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Abstract

This paper presents two Markov chain
Monte Carlo (MCMC) algorithms for
Bayesian inference of probabilistic con-
text free grammars (PCFGs) from ter-
minal strings, providing an alternative
to maximume-likelihood estimation using
the Inside-Outside algorithm. We illus-
trate these methods by estimating a sparse
grammar describing the morphology of
the Bantu language Sesotho, demonstrat-
ing that with suitable priors Bayesian
techniques can infer linguistic structure
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Carlo (MCMC) algorithms for inferring PCFGs and
their parses from strings alone. These can be viewed
as Bayesian alternatives to the 10 algorithm.

The goal of Bayesian inference is to compute a
distribution over plausible parameter values. This
“posterior” distribution is obtained by combining the
likelihood with a “prior” distributionP(6) over pa-
rameter value$. In the case of PCFG inferenéeas
the vector of rule probabilities, and the prior might
assert a preference for a sparse grammar (see be-
low). The posterior probability of each value 6f
is given by Bayes'’ rule:

P(9|D) o P(D|0)P(0). @)

in situations where maximum likelihood
methods such as the Inside-Outside algo-
rithm only produce a trivial grammar.

In principle Equation 1 defines the posterior prob-
ability of any value off, but computing this may
not be tractable analytically or numerically. For this
reason a variety of methods have been developed to
support approximate Bayesian inference. One of the
most popular methods is Markov chain Monte Carlo
The standard methods for inferring the parameters gMCMC), in which a Markov chain is used to sam-
probabilistic models in computational linguistics areple from the posterior distribution.
based on the principle of maximum-likelihood esti- This paper presents two new MCMC algorithms
mation; for example, the parameters of Probabilistifor inferring the posterior distribution over parses
Context-Free Grammars (PCFGs) are typically esand rule probabilities given a corpus of strings. The
timated from strings of terminals using the Insidefirst algorithm is a component-wise Gibbs sampler
Outside (I0) algorithm, an instance of the Ex-which is very similar in spirit to the EM algo-
pectation Maximization (EM) procedure (Lari andrithm, drawing parse trees conditioned on the cur-
Young, 1990). However, much recent work in matent parameter values and then sampling the param-
chine learning and statistics has turned away froraters conditioned on the current set of parse trees.
maximume-likelihood in favor of Bayesian methods,The second algorithm is a component-wise Hastings
and there is increasing interest in Bayesian methodsmpler that “collapses” the probabilistic model, in-
in computational linguistics as well (Finkel et al.,tegrating over the rule probabilities of the PCFG,
2006). This paper presents two Markov chain Montvith the goal of speeding convergence. Both algo-

1 Introduction
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rithms use an efficient dynamic programming techever trees as follows:
nique to sample parse trees.

Given their usefulness in other disciplines, we Pa(tl) = H afr(t)
believe that Bayesian methods like these are likely reft
to be of general utility in computational linguis- wheret is generated by and f,.(¢) is the number
tics as well. As a simple illustrative example, weof times the productionr = A — § € R is used
use these methods to infer morphological parses faf the derivation oft. If G does not generatelet
verbs from Sesotho, a southern Bantu language Wit (t|§) = 0. Theyield y(t) of a parse tree is
agglutinating morphology. Our results illustrate thathe sequence of terminals labeling its leaves. The
Bayesian inference using a prior that favors sparsitgrobability of a stringw € T of terminals is the
can produce linguistically reasonable analyses in sisum of the probability of all trees with yield, i.e.:
uations in which EM does not.

The rest of this paper is structured as follows. Pa(wl) = Z Pa(t]0).
The next section introduces the background for our ty(H)=w
paper, summarizing the key ideas behind PCFGs,, Bayesian inference for PCFGs
Bayesian inference, and MCMC. Section 3 intro-__ _
duces our first MCMC algorithm, a Gibbs sample/®!VEN & COrpus of stringsr = (Wi, ..., wy), where

for PCFGs. Section 4 describes an algorithm fof 2w iS @ string of terminals generated by a known

sampling trees from the distribution over trees deg':G G, we would like to be able to infer the pro-

fined by a PCFG. Section 5 shows how to integratguction probabilitie® that best describe that corpus.
out the rule weight parametefsin a PCFG, allow- Taking w to be our data, we can apply Bayes’ rule

ing us to sample directly from the posterior distriby{EQuation 1) to obtain:
tion over parses for a corpus of strings. Finally, Sec-

