
Proceedings of NAACL HLT 2007, pages 164–171,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Probabilistic Generation of Weather Forecast Texts

Anja Belz
Natural Language Technology Group

University of Brighton, UK
a.s.belz@brighton.ac.uk

Abstract

This paper reports experiments in
which pCRU — a generation framework
that combines probabilistic generation
methodology with a comprehensive
model of the generation space — is
used to semi-automatically create sev-
eral versions of a weather forecast text
generator. The generators are evaluated
in terms of output quality, development
time and computational efficiency against
(i) human forecasters, (ii) a traditional
handcrafted pipelinedNLG system, and
(iii) a HALOGEN-style statistical genera-
tor. The most striking result is that despite
acquiring all decision-making abilities
automatically, the bestpCRU generators
receive higher scores from human judges
than forecasts written by experts.

1 Introduction and background

Over the last decade, there has been a lot of in-
terest in statistical techniques among researchers in
natural language generation (NLG), a field that was
largely unaffected by the statistical revolution in
NLP that started in the 1980s. Since Langkilde and
Knight’s influential work on statistical surface real-
isation (Knight and Langkilde, 1998), a number of
statistical and corpus-based methods have been re-
ported. However, this interest does not appear to
have translated into practice: of the 30 implemented
systems and modules with development starting in

or after 2000 that are listed on a keyNLG website1,
only five have any statistical component at all (an-
other six involve techniques that are in some way
corpus-based). The likely reasons for this lack of
take-up are that (i) many existing statisticalNLG

techniques are inherently expensive, requiring the
set of alternatives to be generated in full before the
statistical model is applied to select the most likely;
and (ii) statisticalNLG techniques have not been
shown to produce outputs of high enough quality.

There has also been a rethinking of the traditional
modularNLG architecture (Reiter, 1994). Some re-
search has moved towards a more comprehensive
view, e.g. construing the generation task as a single
constraint satisfaction problem. Precursors to cur-
rent approaches were Hovy’sPAULINE which kept
track of the satisfaction status of global ‘rhetori-
cal goals’ (Hovy, 1988), and Power et al.’sICON-
OCLAST which allowed users to fine-tune different
combinations of global constraints (Power, 2000).
In recent comprehensive approaches, the focus is on
automatic adaptability, e.g. automatically determin-
ing degrees of constraint violability on the basis of
corpus frequencies. Examples include Langkilde’s
(2005) general approach to generation and parsing
based on constraint optimisation, and Marciniak and
Strube’s (2005) integrated, globally optimisable net-
work of classifiers and constraints.

Both probabilistic and recent comprehensive
trends have developed at least in part to address two
interrelated issues inNLG: the considerable amount

1Bateman and Zock’s list of NLG systems,
http://www.fb10.uni-bremen.de/anglistik/
langpro/NLG-table/, 20/01/2006.

164



of time and expense involved in building new sys-
tems, and the almost complete lack in the field of
reusable systems and modules. Both trends have
the potential to improve on development time and
reusability, but have drawbacks.

Existing statisticalNLG (i) uses corpus statistics to
inform heuristic decisions in what is otherwise sym-
bolic generation (Varges and Mellish, 2001; White,
2004; Paiva and Evans, 2005); (ii) appliesn-gram
models to select the overall most likely realisation
after generation (HALOGEN family); or (iii) reuses
an existing parsing grammar or treebank for surface
realisation (Velldal et al., 2004; Cahill and van Gen-
abith, 2006).N -gram models are not linguistically
informed, (i) and (iii) come with a substantial man-
ual overhead, and (ii) overgenerates vastly and has a
high computational cost (see also Section 3).

Existing comprehensive approaches tend to in-
cur a manual overhead (finetuning inICONOCLAST,
corpus annotation in Langkilde and Marciniak &
Strube). Handling violability of soft constraints is
problematic, and converting corpus-derived prob-
abilities into costs associated with constraints
(Langkilde, Marciniak & Strube) turns straightfor-
ward statistics into anad hocsearch heuristic. Older
approaches are not globally optimisable (PAULINE)
or involve exhaustive search (ICONOCLAST).

