
Proceedings of NAACL HLT 2007, pages 139–146,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Bayesian Inference for PCFGs via Markov chain Monte Carlo

Mark Johnson
Cognitive and Linguistic Sciences

Brown University
Mark Johnson@brown.edu

Thomas L. Griffiths
Department of Psychology

University of California, Berkeley
Tom Griffiths@berkeley.edu

Sharon Goldwater
Department of Linguistics

Stanford University
sgwater@stanford.edu

Abstract

This paper presents two Markov chain
Monte Carlo (MCMC) algorithms for
Bayesian inference of probabilistic con-
text free grammars (PCFGs) from ter-
minal strings, providing an alternative
to maximum-likelihood estimation using
the Inside-Outside algorithm. We illus-
trate these methods by estimating a sparse
grammar describing the morphology of
the Bantu language Sesotho, demonstrat-
ing that with suitable priors Bayesian
techniques can infer linguistic structure
in situations where maximum likelihood
methods such as the Inside-Outside algo-
rithm only produce a trivial grammar.

1 Introduction

The standard methods for inferring the parameters of
probabilistic models in computational linguistics are
based on the principle of maximum-likelihood esti-
mation; for example, the parameters of Probabilistic
Context-Free Grammars (PCFGs) are typically es-
timated from strings of terminals using the Inside-
Outside (IO) algorithm, an instance of the Ex-
pectation Maximization (EM) procedure (Lari and
Young, 1990). However, much recent work in ma-
chine learning and statistics has turned away from
maximum-likelihood in favor of Bayesian methods,
and there is increasing interest in Bayesian methods
in computational linguistics as well (Finkel et al.,
2006). This paper presents two Markov chain Monte

Carlo (MCMC) algorithms for inferring PCFGs and
their parses from strings alone. These can be viewed
as Bayesian alternatives to the IO algorithm.

The goal of Bayesian inference is to compute a
distribution over plausible parameter values. This
“posterior” distribution is obtained by combining the
likelihood with a “prior” distributionP(θ) over pa-
rameter valuesθ. In the case of PCFG inferenceθ is
the vector of rule probabilities, and the prior might
assert a preference for a sparse grammar (see be-
low). The posterior probability of each value ofθ
is given by Bayes’ rule:

P(θ|D) ∝ P(D|θ)P(θ). (1)

In principle Equation 1 defines the posterior prob-
ability of any value ofθ, but computing this may
not be tractable analytically or numerically. For this
reason a variety of methods have been developed to
support approximate Bayesian inference. One of the
most popular methods is Markov chain Monte Carlo
(MCMC), in which a Markov chain is used to sam-
ple from the posterior distribution.

This paper presents two new MCMC algorithms
for inferring the posterior distribution over parses
and rule probabilities given a corpus of strings. The
first algorithm is a component-wise Gibbs sampler
which is very similar in spirit to the EM algo-
rithm, drawing parse trees conditioned on the cur-
rent parameter values and then sampling the param-
eters conditioned on the current set of parse trees.
The second algorithm is a component-wise Hastings
sampler that “collapses” the probabilistic model, in-
tegrating over the rule probabilities of the PCFG,
with the goal of speeding convergence. Both algo-

139

rithms use an efficient dynamic programming tech-
nique to sample parse trees.

Given their usefulness in other disciplines, we
believe that Bayesian methods like these are likely
to be of general utility in computational linguis-
tics as well. As a simple illustrative example, we
use these methods to infer morphological parses for
verbs from Sesotho, a southern Bantu language with
agglutinating morphology. Our results illustrate that
Bayesian inference using a prior that favors sparsity
can produce linguistically reasonable analyses in sit-
uations in which EM does not.