P(6 P 0)P(0 here
tion 6 illustrates these methods in learning Sesotho (Blw) o< Pa(wld)P(6), w

n
morphology. Pa(wlo) = []Pa(wild).
i=1
2 Background Using t to denote a sequence of parse treeswor
we can compute the joint posterior distribution over
2.1 Probabilistic context-free grammars t andf, and then marginalize over with P(0|w) =

. NS R b >t P(t,0|w). The joint posterior distribution on
LetG = (T, N, S, R) be a Context-Free Grammarande is given by:

in Chomsky normal form with no useless produc-

tions, wherel" is a finite set oterminal symbolsN P(t,0lw) o« P(w|t)P(t|0)P(0)

is a finite set olhonterminal symbol&isjoint from n

T), S € N is a distinguished nonterminal called the = <H P(wi|ti)P(ti|9)> P(0)
start symbaland R is a finite set ofproductionsof i=1

the formA — BC or A — w, whereA, B,C € N
andw € T. In what follows we use} as a variable

ranging over(N x N)UT. 2.3 Dirichlet priors

A Probabilistic Context-Free Grammai,0) is  The first step towards computing the posterior dis-
a pair consisting of a context-free gramn@rand tripution is to define a prior 0. We takeP(6) to
a real-valued vectof of length| | indexed by pro- pe a product of Dirichlet distributions, with one dis-
ductions, wheré 4.5 is theproduction probability  tripution for each non-terminalt € N. The prior
associated with the productiod — § € R. We s parameterized by a positive real valued veetor
require that 4.5 > 0 and that for all nonterminals indexed by production®, so each production prob-
A€N, > s perbla—p=1 ability 045 has a corresponding Dirichlet param-

A PCFG(G,0) defines a probability distribution etera4_.3. Let R4 be the set of productions iR

with P(w;|t;) = 1if y(¢;) = w;, and0 otherwise.
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with left-hand sideA, and letd4 and a4 refer to large — in our case, the state space includes all pos-
the component subvectors 6fand o respectively sible parses of the entire training corpws— and
indexed by productions i 4. The Dirichlet prior the transition probabilitie® (s’|s) are specified via a
Pp(f|a)is: scheme guaranteed to converge to the desired distri-
bution 7 (s) (in our case, the posterior distribution).

Pp(fle) = Al;[N Pp(0alea), where We “run” the Markov chain (i.e., starting in initial
1 statesy, sample a state;, from P(s'|s(), then sam-
Pp(falaa) = Clon) 11 0o~ and ple states, from P(s'|s;), and so on), with the prob-
A reRy ability that the Markov chain is in a particular state,
(a, . i \ asi .
Clay) = [lrer, I'ar) @ P(s;), converging tar(s;) asi — oo

L, er, ar) After the chain has run long enough for it to ap-

where T is the generalized factorial function andproach its stationary distribution, the expectation

C(«) is a normalization constant that does not de]?“[f ) c.)f any function f(s) of the states W'I.I be
approximated by the average of that function over
pend ord 4. .
the set of sample states produced by the algorithm.

Dirichlet priors are useful because they amn- . .
jugate to the distribution over trees defined by aFOr example, in our case, given sampiéso;) for
) , = 1,...,¢ produced by an MCMC algorithm, we

PCFG. This means that the posterior distributiod _ "
) . can estimat® as

on ¢ given a set of parse treeB(d|t, «), is also a

Dirichlet distribution. Applying Bayes’ rule,

1 l
EF[H] ~ - 61
Pg(0t,a) o< Pg(t|0) Pp(d]a) g;

x <H 9{*“) (H 97%1) The remainder of this paper presents two MCMC
reR reR algorithms for PCFGs. Both algorithms proceed by

= H a,fr(t)““*l setting the initial state of the Markov chain to a guess
reR for (t,0) and then sampling successive states using

which is a Dirichlet distribution with Ioarametersaparticular transition matrix. The key difference be-
f(t) + o, wheref(t) is the vector of production tWen the two algorithms is the form of the transition

counts int indexed byr € R. We can thus write; ~ Matrix they assume.

