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Abstract

This paper explores the use of statisti-

cal machine translation (SMT) methods

for tactical natural language generation.

We present results on using phrase-based

SMT for learning to map meaning repre-

sentations to natural language. Improved

results are obtained by inverting a seman-

tic parser that uses SMT methods to map

sentences into meaning representations.

Finally, we show that hybridizing these

two approaches results in still more accu-

rate generation systems. Automatic and

human evaluation of generated sentences

are presented across two domains and four

languages.

1 Introduction

This paper explores the use of statistical machine

translation (SMT) methods in natural language gen-

eration (NLG), specifically the task of mapping

statements in a formal meaning representation lan-

guage (MRL) into a natural language (NL), i.e. tacti-

cal generation. Given a corpus of NL sentences each

paired with a formal meaning representation (MR),

it is easy to use SMT to construct a tactical gener-

ator, i.e. a statistical model that translates MRL to

NL. However, there has been little, if any, research

on exploiting recent SMT methods for NLG.

In this paper we present results on using a re-

cent phrase-based SMT system, PHARAOH (Koehn

et al., 2003), for NLG.1 Although moderately effec-

1We also tried IBM Model 4/REWRITE (Germann, 2003), a
word-based SMT system, but it gave much worse results.

tive, the inability of PHARAOH to exploit the for-

mal structure and grammar of the MRL limits its ac-

curacy. Unlike natural languages, MRLs typically

have a simple, formal syntax to support effective au-

tomated processing and inference. This MRL struc-

ture can also be used to improve language genera-

tion.

Tactical generation can also be seen as the inverse

of semantic parsing, the task of mapping NL sen-

tences to MRs. In this paper, we show how to “in-

vert” a recent SMT-based semantic parser, WASP

(Wong and Mooney, 2006), in order to produce a

more effective generation system. WASP exploits

the formal syntax of the MRL by learning a trans-

lator (based on a statistical synchronous context-

free grammar) that maps an NL sentence to a lin-

earized parse-tree of its MR rather than to a flat MR

string. In addition to exploiting the formal MRL

grammar, our approach also allows the same learned

grammar to be used for both parsing and genera-

tion, an elegant property that has been widely ad-

vocated (Kay, 1975; Jacobs, 1985; Shieber, 1988).

We present experimental results in two domains pre-

viously used to test WASP’s semantic parsing abil-

ity: mapping NL queries to a formal database query

language, and mapping NL soccer coaching instruc-

tions to a formal robot command language. WASP
−1

is shown to produce a more accurate NL generator

than PHARAOH.

We also show how the idea of generating from

linearized parse-trees rather than flat MRs, used

effectively in WASP
−1, can also be exploited in

PHARAOH. A version of PHARAOH that exploits

this approach is experimentally shown to produce

more accurate generators that are more competi-

tive with WASP
−1’s. Finally, we also show how
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((bowner our {4})

(do our {6} (pos (left (half our)))))

If our player 4 has the ball, then our player 6

should stay in the left side of our half.

(a) CLANG

answer(state(traverse 1(riverid(’ohio’))))

What states does the Ohio run through?

(b) GEOQUERY

Figure 1: Sample meaning representations

aspects of PHARAOH’s phrase-based model can be

used to improve WASP
−1, resulting in a hybrid sys-

tem whose overall performance is the best.

2 MRLs and Test Domains

In this work, we consider input MRs with a hi-

erarchical structure similar to Moore (2002). The

only restriction on the MRL is that it be defined

by an available unambiguous context-free grammar

(CFG), which is true for almost all computer lan-

guages. We also assume that the order in which MR

predicates appear is relevant, i.e. the order can affect

the meaning of the MR. Note that the order in which

predicates appear need not be the same as the word

order of the target NL, and therefore, the content

planner need not know about the target NL grammar

(Shieber, 1993).

To ground our discussion, we consider two ap-

plication domains which were originally used to

demonstrate semantic parsing. The first domain is

ROBOCUP. In the ROBOCUP Coach Competition

(www.robocup.org), teams of agents compete in a

simulated soccer game and receive coach advice

written in a formal language called CLANG (Chen

et al., 2003). The task is to build a system that trans-

lates this formal advice into English. Figure 1(a)

shows a piece of sample advice.

The second domain is GEOQUERY, where a func-

tional, variable-free query language is used for

querying a small database on U.S. geography (Kate

et al., 2005). The task is to translate formal queries

into NL. Figure 1(b) shows a sample query.