The rest of this paper is structured as follows.
The next section introduces the background for our
paper, summarizing the key ideas behind PCFGs,
Bayesian inference, and MCMC. Section 3 intro-
duces our first MCMC algorithm, a Gibbs sampler
for PCFGs. Section 4 describes an algorithm for
sampling trees from the distribution over trees de-
fined by a PCFG. Section 5 shows how to integrate
out the rule weight parametersθ in a PCFG, allow-
ing us to sample directly from the posterior distribu-
tion over parses for a corpus of strings. Finally, Sec-
tion 6 illustrates these methods in learning Sesotho
morphology.

2 Background

2.1 Probabilistic context-free grammars

Let G = (T,N, S,R) be a Context-Free Grammar
in Chomsky normal form with no useless produc-
tions, whereT is a finite set ofterminal symbols, N
is a finite set ofnonterminal symbols(disjoint from
T), S ∈ N is a distinguished nonterminal called the
start symbol, andR is a finite set ofproductionsof
the formA → B C or A → w, whereA,B,C ∈ N
andw ∈ T . In what follows we useβ as a variable
ranging over(N ×N) ∪ T .

A Probabilistic Context-Free Grammar(G, θ) is
a pair consisting of a context-free grammarG and
a real-valued vectorθ of length|R| indexed by pro-
ductions, whereθA→β is theproduction probability
associated with the productionA → β ∈ R. We
require thatθA→β ≥ 0 and that for all nonterminals
A ∈ N ,

∑

A→β∈R θA→β = 1.

A PCFG(G, θ) defines a probability distribution

over treest as follows:

PG(t|θ) =
∏

r∈R

θfr(t)
r

wheret is generated byG andfr(t) is the number
of times the productionr = A → β ∈ R is used
in the derivation oft. If G does not generatet let
PG(t|θ) = 0. The yield y(t) of a parse treet is
the sequence of terminals labeling its leaves. The
probability of a stringw ∈ T+ of terminals is the
sum of the probability of all trees with yieldw, i.e.:

PG(w|θ) =
∑

t:y(t)=w

PG(t|θ).

2.2 Bayesian inference for PCFGs

Given a corpus of stringsw = (w1, . . . , wn), where
eachwi is a string of terminals generated by a known
CFG G, we would like to be able to infer the pro-
duction probabilitiesθ that best describe that corpus.
Takingw to be our data, we can apply Bayes’ rule
(Equation 1) to obtain:

P(θ|w) ∝ PG(w|θ)P(θ), where

PG(w|θ) =
n
∏

i=1

PG(wi|θ).

Using t to denote a sequence of parse trees forw,
we can compute the joint posterior distribution over
t andθ, and then marginalize overt, with P(θ|w) =
∑

t
P(t, θ|w). The joint posterior distribution ont

andθ is given by:

P(t, θ|w) ∝ P(w|t)P(t|θ)P(θ)

=

(

n
∏

i=1

P(wi|ti)P(ti|θ)

)

P(θ)

with P(wi|ti) = 1 if y(ti) = wi, and0 otherwise.

2.3 Dirichlet priors

The first step towards computing the posterior dis-
tribution is to define a prior onθ. We takeP(θ) to
be a product of Dirichlet distributions, with one dis-
tribution for each non-terminalA ∈ N . The prior
is parameterized by a positive real valued vectorα
indexed by productionsR, so each production prob-
ability θA→β has a corresponding Dirichlet param-
eterαA→β. Let RA be the set of productions inR

140

with left-hand sideA, and letθA and αA refer to
the component subvectors ofθ and α respectively
indexed by productions inRA. The Dirichlet prior
PD(θ|α) is:

PD(θ|α) =
∏

A∈N

PD(θA|αA), where

PD(θA|αA) =
1

C(αA)

∏

r∈RA

θαr−1
r and

C(αA) =

∏

r∈RA
Γ(αr)

Γ(
∑

r∈RA
αr)

(2)

where Γ is the generalized factorial function and
C(α) is a normalization constant that does not de-
pend onθA.