The pCRU language generation framework com-
bines a probabilistic generation methodology with
a comprehensive model of the generation space,
where probabilistic choice informs generation as it
goes along, instead of after all alternatives have been
generated. pCRU uses existing techniques (Belz,
2005), but extends these substantially. This paper
describes thepCRU framework and reports experi-
ments designed to rigorously testpCRU in practice
and to determine whether improvements in develop-
ment time and reusability can be achieved without
sacrificing quality of outputs.

2 pCRU language generation

pCRU (Belz, 2006) is a probabilistic language gen-
eration framework that was developed with the aim
of providing the formal underpinnings for creating
NLG systems that are driven by comprehensive prob-
abilistic models of the entire generation space (in-
cluding deep generation).NLG systems tend to be

composed of generation rules that apply transforma-
tions to representations (performing different tasks
in different modules). The basic idea inpCRU is
that as long as the generation rules are all of the
form relation(arg1, ...argn) → relation1(arg1, ...argp)

... relationm(arg1, ...argq), m ≥ 1, n, p, q ≥ 0, then the
set of all generation rules can be seen as defining
a context-free language and a single probabilistic
model can be estimated from raw or annotated text
to guide generation processes.

pCRU uses straightforward context-free technol-
ogy in combination with underspecification tech-
niques, to encode abase generator as a set of ex-
pansion rulesG composed ofn-ary relations with
variable and constant arguments (Section 2.1). In
non-probabilistic mode, the output is the set of fully
expanded (fully specified) forms that can be de-
rived from the input. ThepCRU (probabilisticCRU)
decision-maker is created by estimating a proba-
bility distribution over the base generator from an
unannotated corpus of example texts. This distri-
bution is used in one of several ways to drive gen-
eration processes, maximising the likelihood either
of individual expansions or of entire generation pro-
cesses (Section 2.2).

2.1 Specifying the range of alternatives

Using context-free representational underspecifica-
tion, or CRU, (Belz, 2004), the generation space is
encoded as (i) a setG of expansion rules composed
of n-ary relationsrelation(arg1, ...argn) where the
argi are constants or variables over constants; and
(ii) argument and relation type hierarchies. Any sen-
tential form licensed byG can be the input to the
generation process which expands it under unify-
ing variable substitution until no further expansion is
possible. The output (in non-probabilistic mode) is
the set of fully expanded forms (i.e. consisting only
of terminals) that can be derived from the input.

The rules inG define the steps in which inputs can
be incrementally specified from, say, content to se-
mantic, syntactic and finally surface representations.
G therefore defines specificity relations between all
sentential forms, i.e. defines which representation is
underspecified with respect to which other represen-
tations. The generation process is construed explic-
itly as the task of incrementally specifying one or
more word strings.

165



Within the limits of context-freeness and atom-
icity of feature values,CRU is neutral with respect
to actual linguistic knowledge representation for-
malisms used to encode generation spaces. The
main motivation for a context-free formalism is
the advantage of low computational cost, while the
inclusion of arguments on (non)terminals permits
keeping track of contextual features.

2.2 Selection among alternatives

ThepCRU decision-making component is created by
estimating a probability distribution over the set of
expansion rules that encodes the generation space
(the base generator), as follows:

1 Convert corpus into multi-treebank:determine
for each sentence all (left-most) derivation trees
licensed by the base generator’sCRU rules, us-
ing maximal partial derivations if there is no com-
plete derivation tree; annotate the (sub)strings in
the sentence with the derivation trees, resulting in
a set ofgeneration treesfor the sentence.

2 Train base generator:Obtain frequency counts
for each individual generation rule from the multi-
treebank, adding1/n to the count for every rule,
wheren is the number of alternative derivation
trees; convert counts into probability distributions
over alternative rules, using add-1 smoothing and
standard maximum likelihood estimation.

