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Abstract

We relate the problem of finding the best
application of a Synchronous Context-
Free Grammar (SCFG) rule during pars-
ing to a Markov Random Field. This
representation allows us to use the the-
ory of expander graphs to show that the
complexity of SCFG parsing of an input
sentence of lengthv is Q(N°"), for a
grammar with maximum rule lengthhand
some constant. This improves on the
previous best result gB(N°V™).

such that tabular parsing strategies must take at least
Q(NeV™), that is, the exponent of the algorithm is
proportional to the square root of the rule length.
In this paper, we improve this result, showing that
in the worst case the exponent grows linearly with
the rule length. Using a probabilistic argument, we
show that the number of easily parsable permuta-
tions grows slowly enough that most permutations
must be difficult, where by difficult we mean that the
exponent in the complexity is greater than a constant
factor times the rule length. Thus, not only do there
exist permutations that have complexity higher than
the square root case of Satta and Peserico (2005),

but in fact the probability that a randomly chosen
permutation will have higher complexity approaches
one as the rule length grows.

Recent interest in syntax-based methods for statis- Our approach is to first relate the problem of
tical machine translation has lead to work in parsfinding an efficient parsing algorithm to finding the
ing algorithms for synchronous context-free gramtreewidthof a graph derived from the SCFG rule’s
mars (SCFGs). Generally, parsing complexity depermutation. We then show that this class of graphs
pends on the length of the longest rule in the granare expander graphswhich in turn means that the
mar, but the exact nature of this relationship has onliyeewidth grows linearly with the graph size.
recently begun to be explored. It has been known i _

since the early days of automata theory (Aho ana Synchronous Parsing Strategies

Ulliman, 1972) that the languages of string pairs genpfe write SCFG rules as productions with one
erated by a synchronous grammar can be arrangediéfthand side nonterminal and two righthand side
an infinite hierarchy, with each rule size 4 pro- strings. Nonterminals in the two strings are linked
ducing languages not possible with grammars reyith superscript indices; symbols with the same in-

stricted to smaller rules. For any grammar withdex must be further rewritten synchronously. For ex-

maximum rule sizen, a fairly straightforward dy- ample,

namic programming strategy yields @&{N""4) al-

gorithm for parsing sentences of length How-
- ) , @)

ever, this is often not the best achievable complexm{,S a rule with four children and no reorderina. while

and the exact bounds of the best possible algorithms 9

are not known. Satta and Peserico (2005) showed X — A1) B2 ¢®) p® = B p) A1) ¢G)

that a permutation can be defined for any length 2

1 Introduction

X — AW B@ ¢B) p@) 40 p@ ¢6) p@)
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Algorithm 1 BottomUpParser(gramma#, input stringse, f)
for xg, x, such thatl < z¢ < z,, < |e| in increasing order of;,, — z( do
for yo, y, such thatl < yo < y,, < |f| in increasing order of;,, — yo do
for RulesR of form X — XV x{, X(T(;))...X(?(’)‘)) in G do

(1 w(n
p= P(R) max H O(Xis Tim1, T4, Yr(i)— 15 Yn (i)
Y1--Yn—1 1
(S(X, L0y Tn, YO, yn) — max{&(X, 0, Tns Yo, yn)vp}
end for
end for
end for

expresses a more complex reordering. In generalearch; making this step more efficient is our fo-

we can take indices in the first grammar dimeneus in this paper. The maximization can be done
sion to be consecutive, and associate a permutatianth further dynamic programming, storing partial

7 with the second dimension. If we usk; for results which contain some subset of an SCFG rule’s
0 < i < n as a set of variables over nonterminakighthand side nonterminals that have been recog-
symbols (for exampleX; and X, may both stand nized. A parsing strategy for a specific SCFG rule
for nonterminalA), we can write rules in the gen- consists of an order in which these subsets should

eral form: be combined, until all the rule’s children have been
) (= (1)) (x(n) recognized. The complexity of an individual parsing
Xo— XX, Xaa) X step depends on the number of free boundary vari-

ables, each of which can take(N) values. It is

Grammar rules also contain terminal symbols, but ey helpful to visualize parsing strategies on the
their position does not affect parsing complexity, Wepermutation matrixcorresponding to a rule’s per-

focus on nonterminals and their associated permutas i~vionr Figure 1 shows the permutation matrix
tion 7 in the remainder of the paper. In a probabilis-

) _ of rule (2) with a three-step parsing strategy. Each
tic grammar, each rulé? has an associated proba-p,ne| shows one combination step along with the
bility P(R). The synchronous parsing problem con

X s > ) " 'projections of the partial results in each dimension;
sists of finding the tree covering both strings havingy,q ongnoints of these projections correspond to free
the maximum product of rule probabilitiés.

