a wider net, with a consequent risk of

Roth and Yih use these to make certain combings, e ring incorrect antecedents. Precision is not
tions impossible (like docationbeing an argument ., hjetely degraded because the optimization per-
to aspouseof relation); we enforce such effects informeq by ILP utilizes the pairwise probabilities of
the constraint equations instead. _mention pairs as weights in the objective function
The joint objective function (5) does not constrain, make its assignments. Thus, highly improbable

the assignment of the; ;) andy; variables to be |inis are still heavily penalized and are not chosen
consistent with one another. To enforce consistencys coreferential.

we add further constraints. In what follow’/; is
the set of all mentions preceding mentigrnn the
document.

Resolve only anaphorsif a pair of mentions(, j)
is coreferent £, ;,=1), then mention;j must be
anaphoric{;=1).

The structure of this objective function is very sim-

The JOINT-ILP system demonstrates the benefit
ILP’s ability to support joint task formulations. It
produces significantly bettef-scores by regaining
some of the ground on precision lost IBYpREF
ILP. The most likely source of the improved pre-
cision of JOINT-ILP is that weights corresponding
Tigy < Y V{i,j) € P (8) to the anaphoricity probabilities and constraints (8)
. . . . and (10) reduce the number of occurrences of non-
Resolve anaphors if a mention is anaphoric . .

: ) anaphors being assigned antecedents. There are also
(y;=1), it mustbe coreferent with at least one an'improvements in recall overOREFILP for NPAPER

tecedent. andNWIRE. A possible source of this difference is
Yj < Z T j) VjieM (9) constraint (9), which ensures that mentions which
ieM; are considered anaphoric must have at least one an-
Do not resolve non-anaphorsif a mention is non- t€cedent.
anaphoric ¢;=0), it should have no antecedents. C_ompargd ICOREFPAIRWISE, JOINT-ILP dra-
matically improves recall with relatively small
y; > ML Z T ) VieM (10) losses in precision, providing overgltscore gains
M1 & of 5.3%, 4.9%, and 3.7% on the three datasets.

These constrair_lts thus directly relate the We  Related Work
tasks. By formulating the problem this way, the de-
cisions of the anaphoricity classifier are not takes was just demonstrated, ILP provides a principled
on faith as they were witlhCc-CASCADE. Instead, way to model dependencies between anaphoricity
we optimize over consideration of both possibilitieslecisions and coreference decisions. In a simi-
in the objective function (relative to the probabilitylar manner, this framework could also be used to
output by the classifier) while ensuring that the finatapture dependencies among coreference decisions
assignments respect the signifance of what it is to themselves. This option —which we will leave for
anaphoric or non-anaphoric. future work— would make such an approach akin to
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System BNEWS NPAPER NWIRE

R P F R P F R P F
COREFPAIRWISE 544 774 63.9 58.1 80.7 67.6 53.8 78.2 63.8
COREFILP 62.2 755 68.2 67.1 77.3 71.8 60.1 74.8 66.8
JOINT-ILP 62.1 78.0 69.2 68.0 776 725 60.8 75.8 675

Table 2: Recall (R), precision (P), aifescore (F) on the three ACE datasets for the basic coreference system
(COREFPAIRWISE), the coreference only ILP systemm@REFILP), and the joint anaphoricity-coreference
ILP system §oINT-ILP). All f-score differences are significapt{ .05).

a number of recent global approaches. pling methods, two feature sets (Soon et al., 2001;

Luo et al. (2004) use Bell trees to represent thBlg and Cardie, 2002b), and three clustering al-
search space of the coreference resolution proble@Qrithms (Best-First, Closest-First, and aggressive-
(where each leaf is possible partition). The probMerge). The features used by the reranker are of
lem is thus recast as that of finding the “best” patfiwo types: (i) partition-basedfeatures which are
through the tree. Given the rapidly growing size of'€re simple functions of the local features, and (ii)
Bell trees, Luo et al. resort to a beam search aléthod-basedeatures which simply identify the
gorithm and various pruning strategies, potentialloreference system used for generating the given
resulting in picking a non-optimal solution. The re-partition. Although this approach leads to significant
sults provided by Luo et al. are difficult to compared@ins on the both the MUC and the ACE datasets,

with ours, since they use a different evaluation metl has some weaknesses. Most importantly, the dif-
ric. ferent systems employed for generating the different

gartitions are all instances of the local classification

Another global approach to coreference is tha roach, and they all use very similar features. This
application of Conditional Random Fields (CRFs) bp ’ Y y '