Pa(0t,a) = Pp(0f(t) + ) 3 A Gibbs sampler for P(t, 0|w, «)
which makes it clear that the production counts conTrhe Gibbs sampler (Geman and Geman, 1984) is
bine directly with the parameters of the prior. one of the simplest MCMC methods, in which tran-

sitions between states of the Markov chain result
_ _ _ S from sampling each component of the state condi-
Having defined a prior o, the posterior distribu- tioned on the current value of all other variables. In

tion overt and @ is fully determined by a corpus our case, this means alternating between sampling
w. Unfortunately, computing the posterior probabil-from two distributions:

ity of even a single choice daf andd is intractable,
as evaluating the normalizing constant for this dis-
tribution requires summing over all possible parses
for the entire corpus and all sets of production prob- p(git w o) = Pp(0[f(t) + )
abilities. Nonetheless, it is possible to define al- _ H P (0alfa(t) + )
gorithms that sample from this distribution using et bivAltA 4)-
Markov chain Monte Carlo (MCMC).

MCMC algorithms construct a Markov chain Thus every two steps we generate a new sample of
whose states € S are the objects we wish to sam-t and#. This alternation between parsing and up-
ple. The state spac8 is typically astronomically dating# is reminiscent of the EM algorithm, with

2.4 Markov chain Monte Carlo

P(t|0,w,a) = HP(tilwi,G), and
i=1
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QAy e QA e (A the Inside-Outside algorithm for PCFGs (Lari and

i i i Young, 1990). The second step involves a recursion
Oa, oo 04, . Oay from larger to smaller strings, sampling from the
/ \ productions that expand each string and construct-
£ o t, o s ing the corresponding tree in a top-down fashion.
i i i In this section we take to be a string of terminal
W w; w, symbolsw = (wy,...,w,) where eachw; € T,
and definew; , = (wiy1,...,w) (i.e., the sub-

string from w;,1 up to wy). Further, letG4 =
Q'T, N, A, R), i.e., a CFG just like7 except that the
start symbol has been replaced withso,P¢ , (£|0)

is the probability of a tre¢ whose root node is la-
the Expectation step replaced by samplirend the beled A andP¢ , (w|f) is the sum of the probabili-
Maximization step replaced by samplifig ties of all trees whose root nodes are labeledith

The dependencies among variables in a PCFG ayteld w.

depicted graphically in Figure 1, which makes clear The Inside algorithm takes as input a PCFG
that the Gibbs sampler is highly parallelizable (jus{G, #) and a stringw = wy, and constructs a ta-
like the EM algorithm). Specifically, the parsés ble with entriesp, ;, for eachA € N and0 <
are independent giveth and so can be sampled ini < k < n, wherepa;; = P, (w;|0), i.e., the
parallel from the following distribution as describedprobability of A rewriting tow; ;. The table entries

Figure 1. A Bayes net representation of depende
cies among the variables in a PCFG.

in the next section. are recursively defined below, and computed by enu-
P (t]6) merating all feasiblé, £ and A in any order such that
Pg(tilwi,0) = 713@(11)"9) all smaller values ok —i are enumerated before any
7

larger values.
We make use of the fact that the posterior is a

product of independent Dirichlet distributions inor- pa 11 = 0a—w,
der to _sgrnple? from Pp(0|t, ). The production Pair = Z Z 0a—BC PB,ij PCjk
probabilities 4 for each nonterminak € N are A—BCER icjek

sampled from a Dirchlet distibution with parameters o
o/y = fa(t) + aa. There are several methods forforall 4, B,C € Nand0 <4 <j <k <n. Atthe
samplingd = (61, ...,6,,) from a Dirichlet distri- €nd of the Inside algorithn®¢;(w[f) = ps,0,n-

bution with parameters: = (a1, ..., a.,), withthe ~ The second step of the sampling algorithm uses
simplest being sampling; from a Gammé;) dis- the function MPLE, which returns a sample from
tribution for j = 1,...,m and then setting; = Pa(t/w,0) given the PCFGG,0) and the inside
xj/ S0 . (Gentle, 2003). table p4;,. SAMPLE takes as arguments a non-
terminal A € N and a pair of string positions
4 Efficiently sampling from P(¢|w, 0) 0 < i < k < n and returns a tree drawn from

This section completes the description of the GibbgGA (t_’wi’k’ 0). It fun(_:t|ons in & top-down fashion,
sampler for(t, #) by describing a dynamic program- selecting the prqductlon - B C to expand thed,
ming algorithm for sampling trees from the set o nd then recurswely calling itself to expartiand
parses for a string generated by a PCFG. This a€ respectively.