N boundary variables. The second step has the high-
We assume synchronous parsing is done by stols nmher of distinct endpoints, five in the vertical

ing a dynamic programming table of recognizedjiension and three horizontally, meaning parsing
nonterminals, as outlined in Algorithm 1. We referCan be done in im& (V).

to_a dyn_amic pr_o_gramming it_em.for a given nonter- As an example of the impact that the choice of
minal with specm_ed boundaries in each Iangugg_e q&:‘arsing strategy can make, Figure 2 shows a per-
gcell. The algorlthm_computes cells b_y MaxiMIZ-y ytation for which a clever ordering of partial re-
ing overboundary variables:; andy;, which range sults enables parsing in tim@(N'0) in the length

over positions in the two input strings, and ?pec!fyof the input strings. Permutations having this pattern

beglnnln_g and end points for the SCFG rule’s Ch'lq)f diagonal stripes can be parsed using this strat-

nonterminals. , egy in time O(N'?) regardless of the length of
The maximization in the inner loop of Algo- the SCFG rule, whereas aina strategy proceeding

rithm 1 is the most exper;siVQe part of the proceg,m |eft to right in either input string would take
dure, as it would take)(N-"~*) with exhaustive time O(N"+3)

We describe our methods in terms of the Viterbi algorithm .
(using the max-product semiring), but they also apply to non2.1 Markov Random Fields for Cells

probabilistic parsing (boolean semiring), language modelin . . L
(sum-product semiring), and Expectation Maximization (withSFn this section, we connect the maximization of

inside and outside passes). probabilities for a cell to the Markov Random Field
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Figure 1: The tree on the left defines a three-step parsing strategydof2). In each step, the two subsets
of nonterminals in the inner marked spans are combined into a new chart itentheithuter spans. The
intersection of the outer spans, shaded, has now been processethrKicindicate distinct endpoints of the
spans being combined, corresponding to the free boundary variables.

(MRF) representation, which will later allow us to "]
use algorithms and complexity results based on the - - [ |
graphical structure of MRFs. A Markov Random u
Field is defined as a probability distribut®over a ] I. (W]
set of variablex that can be written as a product of [} = u
factors f; that are functions of various subsatsof ‘ [
x. The probability of an SCFG rule instance com- } ‘ ? ﬂ
puted by Algorithm 1 can be written in this func- u !
tional form: — —
0%(x) = P(R) H filxi) Figure 2: A parsing strategy maintaining two spans
‘ in each dimension i© (N '°) for any length permu-
where tation of this general form.
x ={zj,y;} for0<i<n
Xi = {Ti—1, Ti, Yr(i)—1> Ym (i) } value of 1 so as not to change the probabilities com-

puted.

Thus an SCFG rule with child nonterminals al-
ways results in a Markov Random Field wih + 2
variables and + 1 factors, with each factor a func-
tion of exactly four variables.

Markov Random Fields are often represented as
graphs. Afactor graphrepresentation has a node

For reasons that are explained in the followingor each variable and factor, with an edge connect-
section, we augment our Markov Random Fielding each factor to the variables it depends on. An ex-
with a dummy factor for the completed parent nonample for rule (2) is shown in Figure 3, with round
terminal’s chart item. Thus there is one dummy facnodes for variables, square nodes for factors, and a
tor d for each grammar rule: diamond for the special dummy factor.

and the MRF has one factgy for each child nonter-
minal X; in the grammar rule?. The factor’s value
is the probability of the child nonterminal, which can
be expressed as a function of its four boundaries:

filxi) = 0(Xi, i1, Tis Yu(i) =15 Ym(3))

d(xo, T, Yo, yn) = 1 2.2 Junction Trees

d functi fthe f bound Efficient computation on Markov Random Fields
expressec as a function ol the Jomter boundary i performed by first transforming the MRF into

variablesof the completed rule, but with aconstanta junction tree (Jensen et al., 1990; Shafer and

2In our case unnormalized. Shenoy, 1990), and then applying the standard
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Figure 3: Markov Random Field for rule (2). ~ Figure 4: The graphs resulting from connecting
all interacting variables for the identity permutation