3 Generation using SMT Methods

In this section, we show how SMT methods can be

used to construct a tactical generator. This is in con-

trast to existing work that focuses on the use of NLG

in interlingual MT (Whitelock, 1992), in which the

roles of NLG and MT are switched. We first con-

sider using a phrase-based SMT system, PHARAOH,

for NLG. Then we show how to invert an SMT-based

semantic parser, WASP, to produce a more effective

generation system.

3.1 Generation using PHARAOH

PHARAOH (Koehn et al., 2003) is an SMT system

that uses phrases as basic translation units. Dur-

ing decoding, the source sentence is segmented into

a sequence of phrases. These phrases are then re-

ordered and translated into phrases in the target lan-

guage, which are joined together to form the output

sentence. Compared to earlier word-based methods

such as IBM Models (Brown et al., 1993), phrase-

based methods such as PHARAOH are much more

effective in producing idiomatic translations, and

are currently the best performing methods in SMT

(Koehn and Monz, 2006).

To use PHARAOH for NLG, we simply treat the

source MRL as an NL, so that phrases in the MRL

are sequences of MR tokens. Note that the grammat-

icality of MRs is not an issue here, as they are given

as input.

3.2 WASP: The Semantic Parsing Algorithm

Before showing how generation can be performed

by inverting a semantic parser, we present a brief

overview of WASP (Wong and Mooney, 2006), the

SMT-based semantic parser on which this work is

based.

To describe WASP, it is best to start with an ex-

ample. Consider the task of translating the English

sentence in Figure 1(a) into CLANG. To do this,

we may first generate a parse tree of the input sen-

tence. The meaning of the sentence is then ob-

tained by combining the meanings of the phrases.

This process can be formalized using a synchronous

context-free grammar (SCFG), originally developed

as a grammar formalism that combines syntax anal-

ysis and code generation in compilers (Aho and Ull-

man, 1972). It has been used in syntax-based SMT

to model the translation of one NL to another (Chi-

ang, 2005). A derivation for a SCFG gives rise to

multiple isomorphic parse trees. Figure 2 shows a

partial parse of the sample sentence and its corre-
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RULE

If CONDITION

TEAM

our

player UNUM

4

has the ball

...

(a) English

RULE

( CONDITION

(bowner TEAM

our

{ UNUM

4

})

...)

(b) CLANG

Figure 2: Partial parse trees for the CLANG statement and its English gloss shown in Figure 1(a)

sponding CLANG parse from which an MR is con-

structed. Note that the two parse trees are isomor-

phic (ignoring terminals).

Each SCFG rule consists of a non-terminal, X ,

on the left-hand side (LHS), and a pair of strings,

〈α, β〉, on the right-hand side (RHS). The non-

terminals in β are a permutation of the non-terminals

in α (indices are used to show their correspondence).

In WASP, α denotes an NL phrase, and X → β is

a production of the MRL grammar. Below are the

SCFG rules that generate the parses in Figure 2:

RULE → 〈if CONDITION 1 , DIRECTIVE 2 . ,

(CONDITION 1 DIRECTIVE 2 )〉

CONDITION → 〈TEAM 1 player UNUM 2 has the

ball , (bowner TEAM 1 {UNUM 2 })〉

TEAM → 〈our , our〉
UNUM → 〈4 , 4〉

All derivations start with a pair of co-indexed start

symbols of the MRL grammar, 〈S 1 , S 1 〉, and each

step involves the rewriting of a pair of co-indexed

non-terminals (by α and β, respectively). Given an

input sentence, e, the task of semantic parsing is to

find a derivation that yields 〈e, f〉, so that f is an MR

translation of e.

Parsing with WASP requires a set of SCFG rules.

These rules are learned using a word alignment

model, which finds an optimal mapping from words

to MR predicates given a set of training sentences

and their correct MRs. Word alignment models have

been widely used for lexical acquisition in SMT

(Brown et al., 1993; Koehn et al., 2003). To use

a word alignment model in the semantic parsing

scenario, we can treat the MRL simply as an NL,

and MR tokens as words, but this often leads to

poor results. First, not all MR tokens carry spe-

cific meanings. For example, in CLANG, parenthe-

ses and braces are delimiters that are semantically

vacuous. Such tokens can easily confuse the word

alignment model. Second, MR tokens may exhibit

polysemy. For example, the CLANG predicate pt

has three meanings based on the types of arguments

it is given (Chen et al., 2003). Judging from the pt

token alone, the word alignment model would not be

able to identify its exact meaning.