The resulting probability distribution is used in
one of the following three ways to control gener-
ation. Of these, only the first requires the genera-
tion forest to be created in full, whereas both greedy
modes prune the generation space to a single path:

1 Viterbi generation:do a Viterbi search of the gen-
eration forest for a given input, which maximises
the joint likelihood of all decisions taken in the
generation process. This selects the most likely
generation process, but is considerably more ex-
pensive than the greedy modes.

2 Greedy generation:make the single most likely
decision at each choice point (rule expansion) in
a generation process. This is not guaranteed to
result in the most likely generation process, but
the computational cost is very low.

3 Greedy roulette-wheel generation:use a non-
uniform random distribution proportional to the
likelihoods of alternatives. E.g. if there are two

alternative decisionsD1 andD2, with the model
giving p(D1) = 0.8 andp(D2) = 0.2, then the
proportion of times the generator decidesD1 ap-
proaches80% andD2 20% in the limit.

2.3 The pCRU-1.0 generation package

The technology described in the two preceding sec-
tions has been implemented in thepCRU-1.0 soft-
ware package. The user defines a generation space
by creating a base generator composed of:

1. the setN of underspecifiedn-ary relations

2. the setW of fully specifiedn-ary relations
3. a setR of context-free generation rulesn → α,

n ∈ N , α ∈ (W ∪ N)∗

4. a typed feature hierarchy defining argument
types and values

This base generator is then trained (as described
above) on raw text corpora to provide a probability
distribution over generation rules. Optionally, ann-
gram language model can also be created from the
same corpus. The generator is then run in one of the
three modes above or one of the following:

1. Random: ignoring pCRU probabilities, ran-
domly select generation rules.

2. N -gram: ignoring pCRU probabilities, gener-
ate set of alternatives and select the most likely
according to then-gram language model.

The random mode serves as a baseline for gen-
eration quality: a trained generator must be able to
do better, otherwise all the work is done by the base
generator (and none by the probabilities). Then-
gram mode works exactly likeHALOGEN-style gen-
eration: the generator generates all realisations that
the rules allow and then picks one based on then-
gram model. This is a point of comparison with
existing statisticalNLG techniques and also serves
as a baseline in terms of computational expense: a
generator usingpCRU probabilities should be able
to produce realisations faster.

3 Building and evaluating pCRU wind
forecast text generators

The automatic generation of weather forecasts is
one of the success stories ofNLP. The restrictive-
ness of the sublanguage has made the domain of

166



Oil1/Oil2/Oil3_FIELDS
05-10-00

05/06 SSW 18 22 27 3.0 4.8 SSW 2.59
05/09 S 16 20 25 2.7 4.3 SSW 2.39
05/12 S 14 17 21 2.5 4.0 SSW 2.29
05/15 S 14 17 21 2.3 3.7 SSW 2.28
...

FORECAST FOR:-
Oil1/Oil2/Oil3 FIELDS
...
2.FORECAST 06-24 GMT, THURSDAY, 05-Oct 2000
=====WARNINGS: RISK THUNDERSTORM. =======
WIND(KTS) CONFIDENCE: HIGH

10M: SSW 16-20 GRADUALLY BACKING SSE
THEN FALLING VARIABLE 04-08 BY
LATE EVENING

...

Figure 1: Meteorological data file and wind forecast
for 05-10-2000, a.m. (oil fields anonymised).

weather forecasting particularly attractive toNLG re-
searchers, and a number of weather forecast genera-
tion systems have been created.

A recent example of weather forecast text gener-
ation is the SUMTIME project (Reiter et al., 2005)
which developed a commercially usedNLG system
that generates marine weather forecasts for offshore
oil rigs from numerical forecast data produced by
weather simulation programs. The SUMTIME cor-
pus is used in the experiments below.