, _ _ (1,2,3,4) (top) and the(2,4,1,3) permutation of
message-passing algorithm for graphical models, o (2) (bottom).

over this tree structure. The complexity of the mes-

sage passing algorithm depends on the structure of _
the junction tree, which in turn depends on the gralochm works from the leaves of the tree inward, alter-

structure of the original MRF. nately multiplying in potential functions and maxi-
A junction tree can be constructed from a MarkoyMiZing over variables that are no longer needed, ef-
Random Field by the following three steps: fectively distributing thenax and product operators

S0 as to minimize the interaction between variables.
e Connect all variable nodes that share a factolhe complexity of the message-passin@ig.N*),
and remove factor nodes. This results in thevhere the junction tree contail(n) clusters,k is
graphs shown in Figure 4. the maximum cluster size, and each variable in the
cluster can takév values.
However, the standard algorithm assumes that the
ctor functions are predefined as part of the input.
In our case, however, the factor functions themselves

e Decompose the triangulated graph into a tree gfepend on message-passing calculations from other
cligues. grammar rules:

e Choose driangulation of the resulting graph,
by adding chords to any cycle of length greateFa
than three.

We call nodes in the resulting tree, corresponding fi(x;) = 6(Xi,xl-,1,xi,yﬁ(i)_l,yﬂ(i))
to cliques in the trl'angulat_ed gra_phlgsters Ea_ch — max P(R) max 5R’(X/) 3)
cluster has gotential functionwhich is a function R:X;—a,8 x':
of the variables in the cluster. For each factor in the
original MRF, the junction tree will have at least one
cluster containing all of the variables on which the We must modify the standard algorithm in order
factor is defined. Each factor is associated with oni® interleave computation among the junction trees
such cluster, and the cluster’'s potential function isorresponding to the various rules in the grammatr,
set to be the product of its factors, for all combinausing the bottom-up ordering of computation from
tions of variable values. Triangulation ensures thailgorithm 1. Where, in the standard algorithm, each
the resulting tree satisfies thenction tree property message contains a complete table for all assign-
which states that for any two clusters containing thenents to its variables, we break these into a sepa-
same variable, all nodes on the path connecting therate message for each individual assignment of vari-
clusters also contain. A junction tree derived from ables. The overall complexity is unchanged, because
the MRF of Figure 3 is shown in Figure 5. each assignment to all variables in each cluster is
The message-passing algorithm for graphicadtill considered only once.
models can be applied to the junction tree. The algo- The dummy factor ensures that every junction

N A
xo—xthxn/—xz

Yo=Y (i—1) Y. =Y (i)
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X0 X3 X4 Y0Y2Y3Y4 converted into a junction tree as follows:

e For each leaf of the recursive partition, which

@@ represents' a single c_hild nonte_rmirval cre-
ate a leaf in the junction tree with the cluster

(Ti-1, T4, Yr(i)—1, Yr()) @nd the potential func-

@ tion fl (xi—la L, yﬂ(i)fla yT('(’L))

tion, create a corresponding node in the junc-
tion tree.

tree we derive from an SCFG rule has a cluster con-

taining all four outer boundary variables, allowing e Add each variable; to all nodes in the junction
efficient lookup of the inner maximization in (3). tree on the path from the node for child nonter-
Because the outer boundary variables need not ap- minali — 1 to the node for child nonterminal
pear throughout the junction tree, this technique al- ~ Similarly, add each variablg,; to all nodes
lows reuse of some partial results across different in the junction tree on the path from the node
outer boundaries. As an example, consider message for child nonterminalr (i) — 1 to the node for
passing on the junction tree of shown in Figure 5,  child nonterminalr ().

which corresponds to the parsing strategy of Fig- gecayse each variable appears as an argument of
ure 1. Only the final step involves all four bound-o )y o factors, the junction tree nodes in which it
aries of the complete cell, but the most complex steg present form a linear path from one leaf of the tree
Is the second, with a total of eight boundaries. Thig, gnother. Since each variable is associated only

efficient reuse would not be achieved by applyingyith nodes on one path through the tree, the result-

the junction tree technique directly to the maximizamg tree will satisfy the junction tree property. The

tion operator in Algorithm 1, because we would b&ee strycture of the original recursive partition im-
f!xmg the outer boundgrles and ComPU“”g the JUNGslies that the variable rises from two leaf nodes to
tion tree only over the inner boundaries. the lowest common ancestor of both leaves, and is
not contained in any higher nodes. Thus each node
in the junction tree contains variables correspond-
The complexity of the message passing algorithrimg to the set of endpoints of the spans defined by
over an MRF’s junction tree is determined by thehe two subsets corresponding to its two children.
treewidthof the MRF. In this section we show that, The number of variables at each node in the junction
because parsing strategies are in direct correspatnee is identical to the number of free endpoints at
dence with valid junction trees, we can use treewidtthe corresponding combination in the recursive par-
to analyze the complexity of a grammar rule. tition.