Dirichlet priors are useful because they arecon-
jugate to the distribution over trees defined by a
PCFG. This means that the posterior distribution
on θ given a set of parse trees,P(θ|t, α), is also a
Dirichlet distribution. Applying Bayes’ rule,

PG(θ|t, α) ∝ PG(t|θ) PD(θ|α)

∝

(

∏

r∈R

θfr(t)
r

)(

∏

r∈R

θαr−1
r

)

=
∏

r∈R

θfr(t)+αr−1
r

which is a Dirichlet distribution with parameters
f(t) + α, where f(t) is the vector of production
counts int indexed byr ∈ R. We can thus write:

PG(θ|t, α) = PD(θ|f(t) + α)

which makes it clear that the production counts com-
bine directly with the parameters of the prior.

2.4 Markov chain Monte Carlo

Having defined a prior onθ, the posterior distribu-
tion over t and θ is fully determined by a corpus
w. Unfortunately, computing the posterior probabil-
ity of even a single choice oft andθ is intractable,
as evaluating the normalizing constant for this dis-
tribution requires summing over all possible parses
for the entire corpus and all sets of production prob-
abilities. Nonetheless, it is possible to define al-
gorithms that sample from this distribution using
Markov chain Monte Carlo (MCMC).

MCMC algorithms construct a Markov chain
whose statess ∈ S are the objects we wish to sam-
ple. The state spaceS is typically astronomically

large — in our case, the state space includes all pos-
sible parses of the entire training corpusw — and
the transition probabilitiesP(s′|s) are specified via a
scheme guaranteed to converge to the desired distri-
butionπ(s) (in our case, the posterior distribution).
We “run” the Markov chain (i.e., starting in initial
states0, sample a states1 from P(s′|s0), then sam-
ple states2 from P(s′|s1), and so on), with the prob-
ability that the Markov chain is in a particular state,
P(si), converging toπ(si) asi →∞.

After the chain has run long enough for it to ap-
proach its stationary distribution, the expectation
Eπ[f] of any functionf(s) of the states will be
approximated by the average of that function over
the set of sample states produced by the algorithm.
For example, in our case, given samples(ti, θi) for
i = 1, . . . , ℓ produced by an MCMC algorithm, we
can estimateθ as

Eπ[θ] ≈
1

ℓ

ℓ
∑

i=1

θi

The remainder of this paper presents two MCMC
algorithms for PCFGs. Both algorithms proceed by
setting the initial state of the Markov chain to a guess
for (t, θ) and then sampling successive states using
a particular transition matrix. The key difference be-
twen the two algorithms is the form of the transition
matrix they assume.

3 A Gibbs sampler for P(t, θ|w, α)

The Gibbs sampler (Geman and Geman, 1984) is
one of the simplest MCMC methods, in which tran-
sitions between states of the Markov chain result
from sampling each component of the state condi-
tioned on the current value of all other variables. In
our case, this means alternating between sampling
from two distributions:

P(t|θ,w, α) =
n
∏

i=1

P(ti|wi, θ), and

P(θ|t,w, α) = PD(θ|f(t) + α)

=
∏

A∈N

PD(θA|fA(t) + αA).

Thus every two steps we generate a new sample of
t andθ. This alternation between parsing and up-
dating θ is reminiscent of the EM algorithm, with

141

tit1 tn

w1 wi wn

θAj
. . .θA1

. . . θA|N|

αA1
. αAj

αA|N|

. . .

.

. . .

Figure 1: A Bayes net representation of dependen-
cies among the variables in a PCFG.

the Expectation step replaced by samplingt and the
Maximization step replaced by samplingθ.

The dependencies among variables in a PCFG are
depicted graphically in Figure 1, which makes clear
that the Gibbs sampler is highly parallelizable (just
like the EM algorithm). Specifically, the parsesti
are independent givenθ and so can be sampled in
parallel from the following distribution as described
in the next section.