A simple, principled way to avoid these difficul-

ties is to represent an MR using a list of productions

used to generate it. This list is used in lieu of the

MR in a word alignment. Figure 3 shows an exam-

ple. Here the list of productions corresponds to the

top-down, left-most derivation of an MR. For each

MR there is a unique linearized parse-tree, since

the MRL grammar is unambiguous. Note that the

structure of the parse tree is preserved through lin-

earization. This allows us to extract SCFG rules in a

bottom-up manner, assuming the alignment is n-to-1
(each word is linked to at most one production). Ex-

traction starts with productions whose RHS is all ter-

minals, followed by those with non-terminals. (De-

tails can be found in Wong and Mooney (2006).)

The rules extracted from Figure 3 would be almost

the same as those used in Figure 2, except the one for

bowner: CONDITION → 〈TEAM 1 player UNUM 2

has (1) ball, (bowner TEAM 1 {UNUM 2 })〉. The

token (1) denotes a word gap of size 1, due to the un-

aligned word the that comes between has and ball.

It can be seen as a non-terminal that expands to at

most one word, allowing for some flexibility in pat-

tern matching.

In WASP, GIZA++ (Och and Ney, 2003) is used

to obtain the best alignments from the training ex-

amples. Then SCFG rules are extracted from these

alignments. The resulting SCFG, however, can be
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RULE → (CONDITION DIRECTIVE)

TEAM → our

UNUM → 4

If

our

player

4

has

the

ball

CONDITION → (bowner TEAM {UNUM})

Figure 3: Partial word alignment for the CLANG statement and its English gloss shown in Figure 1(a)

ambiguous. Therefore, a maximum-entropy model

that defines the conditional probability of deriva-

tions (d) given an input sentence (e) is used for dis-

ambiguation:

Prλ(d|e) =
1

Zλ(e)
exp

∑

i

λifi(d) (1)

The feature functions, fi, are the number of times

each rule is used in a derivation. Zλ(e) is the

normalizing factor. The model parameters, λi, are

trained using L-BFGS (Nocedal, 1980) to maxi-

mize the conditional log-likelihood of the training

examples (with a Gaussian prior). The decoding

task is thus to find a derivation d
⋆ that maximizes

Prλ(d⋆|e), and the output MR translation, f⋆, is the

yield of d
⋆. This can be done in cubic time with re-

spect to the length of e using an Earley chart parser.

3.3 Generation by Inverting WASP

Now we show how to invert WASP to produce

WASP
−1, and use it for NLG. We can use the same

grammar for both parsing and generation, a partic-

ularly appealing aspect of using WASP. Since an

SCFG is fully symmetric with respect to both gen-

erated strings, the same chart used for parsing can

be easily adapted for efficient generation (Shieber,

1988; Kay, 1996).

Given an input MR, f , WASP
−1 finds a sentence

e that maximizes Pr(e|f). It is difficult to directly

model Pr(e|f), however, because it has to assign

low probabilities to output sentences that are not

grammatical. There is no such requirement for pars-

ing, because the use of the MRL grammar ensures

the grammaticality of all output MRs. For genera-

tion, we need an NL grammar to ensure grammati-

cality, but this is not available a priori.

This motivates the noisy-channel model for

WASP
−1, where Pr(e|f) is divided into two smaller

components:

arg max
e

Pr(e|f) = arg max
e

Pr(e) Pr(f |e) (2)

Pr(e) is the language model, and Pr(f |e) is the

parsing model. The generation task is to find a sen-

tence e such that (1) e is a good sentence a priori,

and (2) its meaning is the same as the input MR. For

the language model, we use an n-gram model, which

is remarkably useful in ranking candidate generated

sentences (Knight and Hatzivassiloglou, 1995; Ban-

galore et al., 2000; Langkilde-Geary, 2002). For the

parsing model, we re-use the one from WASP (Equa-

tion 1). Hence computing (2) means maximizing the

following:

max
e

Pr(e) Pr(f |e)

≈ max
d∈D(f)

Pr(e(d)) Prλ(d|e(d))

= max
d∈D(f)

Pr(e(d)) · exp
∑

i
λifi(d)

Zλ(e(d))
(3)

where D(f) is the set of derivations that are con-

sistent with f , and e(d) is the output sentence that

a derivation d yields. Compared to most exist-

ing work on generation, WASP−1 has the following

characteristics:

1. It does not require any lexical information in

the input MR, so lexical selection is an integral

part of the decoding algorithm.