We define a tabular parsing strategy as any dy- Because each recursive partition corresponds to a
namic programming algorithm that stores partial rejunction tree with the same complexity, finding the
sults corresponding to subsets of a rule’s child norbest recursive partition reduces to finding the junc-
terminals. Such a strategy can be represented agi@n tree with the best complexity, i.e., the smallest
recursive partition of child nonterminals, as showmmaximum cluster size.
in Figure 1(left). We show below that a recursive Finding the junction tree with the smallest clus-
partition of children having maximum complexity ter size is equivalent to finding the input graph’s
at any step can be converted into a junction tree hatreewidth the smalleskt such that the graph can be
ing k as the maximum cluster size. This implies thaembedded in &-tree. In general, this problem was
finding the optimal junction tree will give a parsingshown to be NP-complete by Arnborg et al. (1987).
strategy at least as good as the strategy of the opkitowever, because the treewidth of a given rule lower
mal recursive partition. bounds the complexity of its tabular parsing strate-

A recursive partition of child nonterminals can begies, parsing complexity for general rules can be

3 Treewidth and Tabular Parsing
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bounded with treewidth results for worst-case ruled,emma 4.2 Let G be ak-regular graph. Letn be
without explicitly identifying the worst-case permu-the number of vertices @¥. Let )\, be the second
tations. largest eigenvalue af. Then

n

2k — A J —1
| . | ¢ 2)

In this section, we .show that the treewidth of t.he Note that in our settings — 3. In order to use
graphs corresponding to worst-case permutatlorLs

growths linearly with the permutation’s length. Our emma 4.2 we will need to give a lower bound on
. } the eigenvalue gap — \» of G.
strategy is as follows:

4 Treewidth Grows Linearly tw(G) > L

1. Define a 3-regular graph for an input permu#-1 Edge Expansion
tation consisting of a subset of edges from th&he edge-expansionf a set of verticed’ is the ra-
original graph. tio of the number of edges connecting verticeq'in
. to the rest of the graph, divided by the number of
2. Show that the edge-expansion of the 3-regu|§/r : : grapn. dwvi y )
. ertices inT,
graph grows linearly for randomly chosen per-
mutations. |[E(T,V =T

T
3. Use edge-expansion to bound the spectral gap. d

where we assume th#if’| < |V|/2. The edge ex-
pansion of a graph is the minimum edge expansion
For the first step, we defin = (V, E') as aran- of any subset of vertices:
dom 3-regular graph o2n vertices obtained as fol- E(T,V —T)|
lows. LetGy = (Vl,El) andGy = (VQ,EQ) be h(G) = min —; : .
cycles, each on a separate setofertices. These Tev min{|T}, [V =T}
two cycles correspond to the edges, ;1) and Intuitively, if all subsets of vertices are highly con-
(i yit1) In the graphs of the type shown in Fig-nected to the remainder of the graph, there is no way
ure 4. LetM be a random perfect matching be-to decompose the graph into minimally interacting
tweenV; andV;. The matching represents the edgesubgraphs, and thus no way to decompose the dy-
(7, Yx(;)) Produced from the input permutation  namic programming problem of parsing into smaller
Let H be the union ofG1, G2, and M. While H  pieces.
contains only some of the edges in the graphs de- Let (}) be the standard binomial coefficient, and
fined in the previous section, removing edges cannr o € R, let
increase the treewidth.
For the second step of the proof, we use a proba- n Lo n
bilistic argument detailed in the next subsection. <§ a) - Z (k)
For the third step, we will use the following con-
nection between the edge-expansion and the eigei¥e will use the following standard inequality valid
value gap (Alon and Milman, 1985; Tanner, 1984).for 0 < a < n:

4. Use spectral gap to bound treewidth.

k=0

Lemma 4.1 Let G be ak-regular graph. Let\, be ( n ) < (@)"‘ 4)
the second largest eigenvalue®f Leth(G) be the Sa a

edge-expansion &. Then Lemma 4.3 With probability at leas0.98 the graph

h(G)? H has edge-expansion at ledsts0.