gorithm appears fairly widely known: it was de- {,nction SAMPLE(A, i, k) :

scribed by Goodman (1998) and Finkel et al (2006)if 1. _ ; — 1 then return REE(A, wy)

and used by Ding et al (2005), and is very simi- (j, B,C) = MULTI (A, i, k)

lar to other dynamic programming algorithms for i, TREE(A, SAMPLE(B, 4, j), SAMPLE (C, 7, k)
CFGs, so we only summarize it here. The algo-

rithm consists of two steps. The first step conin this pseudo-code, REE is a function that con-
structs a standard “inside” table or chart, as used istructs unary or binary tree nodes respectively, and
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MULTI is a function that produces samples from D Cloa +£4(t))

a multinomial distribution over the possible “split” ey Claa +fa(t—y))
positions j and nonterminal childrenB and C,
where: Now, if we could sample from
GH P ZGP 1|0 P itiPtit,i,
P(],B,C) _ A—BC GB(w 7]| ) Gc(wj,k| ) P(ti]wi,t_i,a) (U}| ) ( | Oé)
PGA (wi7k|9) P(wi]t_i, Oé)
5 A Hastings sampler forP(t|w, «) we could construct a Gibbs sampler whose states

were the parse treas Unfortunately, we don’t even

The Gibbs sampler described in Section 3 hag,o if there is an efficient algorithm for calculat-
the disadvantage that each sample @f re- g p(y,(t_; a), let alone an efficient sampling al-
quires reparsing the training corpuss. In gorithm for this distribution.

this section, we describe a component-wise rqrynately, this difficulty is not fatal. A Hast-
Hastings algorithm for sampling directly from ygs sampler for a probability distribution(s) is
P(t|w,a), marginalizing over the produc- 5n MCMC algorithm that makes use ofpeoposal

tion probabilities 6. Trangltlons between istribution Q(s'|s) from which it draws samples,
states are produced by sampling pargesrom 50 yses an acceptance/rejection scheme to define a
P(tifwi, t—;, @) for each stringw; in turn, where  yansition kernel with the desired distributior(s).

t—i = (tr,-- o timastir, -, 1n) 1S the cument set gpecifically, given the current statea samples’ #

of parses fow_; = (wi, ..., wi—1, Wit+1,---sWn)- ¢ drawn fromQ(s'|s) is accepted as the next state
Marginalizing over 6 effectively means that the i probability

production probabilities are updated after each

sentence is parsed, so it is reasonable to expect , ) m(s")Q(s]s)

that this algorithm will converge faster than the (s,8) = mm{l’ W(S)Q(qu)}

Gibbs sampler described earlier. While the sampler

does not explicitly provide samples éfthe results and with probabilityl — A(s, s’) the proposal is re-

outlined in Sections 2.3 and 3 can be used to sampcted and the next state is the current state

the posterior distribution ovet for each sample of ~We use a component-wise proposal distribution,

t if required. generating new proposed values fgr wherei is
Let Pp(f|a) be a Dirichlet product prior, and let chosen at random. Our proposal distribution is the

A be the probability simplex fof. Then by inte- posterior distribution over parse trees generated by

grating over the posterior Dirichlet distributions wethe PCFG with grammag and production proba-

have: bilities #’, wheref’ is chosen based on the current
t_; as described below. Each step of our Hastings
P(tla) = / P (t|0)Pp(0|a)do sampler is as follows. First, we compué from
A t_; as described below. Then we samp)efrom
— H Claa +fa(t)) (3) P(ti|wi,0') using the algorithm described in Sec-
AN C(aa) tion 4. Finally, we accept the proposdlgiven the

] ] ] old parset; for w; with probability:
where C' was defined in Equation 2. Because we

are marginalizing ovef, the treeg; become depen- { P () |wi, t_;,
min < 1 L

dent upon one another. Intuitively, this is because‘l(’fi»t;‘) =
w; may provide information about that influences , ,
how some other string); should be parsed. — min {1 P(tift i, )P (ti|wi, 0 )}
We can use Equation 3 to compute the conditional TP (tift—i, )P (t]|w;, ')
probability P(¢;|t _;, ) as follows:

)P (ti|wi, 0)
’ P(ti]wi, t_z‘, Q)P(t; ’U)Z', 9/)