PG(ti|wi, θ) =
PG(ti|θ)

PG(wi|θ)

We make use of the fact that the posterior is a
product of independent Dirichlet distributions in or-
der to sampleθ from PD(θ|t, α). The production
probabilitiesθA for each nonterminalA ∈ N are
sampled from a Dirchlet distibution with parameters
α′A = fA(t) + αA. There are several methods for
samplingθ = (θ1, . . . , θm) from a Dirichlet distri-
bution with parametersα = (α1, . . . , αm), with the
simplest being samplingxj from a Gamma(αj) dis-
tribution for j = 1, . . . ,m and then settingθj =
xj/

∑m
k=1 xk (Gentle, 2003).

4 Efficiently sampling from P(t|w, θ)

This section completes the description of the Gibbs
sampler for(t, θ) by describing a dynamic program-
ming algorithm for sampling trees from the set of
parses for a string generated by a PCFG. This al-
gorithm appears fairly widely known: it was de-
scribed by Goodman (1998) and Finkel et al (2006)
and used by Ding et al (2005), and is very simi-
lar to other dynamic programming algorithms for
CFGs, so we only summarize it here. The algo-
rithm consists of two steps. The first step con-
structs a standard “inside” table or chart, as used in

the Inside-Outside algorithm for PCFGs (Lari and
Young, 1990). The second step involves a recursion
from larger to smaller strings, sampling from the
productions that expand each string and construct-
ing the corresponding tree in a top-down fashion.

In this section we takew to be a string of terminal
symbolsw = (w1, . . . , wn) where eachwi ∈ T ,
and definewi,k = (wi+1, . . . , wk) (i.e., the sub-
string from wi+1 up to wk). Further, letGA =
(T,N,A,R), i.e., a CFG just likeG except that the
start symbol has been replaced withA, so,PGA

(t|θ)
is the probability of a treet whose root node is la-
beledA andPGA

(w|θ) is the sum of the probabili-
ties of all trees whose root nodes are labeledA with
yield w.

The Inside algorithm takes as input a PCFG
(G, θ) and a stringw = w0,n and constructs a ta-
ble with entriespA,i,k for eachA ∈ N and 0 ≤
i < k ≤ n, wherepA,i,k = PGA

(wi,k|θ), i.e., the
probability ofA rewriting towi,k. The table entries
are recursively defined below, and computed by enu-
merating all feasiblei, k andA in any order such that
all smaller values ofk−i are enumerated before any
larger values.

pA,k−1,k = θA→wk

pA,i,k =
∑

A→B C∈R

∑

i<j<k

θA→B C pB,i,j pC,j,k

for all A,B,C ∈ N and0 ≤ i < j < k ≤ n. At the
end of the Inside algorithm,PG(w|θ) = pS,0,n.

The second step of the sampling algorithm uses
the function SAMPLE, which returns a sample from
PG(t|w, θ) given the PCFG(G, θ) and the inside
table pA,i,k. SAMPLE takes as arguments a non-
terminal A ∈ N and a pair of string positions
0 ≤ i < k ≤ n and returns a tree drawn from
PGA

(t|wi,k, θ). It functions in a top-down fashion,
selecting the productionA → B C to expand theA,
and then recursively calling itself to expandB and
C respectively.

function SAMPLE(A, i, k) :
if k − i = 1 then return TREE(A,wk)
(j,B,C) = MULTI (A, i, k)
return TREE(A, SAMPLE(B, i, j), SAMPLE(C, j, k))

In this pseudo-code, TREE is a function that con-
structs unary or binary tree nodes respectively, and

142

MULTI is a function that produces samples from
a multinomial distribution over the possible “split”
positions j and nonterminal childrenB and C,
where:

P(j,B,C) =
θA→B C PGB

(wi,j|θ) PGC
(wj,k|θ)

PGA
(wi,k|θ)