3.1 Data

Each instance in the SUMTIME corpus consists of
three numerical data files (the outputs of weather
simulators) and the forecast file written by the fore-
caster on the basis of the data (Figure 1 shows an
example). The experiments below focused on a.m.
forecasts of wind characteristics. Content determi-
nation (deciding which meteorological data to in-
clude in a forecast) was carried out off-line.

The corpus consists of 2,123 instances (22,985
words) of which half are a.m. forecasts. This may
not seem much, but considering the small number of
vocabulary items and syntactic structures, the cor-
pus provides extremely good coverage (an initial im-
pression confirmed by the small differences between
training and testing data results below).

3.2 The base generator

The base generator2 was written semi-auto-
matically in two steps. First, a simple chunker
was run over the corpus to split wind statements

2For a fragment of the rule set, see Belz (2006).

into wind direction, wind speed, gust speed,
gust statements, time expressions, verb phrases,
pre-modifiers, and post-modifiers. Preterminal
generation rules were automatically created from
the resulting chunks. Then, higher-level rules which
combine chunks into larger components, taking
care of text structuring, aggregation and elision,
were manually authored. The top-level generation
rules interpret wind statements as sequences of
independent units of information, ensuring a linear
increase in complexity with increasing input length.
Inputs encode meteorological data (as shown in Ta-
ble 1), and were pre-processed to determine certain
types of information, including whether a change
in wind direction was clockwise or anti-clockwise,
and whether change in wind speed was an increase
or a decrease. The final generator takes as inputs
number vectors of length 7 to 60, and generates up
to 1.6 × 1031 alternative realisations for an input.

The job of the base generator is to describe the
textual variety found in the corpus. It makes no deci-
sions about when to prefer one variant over another.

3.3 Training

The corpus was divided at random into 90% train-
ing data and 10% testing data. The training set
was multi-treebanked with the base generator and
the multi-treebank then used to create the probabil-
ity distribution for the base generator (as described
in Section 2.2). A back-off 2-gram model with
Good-Turing discounting and no lexical classes was
also created from the training set, using theSRILM

toolkit, (Stolcke, 2002).pCRU-1.0 was then run in
all five modes to generate forecasts for the inputs in
both training and test sets.

This procedure was repeated five times for hold-
out cross-validation. The small amount of variation
across the five repeats, and the small differences be-
tween results for training and test sets (Table 2) in-
dicated that five repeats were sufficient.

3.4 Evaluation

3.4.1 Evaluation methods

The two automatic metrics used in the evalua-
tions, NIST andBLEU have been shown to correlate
highly with expert judgments (Pearson correlation
coefficients0.82 and0.79 respectively) in this do-
main (Belz and Reiter, 2006).

167



Input [[1,SSW,16,20,-,-,0600],[2,SSE,-,-,-,-,NOTIME],[3,VAR,04,08,-,-,2400]]
Corpus SSW 16-20 GRADUALLY BACKING SSE THEN FALLING VARIABLE 4-8 BY LATE EVENING
Reference 1 SSW’LY 16-20 GRADUALLY BACKING SSE’LY THEN DECREASING VARIABLE 4-8 BY LATE EVENING
Reference 2 SSW 16-20 GRADUALLY BACKING SSE BY 1800 THEN FALLING VARIABLE 4-8 BY LATE EVENING
SUMT IME-Hyb. SSW 16-20 GRADUALLY BACKING SSE THEN BECOMING VARIABLE 10 OR LESS BY MIDNIGHT
pCRU-greedy SSW 16-20 BACKING SSE FOR A TIME THEN FALLING VARIABLE 4-8 BY LATE EVENING
pCRU-roulette SSW 16-20 GRADUALLY BACKING SSE AND VARIABLE 4-8
pCRU-viterbi SSW 16-20 BACKING SSE VARIABLE 4-8 LATER
pCRU-2gram SSW 16-20 BACKING SSE VARIABLE 4-8 LATER
pCRU-random SSW 16-20 AT FIRST FROM MIDDAY BECOMING SSE DURING THE AFTERNOON THEN VARIABLE 4-8

Table 1: Forecast texts (for 05-10-2000) generated by each of the pCRU generators, the SUMTIME-Hybrid
system and three experts. The corresponding input to the generators is shown in the first row.