The key advantage of the Hastings sampler over the
P(t|a) Gibbs sampler here is that because the acceptance
P(tilt—, @) Pt i) probability is a ratio of probabilities, the difficult to
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computeP (w;|t_;, «) is a common factor of both 5
the numerator and denominator, and hence is not re- 4
quired. TheP(w;|t;) term also disappears, being p(g, )3
for both the numerator and the denominator since 2
our proposal distribution can only generate trees for
which w; is the yield. =

All that remains is to specify the production prob- O eerandaecod)
abilities ¢’ of the proposal distributiof® (¢;|w;, 0"). Binomial parametef;
While the acceptance rule used in the Hastings

algorithm ensures that it produces samples frofgigyre 2: A Dirichlet priore on a binomial parame-
: .

P(tijwi, t—i, ) with any proposal grammaf’ in  terg, Asa; — 0, P(6;]a) is increasingly concen-

which all productions have nonzero probability, thg,ated around.

algorithm is more efficient (i.e., fewer proposals are

rejected) if the proposal distribution is close to th%hat represent only major phrasal categories ignore

distribution to be sampled. . ) . .
. . a wide variety of lexical and syntactic dependen-
Given the observations above about the corre- .
cies in natural language. State-of-the-art systems
spondence between terms R(¢;|t_;,a) and the

for unsupervised syntactic structure induction sys-

relative frequency of the corresponding production%m uses models that are very different to these kinds

; ) / .
n tf“ we set” to the expected valuB[f[t —;, ] of of PCFGs (Klein and Manning, 2004; Smith and
0 givent_; and« as follows: .

Eisner, 2006}.

I T--F

, fr(t—i) + ay Our goal in this section is modest: we aim merely
0, = S e frr(t—i) + ap to provide an illustrative example of Bayesian infer-
reta ence using MCMC. As Figure 2 shows, when the
6 Inferring sparse grammars Dirichlet prior parametery,. approaches 0 the prior

. . . . ) robability P (0 becomes increasingly concen-
As stated in the introduction, the primary contrlbu-p YPp(0r]e) gy

. . . . trated around 0. This ability to bias the sampler
tion of this paper is introducing MCMC methods ) 'S abity 1as 3amp

o : .. “toward sparse grammars (i.e., grammars in which
for BaYeS'f"‘” mference.to computaponal I'ngl.“s“csmany productions have probabilities close to 0) is
Bayes_lan _mference using MCM(? 'S a te(_:hr_nqu'e 0Fjseful when we attempt to identify relevant produc-
generic utility, much like Expectation-Maximization tions from a much larger set of possible productions

and other general inference techniques, and we & parameter estimation

lieve that it belongs in every computational linguist's The Bantu language Sesotho is a richly agglutina-

toc;ll;ox_alongs@;éEzsesthzr techbnlquttra]s. i tive language, in which verbs consist of a sequence
i nterrlr:g a ¢ ¢ OI Iescrl € e syn gc_'of morphemes, including optional Subject Markers
Ic structure ‘ot a natural language 1S an o V"(SM), Tense t), Object Markers ™M), Mood (M)
ous application of grammar inference techniques

o ) and derivational affixes as well as the obligato
and it is well-known that PCFG inference us- gatory

. . o . Verb stem ¥), as shown in the following example:
ing maximum-likelihood techniques such as the 0 g P

Inside-Outside (10) algorithm, a dynamic program- re -a-di -bona

ming Expectation-Maximization (EM) algorithm for SMTOMV M

PCFGs, performs extremely poorly on such tasks. “We see them”

We have applied the Bayesian MCMC methods de- it is easy to demonstrate that the poor quality of the PCFG
scribed here to such problems and obtain resultgodels is the cause of these problems rather than seardhesr ot
algorithmic issues. If one initializes either the IO or Bsigs

very similar to those produced using 10. We be'estimation procedures with treebank parses and then rans th

lieve that the primary reason why both 10 and throcedure using the yields alone, the accuracy of the parses
Bayesian methods perform so poorly on this tasfermly decreases while the (posterior) likelihood unifdyrm-