2. Each predicate is translated to a phrase. More-

over, it need not be a contiguous phrase (con-

sider the SCFG rule for bowner in Section 3.2).

For decoding, we use an Earley chart generator

that scans the input MR from left to right. This im-

plies that each chart item covers a certain substring

of the input MR, not a subsequence in general. It
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requires the order in which MR predicates appear

to be fixed, i.e. the order determines the meaning

of the MR. Since the order need not be identical to

the word order of the target NL, there is no need for

the content planner to know the target NL grammar,

which is learned from the training data.

Overall, the noisy-channel model is a weighted

SCFG, obtained by intersecting the NL side of the

WASP SCFG with the n-gram language model. The

chart generator is very similar to the chart parser, ex-

cept for the following:

1. To facilitate the calculation of Pr(e(d)), chart

items now include a list of (n−1)-grams that encode

the context in which output NL phrases appear. The

size of the list is 2N + 2, where N is the number of

non-terminals to be rewritten in the dotted rule.

2. Words are generated from word gaps through

special rules (g) → 〈α, ∅〉, where the word gap,

(g), is treated as a non-terminal, and α is the NL

string that fills the gap (|α| ≤ g). The empty set

symbol indicates that the NL string does not carry

any meaning. There are similar constructs in Car-

roll et al. (1999) that generate function words. Fur-

thermore, to improve efficiency, our generator only

considers gap fillers that have been observed during

training.

3. The normalizing factor in (3), Zλ(e(d)), is not

a constant and varies across the output string, e(d).
(Note that Zλ(e) is fixed for parsing.) This is un-

fortunate because the calculation of Zλ(e(d)) is ex-

pensive, and it is not easy to incorporate it into the

chart generation algorithm. Normalization is done

as follows. First, compute the k-best candidate out-

put strings based on the unnormalized version of (3),

Pr(e(d)) · exp
∑

i
λifi(d). Then re-rank the list by

normalizing the scores using Zλ(e(d)), which is ob-

tained by running the inside-outside algorithm on

each output string. This results in a decoding al-

gorithm that is approximate—the best output string

might not be in the k-best list—and takes cubic time

with respect to the length of each of the k candidate

output strings (k = 100 in our experiments).

Learning in WASP−1 involves two steps. First, a

back-off n-gram language model with Good-Turing

discounting and no lexical classes2 is built from all

2This is to ensure that the same language model is used in
all systems that we tested.

training sentences using the SRILM Toolkit (Stolcke,

2002). We use n = 2 since higher values seemed to

cause overfitting in our domains. Next, the parsing

model is trained as described in Section 3.2.

4 Improving the SMT-based Generators

The SMT-based generation algorithms, PHARAOH

and WASP
−1, while reasonably effective, can be

substantially improved by borrowing ideas from

each other.

4.1 Improving the PHARAOH-based Generator

A major weakness of PHARAOH as an NLG sys-

tem is its inability to exploit the formal structure of

the MRL. Like WASP
−1, the phrase extraction al-

gorithm of PHARAOH is based on the output of a

word alignment model such as GIZA++ (Koehn et

al., 2003), which performs poorly when applied di-

rectly to MRLs (Section 3.2).

We can improve the PHARAOH-based generator

by supplying linearized parse-trees as input rather

than flat MRs. As a result, the basic translation units

are sequences of MRL productions, rather than se-

quences of MR tokens. This way PHARAOH can

exploit the formal grammar of the MRL to produce

high-quality phrase pairs. The same idea is used in

WASP
−1 to produce high-quality SCFG rules. We

call the resulting hybrid NLG system PHARAOH++.

4.2 Improving the WASP-based Generator

There are several aspects of PHARAOH that can be

used to improve WASP
−1. First, the probabilistic

model of WASP−1 is less than ideal as it requires

an extra re-ranking step for normalization, which is

expensive and prone to over-pruning. To remedy this

situation, we can borrow the probabilistic model of

PHARAOH, and define the parsing model as:

Pr(d|e(d)) =
∏

d∈d

w(r(d)) (4)

which is the product of the weights of the rules used

in a derivation d. The rule weight, w(X → 〈α, β〉),
is in turn defined as:

P (β|α)λ1P (α|β)λ2Pw(β|α)λ3Pw(α|β)λ4 exp(−|α|)λ5

where P (β|α) and P (α|β) are the relative frequen-

cies of β and α, and Pw(β|α) and Pw(α|β) are
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the lexical weights (Koehn et al., 2003). The word

penalty, exp(−|α|), allows some control over the

output sentence length. Together with the language

model, the new formulation of Pr(e|f) is a log-

linear model with λi as parameters. The advantage

of this model is that maximization requires no nor-

malization and can be done exactly and efficiently.