2k
Proof :
Finally, for the fourth step, we use a relation bey o . — 1/50. Assume that” C V is a set with a
tween the eigenvalue gap and treewidth for regus. edge-expansion, . e. o

lar graphs shown by Chandran and Subramanian
(2003). |E(T,V = T)| <e|T], 5)

k— X2 >
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and|T'| < |V|/2 = n. LetT; = T NnV; and let Thus

t; = |T;|, fori = 1,2. We will w.l.o.g. assume

t1 < to. We will denote ag; the number of spans of

consecutive vertices fromy; contained inZ’. Thus k> (1— 5)’51 tta (1= &)t )

20; = |E(T;,V; — T;)|, fori = 1,2. The spans - 2 -

counted by/; and/,; correspond to continuous spans

counted in computing the complexity of a chart pars- -

ing operation. However, unlike in the diagrams in! he Probability that there are (1 — )¢, edges be-

the earlier part of this paper, in our graph theoretiéveenT1 andT5 is bounded by

argument there is no requirement tfiaselect only

corresponding pairs of vertices frol and V5.

There are atleagi(¢,+/¢5)+to—t; edges between t1 to (1=e)ta

T andV — T. This is because there a?é; edges <§ 5751) <>

within V; at the left and right boundaries of tifg

spans, and at least — ¢, edges connecting the extra

vertices fromI?; that have no matching vertexi.  where the first term selects verticesTih connected

Thus from assumption (5) we have to T, and the second term upper bounds the proba-
ty— 1 < ety + t2) bility that the selected vertices are indeed connected

- to 75. Using 6, we obtain a bound in terms of

n

which in turn implies alone:
1
h<ty< ot ©)
1= t1 14+¢ (1-e)ta
. . t 10
Similarly, using (6), we have << 5t1> (1—5 n> , (10)

t.(7)

5 £
€1+€2§§(751+752)§ 1

That is, forT' to have small edge expansion,
the vertices inl; and75 must be collected into a
small number of spang and/,. This limit on the
number of spans allows us to limit the number o
ways of choosingl; and7T;. Suppose that; is
given. Any pairTy,T5 is determined by the edges
in E(Tl,‘/l — Tl), andE(Tg,Vg — TQ), and two
bits (corresponding to the possible “swaps” ‘Bf
with V; — T;). Note that we can choose at most
201 + 209 < t1-2¢/(1 — ¢) edges in total. Thus the n/2] (o)t
number of choices df;, andT5 is bounded above by 5 Z 4_< 2n > < t ) (1 +e t1> 1

<

2e
=1 < ety 1—¢ n
2n t1=0 1—¢
4 ( ) ® (11)

< 2 t1
= l-e where the factor of is due to the assumptian <
For a given choice off; andT, for T to have ¢,.

small edge expansion, there must also not be too
many edges that connéegt to vertices inVy — Tb.
Let k& be the number of edges betwe&n and Ts.
There are at least + t2 — 2k edges betweeh and
V — T and from assumption (5) we have

Combining the number of ways of choosifg
and7> (8) with the bound on the probability that the
dgesM from the input permutation connect almost
Il the vertices ini; to vertices fromI, (10), and
using the union bound over valuesigf we obtain
that the probabilityp that there existd” C V with
edge-expansion less thaiis bounded by:

The graphH is connected and hen@ehas at least
one out-going edge. Thereforetif + t2 < 1/¢, the
edge-expansion df is at leaste. Thus a set with
edge-expansion less thamust have; +ty > 1/e,
which, by (6), impliest; > (1 —¢)/(2¢). Thus the
t1 4+ ta — 2k < e(t1 + t2) sum in (11) can be taken forfrom [(1 — ¢)/(2¢)]
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0 |n/2]. Using (4) we obtain 5 Conclusion

1n/2) 2y " We have shovyn i_n the ex_ponent ip the complex-

<8 Z ( 2ne ) <tle> ity of polynomial-time parsing algorlthm.s for syn-
~ l%sgt ety chronous context-free grammars grows linearly with
=l the length of the grammar rules. While it is very

1+e¢ t1> —e)h ] expensive computationally to test whether a speci-

l—e n fied permutation has a parsing algorithm of a certain
complexity, it turns out that randomly chosen per-

n/2
/2] << e(l—¢ > (g)a mutations are difficult with high probability.
1

—
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