(McCallum and Wellner, 2004). Although both arerenders them likely to make_ the samgtypes oferrprs.
global approaches, CRFs and ILP have important The ILP approach could in fact be integrated with

differences. ILP uses separate local classifiers whiéﬂese other approaches, potentially realizing the ad-

are learned without knowledge of the output Con\_/an:t[ggetshof ml:ltlplei_global systems, with ILP con-
straints and are then integrated into a larger infefluC Ing theirinteractions.
ence task. CRFs estimate a global model that dé— Conclusions

rectly uses the constraints of the domain. This in-
volves heavy computations which cause CRFs t@/e have provided two ILP formulations for resolv-
generally be slow and inefficient (even using dying coreference and demonstrated their superiority
namic programming). Again, the results presenteg a pairwise classifier that makes its coreference as-
in McCallum and Wellner (2004) are hard to com-signments greedily.
pare with our own results. They only consider |n particular, we have also shown that ILP pro-
proper names, and they only tackled the task Gfides a natural means to express the use of both
identifying the correct antecedent only for mentiongnaphoricity classification and coreference classifi-
which have a true antecedent. cation in a single system, and that doing so provides
A third global approach is offered by Ng (2005),even further performance improvements, specifi-
who proposes a global reranking over partitions gergally f-score improvements of 5.3%, 4.9%, and
erated by different coreference systems. This a-7% over the base coreference classifier on the ACE
proach proceeds by first generating 54 candidatiatasets.
partitions, which are each generated by a differ- With ILP, it is not necessary to carefully control
ent system. These different coreference systentise anaphoricity threshold. This is in stark contrast
are obtained as combinations over three differentd systems which use the anaphoricity classifier as a
learners (C4.5, Ripper, and Maxent), three saniilter for the coreference classifier in a cascade setup.
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The ILP objective function incorporates the probaRobert Malouf. 2002. A comparison of algorithms
bilities produced by both classifiers as weights on for maximum entropy parameter estimation. Rro-
variables that indicate the ILP assignments for those fig(:ﬁ?r?; S;;ges igfgg’v%'i(sgfﬂgcvynat”ral Language
tasks. The indicator variables associated with those ’ ' '

assignments allow several constraints between tedrew McCallum and Ben Wellner. 2004. Conditional
tasks to be straightforwardly stated to ensure consis- Mdels of identity uncertainty with application to noun
tency to the assignments. We thus achieve large im- coreference. liProceedings of NIPS

provements with a simple formulation and no fussloseph F. McCarthy and Wendy G. Lehnert. 1995. Using
ILP solutions are also obtained very quickly for the decision trees for coreference resolution.Pioceed-
objective functions and constraints we use. ings of JCA| pages 1050-1055.

In future work, we will explore the use of global Thomas Morton. 1999. Using coreference for ques-
constraints, similar to those used by (Barzilay and tion answering. IrProceedings of ACL Workshop on
Lapata, 2006) to improve both precision and recall, Coreference and lts Applications
For example, we expect transitivity constraints oveThomas Morton. 2000. Coreference for NLP applica-
coreference pairs, as well as constraints on the en-tions. InProceedings of ACLHong Kong.

tire partition (e.g., the number of entities in the dOCVincent Ng and Claire Cardie. 2002a. Identifying

ument), to help considerably. We will also consider anaphoric and non-anaphoric noun phrases to improve
linguistic constraints (e.g., restrictions on pronouns) coreference resolution. Broceedings of COLING

in order to improve precision. Vincent Ng and Claire Cardie. 2002b. Improving ma-

chine learning approaches to coreference resolution.
Acknowledgments In Proceedings of ACLpages 104-111.

We would like to thank Ray Mooney, Rohit Kate’Vir_lcent Ng. 2004. Learning noun phrase ar_1aph0ricity to
and the three anonymous reviewers for their com- improve coreference resolution: Issues in representa-

X tion and optimization. IfProceedings of ACL
ments. This work was supported by NSF grant IIS-
0535154. Vincent Ng. 2005. Machine learning for coreference res-
olution: From local classification to global ranking. In
Proceedings of ACL

References Dan Roth and Wen-tau Yih. 2004. A linear programming
formulation for global inference in natural language
Regina Barzilay and Mirella Lapata. 2006. Aggregation tasks. InProceedings of CoNLL
via set partitioning for natural language generation. In
Proceedings of the HLT/NAACpages 359-366, New Dan Roth and Wen-tau Yih. 2005. Integer linear pro-
York, NY. gramming inference for conditional random fields. In
Proceedings of ICMLpages 737-744.

A. Berger, S. Della Pietra, and V. Della Pietra. 1996. A\N
maximum entropy approach to natural language pro-—
cessing.Computational Linguistic22(1):39-71.

Soon, H. Ng, and D. Lim. 2001. A machine learning
approach to coreference resolution of noun phrases.
Computational Linguistic27(4):521-544.

A. Kehler, D. Appelt, L. Taylor, and A. Simma. Marc Vilain, John Burger, John Aberdeen, Dennis Con-
2004. The (non)utility of predicate-argument frequen- nolly, and Lynette Hirschman. 1995. A model-
cies for pronoun interpretation. IRroceedings of  theoretic coreference scoring schemePtceedings
HLT/NAACL, pages 289-296. fo the 6th Message Understanding Conference (MUC-

6), pages 45-52, San Mateo, CA. Morgan Kaufmann.

Andrew Kehler. 1997. Probabilistic coreference in infor-
mation extraction. IrProceedings of EMNLPpages
163-173.

Xiaogiang Luo, Abe lIttycheriah, Hongyan Jing, Nanda
Kambhatla, , and Salim Roukos. 2004. A mention-
synchronous coreference resolution algorithm based
on the Bell tree. IrProceedings of the ACL

243