The model parameters are trained using minimum

error-rate training (Och, 2003).

Following the phrase extraction phase in

PHARAOH, we eliminate word gaps by incorpo-

rating unaligned words as part of the extracted

NL phrases (Koehn et al., 2003). The reason is

that while word gaps are useful in dealing with

unknown phrases during semantic parsing, for

generation, using known phrases generally leads to

better fluency. For the same reason, we also allow

the extraction of longer phrases that correspond to

multiple predicates (but no more than 5).

We call the resulting hybrid system WASP−1++.

It is similar to the syntax-based SMT system of Chi-

ang (2005), which uses both SCFG and PHARAOH’s

probabilistic model. The main difference is that we

use the MRL grammar to constrain rule extraction,

so that significantly fewer rules are extracted, mak-

ing it possible to do exact inference.

5 Experiments

We evaluated all four SMT-based NLG systems in-

troduced in this paper: PHARAOH, WASP
−1, and the

hybrid systems, PHARAOH++ and WASP
−1++.

We used the ROBOCUP and GEOQUERY corpora

in our experiments. The ROBOCUP corpus consists

of 300 pieces of coach advice taken from the log files

of the 2003 ROBOCUP Coach Competition. The ad-

vice was written in CLANG and manually translated

to English (Kuhlmann et al., 2004). The average

MR length is 29.47 tokens, or 12.82 nodes for lin-

earized parse-trees. The average sentence length is

22.52. The GEOQUERY corpus consists of 880 En-

glish questions gathered from various sources. The

questions were manually translated to the functional

GEOQUERY language (Kate et al., 2005). The av-

erage MR length is 17.55 tokens, or 5.55 nodes for

linearized parse-trees. The average sentence length

is 7.57.

Reference: If our player 2, 3, 7 or 5 has the ball

and the ball is close to our goal line ...

PHARAOH++: If player 3 has the ball is in 2 5 the

ball is in the area near our goal line ...

WASP
−1++: If players 2, 3, 7 and 5 has the ball

and the ball is near our goal line ...

Figure 4: Sample partial system output in the

ROBOCUP domain

ROBOCUP GEOQUERY

BLEU NIST BLEU NIST

PHARAOH 0.3247 5.0263 0.2070 3.1478

WASP
−1 0.4357 5.4486 0.4582 5.9900

PHARAOH++ 0.4336 5.9185 0.5354 6.3637

WASP
−1++ 0.6022 6.8976 0.5370 6.4808

Table 1: Results of automatic evaluation; bold type

indicates the best performing system (or systems)

for a given domain-metric pair (p < 0.05)

5.1 Automatic Evaluation

We performed 4 runs of 10-fold cross validation, and

measured the performance of the learned generators

using the BLEU score (Papineni et al., 2002) and the

NIST score (Doddington, 2002). Both MT metrics

measure the precision of a translation in terms of the

proportion of n-grams that it shares with the refer-

ence translations, with the NIST score focusing more

on n-grams that are less frequent and more informa-

tive. Both metrics have recently been used to eval-

uate generators (Langkilde-Geary, 2002; Nakanishi

et al., 2005; Belz and Reiter, 2006).

All systems were able to generate sentences for

more than 97% of the input. Figure 4 shows some

sample output of the systems. Table 1 shows the

automatic evaluation results. Paired t-tests were

used to measure statistical significance. A few

observations can be made. First, WASP
−1 pro-

duced a more accurate generator than PHARAOH.

Second, PHARAOH++ significantly outperformed

PHARAOH, showing the importance of exploiting

the formal structure of the MRL. Third, WASP
−1++

significantly outperformed WASP
−1. Most of the

gain came from PHARAOH’s probabilistic model.

Decoding was also 4–11 times faster, despite ex-

act inference and a larger grammar due to extrac-

tion of longer phrases. Lastly, WASP
−1++ signifi-

cantly outperformed PHARAOH++ in the ROBOCUP
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ROBOCUP GEOQUERY

Flu. Ade. Flu. Ade.