BLEU (Papineni et al., 2002) is a precision met-
ric that assesses the quality of a translation in terms
of the proportion of its wordn-grams (n ≤ 4 has
become standard) that it shares with several refer-
ence translations.BLEU also incorporates a ‘brevity
penalty’ to counteract scores increasing as length de-
creases.BLEU scores range from 0 to 1.

TheNIST metric (Doddington, 2002) is an adapta-
tion of BLEU, but whereBLEU gives equal weight to
all n-grams,NIST gives more weight to less frequent
(hence more informative)n-grams. There is evi-
dence thatNIST correlates better with human judg-
ments thanBLEU (Doddington, 2002; Belz and Re-
iter, 2006).

The results below include human scores from two
separate experiments. The first was an experiment
with 9 subjects experienced in reading marine fore-
casts (Belz and Reiter, 2006), the second is a new
experiment with 14 similarly experienced subjects3.
The main differences were that in Experiment 1,
subjects rated on a scale from 0 to 5 and were asked
for overall quality scores, whereas in Experiment 2,
subjects rated on a 1–7 scale and were asked for lan-
guage quality scores.

In comparing differentpCRU modes,NIST and
BLEU scores were computed against the test set part
of the corpus which contains texts by five different
authors. In the two human experiments,NIST and
BLEU scores were computed against sets of multi-
ple reference texts (2 for each date in Experiment 1,
and 3 in Experiment 2) written by forecasters who
had not contributed to the corpus. One-wayANOVAs
with post-hoc TukeyHSD tests were used to analyse
variance and statistical significance of all results.

Table 1 shows forecast texts generated by each of

3Belz and Reiter, in preparation.

NIST-5 BLEU-4
T pCRU-greedy 8.208(0.033) 0.647(0.002)

R pCRU-roulette 7.035(0.138) 0.496(0.010)

A pCRU-2gram 6.734(0.086) 0.523(0.008)

I pCRU-viterbi 6.643(0.023) 0.524(0.002)

N pCRU-random 4.799(0.036) 0.296(0.002)

pCRU-greedy 6.927(0.131) 0.636(0.016)

T pCRU-roulette 6.193(0.121) 0.496(0.022)

E pCRU-2gram 5.663(0.185) 0.514(0.019)

S pCRU-viterbi 5.650(0.161) 0.519(0.021)

T pCRU-random 4.535(0.078) 0.313(0.005)

Table 2:NIST-5 andBLEU-4 scores for training and
test sets (average variation from the mean).

the systems included in the evaluations reported be-
low, together with the corresponding input and three
texts created by humans for the same data.

3.4.2 Comparing different generation modes

Table 2 shows results for the five differentpCRU

generation modes, for training sets (top) and test sets
(bottom), in terms ofNIST-5 andBLEU-4 scores av-
eraged over the five runs of the hold-out validation,
with average mean deviation figures across the runs
shown in brackets.

The Tukey Test produced the following results for
the differences between means in Table 2. For the
training set, results are the same forNIST andBLEU

scores: all differences are significant atP < 0.01,
except for the differences in scores forpCRU-2gram
andpCRU-viterbi. For the test set andNIST, again all
differences are significant atP < 0.01, except for
pCRU-2gram vs.pCRU-viterbi. For the test set and
BLEU, three differences are non-significant:pCRU-
2gram vs.pCRU-viterbi, pCRU-2gram vs.pCRU-

168



Experiment 1 Experiment 2
SUMTIME-Hyb. 3.82(1) 4.61(2)

pCRU-greedy 3.59(2) 4.79(1)

pCRU-roulette 3.22(3) 4.54(3)

Table 3: Scores for handcrafted system and two best
pCRU-systems from two human experiments.

roulette, andpCRU-viterbi vs.pCRU-roulette.
NIST-5 depends on test set size, and is necessar-

ily lower for the (smaller) test set, but theBLEU-4
scores indicate that performance was slightly worse
on test sets. The deviation figures show that varia-
tion was also higher on the test sets.