5 A Hastings sampler forP(t|w, α)

The Gibbs sampler described in Section 3 has
the disadvantage that each sample ofθ re-
quires reparsing the training corpusw. In
this section, we describe a component-wise
Hastings algorithm for sampling directly from
P(t|w, α), marginalizing over the produc-
tion probabilities θ. Transitions between
states are produced by sampling parsesti from
P(ti|wi, t−i, α) for each stringwi in turn, where
t−i = (t1, . . . , ti−1, ti+1, . . . , tn) is the current set
of parses forw−i = (w1, . . . , wi−1, wi+1, . . . , wn).
Marginalizing over θ effectively means that the
production probabilities are updated after each
sentence is parsed, so it is reasonable to expect
that this algorithm will converge faster than the
Gibbs sampler described earlier. While the sampler
does not explicitly provide samples ofθ, the results
outlined in Sections 2.3 and 3 can be used to sample
the posterior distribution overθ for each sample of
t if required.

Let PD(θ|α) be a Dirichlet product prior, and let
∆ be the probability simplex forθ. Then by inte-
grating over the posterior Dirichlet distributions we
have:

P(t|α) =

∫

∆
PG(t|θ)PD(θ|α)dθ

=
∏

A∈N

C(αA + fA(t))

C(αA)
(3)

whereC was defined in Equation 2. Because we
are marginalizing overθ, the treesti become depen-
dent upon one another. Intuitively, this is because
wi may provide information aboutθ that influences
how some other stringwj should be parsed.

We can use Equation 3 to compute the conditional
probabilityP(ti|t−i, α) as follows:

P(ti|t−i, α) =
P(t|α)

P(t−i|α)

=
∏

A∈N

C(αA + fA(t))

C(αA + fA(t−i))

Now, if we could sample from

P(ti|wi, t−i, α) =
P(wi|ti)P(ti|t−i, α)

P(wi|t−i, α)

we could construct a Gibbs sampler whose states
were the parse treest. Unfortunately, we don’t even
know if there is an efficient algorithm for calculat-
ing P(wi|t−i, α), let alone an efficient sampling al-
gorithm for this distribution.

Fortunately, this difficulty is not fatal. A Hast-
ings sampler for a probability distributionπ(s) is
an MCMC algorithm that makes use of aproposal
distribution Q(s′|s) from which it draws samples,
and uses an acceptance/rejection scheme to define a
transition kernel with the desired distributionπ(s).
Specifically, given the current states, a samples′ 6=
s drawn fromQ(s′|s) is accepted as the next state
with probability

A(s, s′) = min

{

1,
π(s′)Q(s|s′)

π(s)Q(s′|s)

}

and with probability1 −A(s, s′) the proposal is re-
jected and the next state is the current states.

We use a component-wise proposal distribution,
generating new proposed values forti, where i is
chosen at random. Our proposal distribution is the
posterior distribution over parse trees generated by
the PCFG with grammarG and production proba-
bilities θ′, whereθ′ is chosen based on the current
t−i as described below. Each step of our Hastings
sampler is as follows. First, we computeθ′ from
t−i as described below. Then we samplet′i from
P(ti|wi, θ

′) using the algorithm described in Sec-
tion 4. Finally, we accept the proposalt′i given the
old parseti for wi with probability:

A(ti, t
′

i) = min

{

1,
P(t′i|wi, t−i, α)P(ti|wi, θ

′)

P(ti|wi, t−i, α)P(t′i|wi, θ′)

}

= min

{

1,
P(t′i|t−i, α)P(ti|wi, θ

′)

P(ti|t−i, α)P(t′i|wi, θ′)

}

The key advantage of the Hastings sampler over the
Gibbs sampler here is that because the acceptance
probability is a ratio of probabilities, the difficult to

143

computeP(wi|t−i, α) is a common factor of both
the numerator and denominator, and hence is not re-
quired. TheP (wi|ti) term also disappears, being1
for both the numerator and the denominator since
our proposal distribution can only generate trees for
whichwi is the yield.