PHARAOH++ 2.5 2.9 4.3 4.7

WASP−1++ 3.6 4.0 4.1 4.7

Table 2: Results of human evaluation

domain. This is because WASP
−1++ allows dis-

contiguous NL phrases and PHARAOH++ does not.

Such phrases are commonly used in ROBOCUP

for constructions like: players 2 , 3 , 7 and 5;

26.96% of the phrases generated during testing were

discontiguous. When faced with such predicates,

PHARAOH++ would consistently omit some of the

words: e.g. players 2 3 7 5, or not learn any phrases

for those predicates at all. On the other hand, only

4.47% of the phrases generated during testing for

GEOQUERY were discontiguous, so the advantage of

WASP
−1++ over PHARAOH++ was not as obvious.

Our BLEU scores are not as high as those re-

ported in Langkilde-Geary (2002) and Nakanishi et

al. (2005), which are around 0.7–0.9. However,

their work involves the regeneration of automati-

cally parsed text, and the MRs that they use, which

are essentially dependency parses, contain extensive

lexical information of the target NL.

5.2 Human Evaluation

Automatic evaluation is only an imperfect substitute

for human assessment. While it is found that BLEU

and NIST correlate quite well with human judgments

in evaluating NLG systems (Belz and Reiter, 2006),

it is best to support these figures with human evalu-

ation, which we did on a small scale. We recruited 4

native speakers of English with no previous experi-

ence with the ROBOCUP and GEOQUERY domains.

Each subject was given the same 20 sentences for

each domain, randomly chosen from the test sets.

For each sentence, the subjects were asked to judge

the output of PHARAOH++ and WASP
−1++ in terms

of fluency and adequacy. They were presented with

the following definition, adapted from Koehn and

Monz (2006):

Score Fluency Adequacy

5 Flawless English All meaning

4 Good English Most meaning

3 Non-native English Some meaning

PHARAOH++ WASP
−1++

BLEU NIST BLEU NIST

English 0.5344 5.3289 0.6035 5.7133

Spanish 0.6042 5.6321 0.6175 5.7293

Japanese 0.6171 4.5357 0.6585 4.6648

Turkish 0.4562 4.2220 0.4824 4.3283

Table 3: Results of automatic evaluation on the mul-

tilingual GEOQUERY data set

Score Fluency Adequacy

2 Disfluent English Little meaning

1 Incomprehensible No meaning

For each generated sentence, we computed the av-

erage of the 4 human judges’ scores. No score

normalization was performed. Then we compared

the two systems using a paired t-test. Table 2

shows that WASP
−1++ produced better generators

than PHARAOH++ in the ROBOCUP domain, con-

sistent with the results of automatic evaluation.

5.3 Multilingual Experiments

Lastly, we describe our experiments on the mul-

tilingual GEOQUERY data set. The 250-example

data set is a subset of the larger GEOQUERY cor-

pus. All English questions in this data set were

manually translated into Spanish, Japanese and

Turkish, while the corresponding MRs remain un-

changed. Table 3 shows the results, which are sim-

ilar to previous results on the larger GEOQUERY

corpus. WASP
−1++ outperformed PHARAOH++

for some language-metric pairs, but otherwise per-

formed comparably.

6 Related Work

Numerous efforts have been made to unify the tasks

of semantic parsing and tactical generation. One of

the earliest espousals of the notion of grammar re-

versability can be found in Kay (1975). Shieber

(1988) further noted that not only a single gram-

mar can be used for parsing and generation, but the

same language-processing architecture can be used

for both tasks. Kay (1996) identified parsing charts

as such an architecture, which led to the develop-

ment of various chart generation algorithms: Car-

roll et al. (1999) for HPSG, Bangalore et al. (2000)

for LTAG, Moore (2002) for unification grammars,
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White and Baldridge (2003) for CCG. More re-

cently, statistical chart generators have emerged, in-

cluding White (2004) for CCG, Carroll and Oepen

(2005) and Nakanishi et al. (2005) for HPSG. Many

of these systems, however, focus on the task of sur-

face realization—inflecting and ordering words—

which ignores the problem of lexical selection. In

contrast, our SMT-based methods integrate lexical

selection and realization in an elegant framework

and automatically learn all of their linguistic knowl-

edge from an annotated corpus.

7 Conclusion

We have presented four tactical generation systems

based on various SMT-based methods. In particular,

the hybrid system produced by inverting the WASP

semantic parser shows the best overall results across

different application domains.
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