The clearest result is thatpCRU-greedy is ranked
highest, andpCRU-random lowest, by considerable
margins. pCRU-roulette is ranked second byNIST-
5 and fourth byBLEU-4. pCRU-2gram andpCRU-
viterbi are virtually indistinguishable.

Experts in both human experiments agreed with
theNIST-5 rankings of the modes exactly.

3.4.3 Text quality against handcrafted system

The pCRU modes were also evaluated against
the SUMTIME-Hybrid system (running in ‘hybrid’
mode, taking inputs as in Table 1). Table 3 shows
averaged evaluation scores by subjects in the two in-
dependent experiments described above. There were
altogether 6 and 7 systems evaluated in these experi-
ments, respectively, and the differences between the
scores shown here were not significant when sub-
jected to the Tukey Test, meaning that both experi-
ments failed to show that experts can tell the differ-
ence in the language quality of the texts generated by
the handcrafted SUMTIME-Hybrid system and the
two bestpCRU-greedy systems.

3.4.4 Text quality against human forecasters

In the first experiment, the human evaluators gave
an average score of 3.59 topCRU-greedy, 3.22 to
the corpus texts, and 3.03 to another (human) fore-
caster. In Experiment 2, the average human scores
were 4.79 forpCRU-greedy, and 4.50 for the corpus
texts. Although in each experiment separately, sta-
tistical significance could not be shown for the dif-
ferences between these means, in combination the
scores provide evidence that the evaluators thought
pCRU-greedy better than the human-written texts.

3.4.5 Computing time

The following table shows average number of sec-
onds taken to generate one forecast, averaged over
the five cross-validation runs (mean variation figures
across the runs in brackets):

Training sets Test sets
pCRU-greedy: 1.65s(= 0.02) 1.58s(< 0.04)

pCRU-roulette: 1.61s(< 0.02) 1.58s(< 0.05)

pCRU-viterbi: 1.74s(< 0.02) 1.70s(= 0.04)

pCRU-2gram: 2.83s(< 0.02) 2.78s(< 0.09)

Forecasts for the test sets were generated some-
what faster than for the training sets in all modes.
Variation was greater for test sets. Differences
betweenpCRU-greedy andpCRU-roulette are very
small, but pCRU-viterbi took 1/10 of a second
longer, andpCRU-2gram took more than1 second
longer to generate the average forecast4.

3.4.6 Brevity bias

N -gram models have a built-in bias in favour of
shorter strings, because they calculate the likelihood
of a string of words as the joint probability of the
words, or, more precisely, as the product of the prob-
abilities of each word given then − 1 preceding
words. The likelihood of any string will therefore
generally be lower than that of any of its substrings.

Using a smaller data set for which all systems had
outputs, the average number of words in the fore-
casts generated by the different systems was:

pCRU-random: 19.43
SUMTIME-Hybrid: 12.39
pCRU-greedy: 11.51
Corpus: 11.28
pCRU-roulette: 10.48
pCRU-2gram: 7.66
pCRU-viterbi: 7.54

pCRU-random has no preference for shorter
strings, its average string length is almost twice that
of the otherpCRU-generators. The 2-gram generator
prefers shorter strings, while the Viterbi generator
prefers shorter generation processes, and these pref-
erences result in the shortest texts. The poor evalu-
ation results above for then-gram and Viterbi gen-
erators indicate that this brevity bias can be harm-

4The Viterbi and the 2-gram generator were implemented
identically, except for then-gram model look-up.

169



ful in NLG. The remaining generators achieve good
matches to the average forecast length in the corpus.