. . creases with each iteration, demonstrating that improwiiey
is that simple PCFGs are not accurate models osterior) likelihood of such models does not improve pars
English syntactic structure. We know that PCFGaccuracy.
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We used an implementation of the Hastings samplgusted toward 1, sped the convergence of both algo-
described in Section 5 to infer morphological parsesthms. We ran both algorithms for several thousand
t for a corpusw of 2,283 unsegmented Sesothdterations over the corpus, and both seemed to con-
verb types extracted from the Sesotho corpus avaierge fairly quickly oncer was set to 1. “Jittering”
able from GHILDES (MacWhinney and Snow, 1985; the initial estimate of used in the 10 algorithm also
Demuth, 1992). We chose this corpus because tlsped its convergence.

words have been morphologically segmented manu- The 10 algorithm converges to a solution where
ally, making it possible for us to evaluate the morfyorq _. v = 1, and every stringv € w is analysed
phological parses produced by our system. We coms a single morphem¥. (In fact, in this grammar
structed a CFG- containing the following produc- P(w;|0) is the empirical probability ofv;, and it is
tions easy to prove that thigis the MLE).

Word — V The sampleg produced by the Hastings algo-
Word — VM rithm depend on the parameters of the Dirichlet
Word — SMVM prior. We seta, to a single valuex for all pro-
Word — SMTVM ductionsr. We found that for > 10~2 the sam-
Word — SMTOMVM

ples produced by the Hastings algorithm were the
together with productions expanding the pretermisame trivial analyses as those produced by the 10
nalsSM, T, OM, V andM to each of the 16,350 dis- algorithm, but asa was reduced below this be-
tinct substrings occuring anywhere in the corpusgan to exhibit nontrivial structure. We evaluated
producting a grammar with 81,755 productions irthe quality of the segmentations in the morpholog-
all. In effect, G encodes the basic morphologi-ical analyseg in terms of unlabeled precision, re-
cal structure of the Sesotho verb (ignoring factorgall, f-score and exact match (the fraction of words
such as derivation morphology and irregular forms)correctly segmented into morphemes; we ignored
but provides no information about the phonologicamorpheme labels because the manual morphological
identity of the morphemes. analyses contain many morpheme labels that we did
Note thatG' actually generates fnite language. not include inG). Figure 3 contains a plot of how
However,G' parameterizes the probability distribu-these quantities vary with; obtaining an f-score of
tion over the strings it generates in a manner tha.75 and an exact word match accuracy of 0.54 at
would be difficult to succintly characterize excepto = 10~ (the corresponding values for the MLE
in terms of the productions given above. Moreoverare both 0). Note that we obtained good results: as
with approximately 20 times more productions thawas varied over several orders of magnitude, so the
training strings, each string is highly ambiguous andctual value ofx is not critical. Thus in this appli-
estimation is highly underconstrained, so it providegation the ability to prefer sparse grammars enables
an excellent test-bed for sparse priors. us to find linguistically meaningful analyses. This
We estimated the morphological parged two  ability to find linguistically meaningful structure is
ways. First, we ran the IO algorithm initialized relatively rare in our experience with unsupervised
with a uniform initial esgimate% for 6 to produce PCFG induction.
an estimate of the MLE, and then computed the  We also experimented with a version of |0 modi-
Viterbi parses of the training corpusv with respect  fied to perform Bayesian MAP estimation, where the
to the PCFG(G, 0). Second, we ran the HastingsMaximization step of the 10 procedure is replaced
sampler initialized with trees sampled frof@, ;)  with Bayesian inference using a Dirichlet prior, i.e.,

with several different values for the parameters ofvhere the rule probabilitieé*) at iterationk are es-
the prior. We experimented with a number of techtimated using:

niques for speeding convergence of both the |10 and

Hastings algorithms, and two of these were particu- %)« max(0, E[f,|w, 0% D] + a —1).

larly effective on this problem. Annealing, i.e., us-

ing P(t|w)'/7 in place ofP(t|w) wherer is a“tem-  Clearly such an approach is very closely related to
perature” parameter starting around 5 and slowly adhe Bayesian procedures presented in this article,
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1 F-score— meaningful structure. We attribute this to the ability

Precision--- ) .
075 - S Recall- - - - of the Bayesian prior to prefer sparse grammars.
We expect that these algorithms will be of inter-
0.5 est to the computational linguistics community both
0. 251 because a Bayesian approach to PCFG estimation is

more flexible than the Maximum Likelihood meth-

O T T 05— st —1e.10 00s that currently dominate the field (c.f., the use
Dirichlet prior parametexy, of a prior as a bias towards sparse solutions), and

because these techniques provide essential building

Figure 3: Accuracy of morphological segmentation®l0cks for more complex models.
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