3.4.7 Development time

The most time-consuming part ofNLG system de-
velopment is not encoding the range of alternatives,
but the decision-making capabilities that enable se-
lection among them. In SUMTIME (Section 3), these
were the result of corpus analysis and consultation
with writers and readers of marine forecasts. In the
pCRU wind forecast generators, the decision-making
capabilities are acquired automatically, no expert
knowledge or corpus annotation is used.

The SUMTIME team estimate5 that very approx-
imately 12 person months went directly into devel-
oping the SUMTIME microplanner and realiser (the
components functionally analogous to thepCRU-
generators), and 24 on generic activities such as
expert consultation, which also benefited the mi-
croplanner/realiser. ThepCRU wind forecasters
were built in less than a month, including familiari-
sation with the corpus, building the chunker and cre-
ating the generation rules themselves. However, the
SUMTIME system also generates wave forecasts and
appropriate layout and canned text. A generous esti-
mate is that it would take another two person months
to equip thepCRU forecaster with these capabilities.

This is not to say that the two research efforts re-
sulted in exactly the same thing. It is clear that fore-
cast readers prefer the SUMTIME system, but the
point is that it did come with a substantial price tag
attached. ThepCRU approach allows control over
the trade-off between cost and quality.

4 Discussion

The main contributions of the research described
in this paper are: (i) a generation methodology
that improves substantially on development time and
reusability compared to traditional hand-crafted sys-
tems; (ii) techniques for training linguistically in-
formed decision-making components for probabilis-
tic NLG from raw corpora; and (iii) results that show
that probabilisticNLG can produce high-quality text.
Results also show that (i) a preference for shorter
realisations can be harmful inNLG; and that (ii)
linguistically literate, probabilisticNLG can outper-

5Personal communication with E. Reiter and S. Sripada.

form HALOGEN-style shallow statistical methods, in
terms of quality and efficiency.

An interesting question concerns the contribution
of the manually built component (the base genera-
tor) to the quality of the outputs. The random mode
serves as an absolute baseline in this respect: it in-
dicates how well a particular base generator per-
forms on its own. However, different base genera-
tors have different effects on the generation modes.
The base generator that was used in previous exper-
iments (Belz, 2005) encoded a less structured gen-
eration space and the set of concepts it used were
less fine-grained (e.g. it did not distinguish between
an increase and a decrease in wind speed, consid-
ering both simply a change), and therefore it lacked
some information necessary for deriving conditional
probabilities for lexical choice (e.g.fresheningvs.
easing). As predicted (Belz, 2005, p. 21), improve-
ments to the base generator made little difference to
the results forpCRU-2gram (up fromBLEU 0.45 to
0.5), but greatly improved the performance of the
greedy mode (up from0.43 to 0.64).

A basic question for statisticalNLG is whether
surface string likelihoods are enough to resolve re-
maining non-determinism in generators, or whether
likelihoods at the more abstract level of generation
rules are needed. The former always prefers the
most frequent variant regardless of context, whereas
in the latter probabilities can attach to linguistic ob-
jects and be conditioned on contextual features (e.g.
one useful feature in the forecast text generators en-
coded whether a rule was being applied at the be-
ginning of a text). The results reported in this paper
provide evidence that probabilistic generation can be
more powerful thann-gram based post-selection.

5 Conclusions

The pCRU approach to generation makes it possi-
ble to combine the potential accuracy and subtlety
of symbolic generation rules with detailed linguis-
tic features on the one hand, and the robustness and
handle on nondeterminism provided by probabili-
ties associated with these rules, on the other. The
evaluation results for thepCRU generators show that
outputs of high quality can be produced with this
approach, that it can speed up development and im-
prove reusability of systems, and that in some modes

170



it is more efficient and less brevity-biased than exist-
ing HALOGEN-stylen-gram techniques.

The current situation inNLG recalls NLU in the
late 1980s, when symbolic and statisticalNLP were
separate research paradigms, a situation memorably
caricatured by Gazdar (1996), before rapidly mov-
ing towards a paradigm merger in the early 1990s.
A similar development is currently underway inMT

where — after several years of statisticalMT dom-
inating the field — researchers are now beginning
to bring linguistic knowledge into statistical tech-
niques (Charniak et al., 2003; Huang et al., 2006),
and this trend looks set to continue. The lesson from
NLU and MT appears to be that higher quality re-
sults when the symbolic and statistical paradigms
join forces. The research reported in this paper is
intended to be a first step in this direction forNLG.

Acknowledgments

This research was in part supported underUK EPSRC

Grant GR/S24480/01. Many thanks to the anony-
mous reviewers for very helpful comments.

References

A. Belz and E. Reiter. 2006. Comparing automatic and
human evaluation of NLG systems. InProc. EACL’06,
pages 313–320.

A. Belz. 2004. Context-free representational underspec-
ification for NLG. Technical Report ITRI-04-08, Uni-
versity of Brighton.

A. Belz. 2005. Statistical generation: Three methods
compared and evaluated. InProc. of ENLG’05, pages
15–23.

A. Belz. 2006. pCRU: Probabilistic generation using
representational underspecification. Technical Report
NLTG-06-01, University of Brighton.

A. Cahill and J. van Genabith. 2006. Robust PCFG-
based generation using automatically acquired LFG
approximations. InProc. ACL’06, pages 1033–44.

E. Charniak, K. Knight, and K. Yamada. 2003. Syntax-
based language models for machine translation. In
Proc. MT Summit IX.

G. Doddington. 2002. Automatic evaluation of machine
translation quality using n-gram co-occurrence statis-
tics. InProceedings of the ARPA Workshop on Human
Language Technology.

G. Gazdar. 1996. Paradigm merger in NLP. In Robin
Milner and Ian Wand, editors,Computing Tomor-
row: Future Research Directions in Computer Sci-
ence, pages 88–109. Cambridge University Press.

E. Hovy. 1988. Generating Natural Language under
Pragmatic Constraints. Lawrence Erlbaum.

L. Huang, K. Knight, and A. Joshi. 2006. Statistical
syntax-directed translation with extended domain of
locality. In Proc. AMTA, pages 66–73.

K. Knight and I. Langkilde. 1998. Generation that ex-
ploits corpus-based statistical knowledge. InProceed-
ings of COLING-ACL’98, pages 704–710.

I. Langkilde. 2005. An exploratory application of con-
straint optimization in Mozart to probabilistic natural
language processing. InProceedings of CSLP’05, vol-
ume 3438 ofLNAI. Springer-Verlag.

T. Marciniak and M. Strube. 2005. Using an annotated
corpus as a knowledge source for language generation.
In Proceedings of UCNLG’05, pages 19–24.

D. S. Paiva and R. Evans. 2005. Empirically-based con-
trol of natural language generation. InProceedings
ACL’05.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.
Bleu: A method for automatic evaluation of machine
translation. InProc. ACL ’02, pages 311–318.

R. Power. 2000. Planning texts by constraint satisfaction.
In Proceedings of COLING’00.

E. Reiter, S. Sripada, J. Hunter, and J. Yu. 2005. Choos-
ing words in computer-generated weather forecasts.
Artificial Intelligence, 167:137–169.

E. Reiter. 1994. Has a consensus NL generation architec-
ture appeared and is it psycholinguistically plausible?
In Proceedings of INLG’94, pages 163–170.

A. Stolcke. 2002. SRILM: An extensible language mod-
eling toolkit. InProceedings of ICSLP’02, pages 901–
904,.

S. Varges and C. Mellish. 2001. Instance-based NLG. In
Proc. of NAACL’01, pages 1–8.

E. Velldal, S. Oepen, and D. Flickinger. 2004. Para-
phrasing treebanks for stochastic realization ranking.
In Proc. of TLT’04.

M. White. 2004. Reining in CCG chart realization. In
Proceedings INLG’04, volume 3123 ofLNAI, pages
182–191. Springer.

171