All that remains is to specify the production prob-
abilities θ′ of the proposal distributionP(t′i|wi, θ

′).
While the acceptance rule used in the Hastings
algorithm ensures that it produces samples from
P(ti|wi, t−i, α) with any proposal grammarθ′ in
which all productions have nonzero probability, the
algorithm is more efficient (i.e., fewer proposals are
rejected) if the proposal distribution is close to the
distribution to be sampled.

Given the observations above about the corre-
spondence between terms inP(ti|t−i, α) and the
relative frequency of the corresponding productions
in t−i, we setθ′ to the expected valueE[θ|t−i, α] of
θ givent−i andα as follows:

θ′r =
fr(t−i) + αr

∑

r′∈RA
fr′(t−i) + αr′

6 Inferring sparse grammars

As stated in the introduction, the primary contribu-
tion of this paper is introducing MCMC methods
for Bayesian inference to computational linguistics.
Bayesian inference using MCMC is a technique of
generic utility, much like Expectation-Maximization
and other general inference techniques, and we be-
lieve that it belongs in every computational linguist’s
toolbox alongside these other techniques.

Inferring a PCFG to describe the syntac-
tic structure of a natural language is an obvi-
ous application of grammar inference techniques,
and it is well-known that PCFG inference us-
ing maximum-likelihood techniques such as the
Inside-Outside (IO) algorithm, a dynamic program-
ming Expectation-Maximization (EM) algorithm for
PCFGs, performs extremely poorly on such tasks.
We have applied the Bayesian MCMC methods de-
scribed here to such problems and obtain results
very similar to those produced using IO. We be-
lieve that the primary reason why both IO and the
Bayesian methods perform so poorly on this task
is that simple PCFGs are not accurate models of
English syntactic structure. We know that PCFGs

α = (0.1, 1.0)
α = (0.5, 1.0)
α = (1.0, 1.0)

Binomial parameterθ1

P(θ1|α)

10.80.60.40.20

5

4

3

2

1

0

Figure 2: A Dirichlet priorα on a binomial parame-
ter θ1. As α1 → 0, P(θ1|α) is increasingly concen-
trated around0.

that represent only major phrasal categories ignore
a wide variety of lexical and syntactic dependen-
cies in natural language. State-of-the-art systems
for unsupervised syntactic structure induction sys-
tem uses models that are very different to these kinds
of PCFGs (Klein and Manning, 2004; Smith and
Eisner, 2006).1

Our goal in this section is modest: we aim merely
to provide an illustrative example of Bayesian infer-
ence using MCMC. As Figure 2 shows, when the
Dirichlet prior parameterαr approaches 0 the prior
probabilityPD(θr|α) becomes increasingly concen-
trated around 0. This ability to bias the sampler
toward sparse grammars (i.e., grammars in which
many productions have probabilities close to 0) is
useful when we attempt to identify relevant produc-
tions from a much larger set of possible productions
via parameter estimation.

The Bantu language Sesotho is a richly agglutina-
tive language, in which verbs consist of a sequence
of morphemes, including optional Subject Markers
(SM), Tense (T), Object Markers (OM), Mood (M)
and derivational affixes as well as the obligatory
Verb stem (V), as shown in the following example:

re
SM

-a
T

-di
OM

-bon
V

-a
M

“We see them”
1It is easy to demonstrate that the poor quality of the PCFG

models is the cause of these problems rather than search or other
algorithmic issues. If one initializes either the IO or Bayesian
estimation procedures with treebank parses and then runs the
procedure using the yields alone, the accuracy of the parsesuni-
formly decreases while the (posterior) likelihood uniformly in-
creases with each iteration, demonstrating that improvingthe
(posterior) likelihood of such models does not improve parse
accuracy.

144

We used an implementation of the Hastings sampler
described in Section 5 to infer morphological parses
t for a corpusw of 2,283 unsegmented Sesotho
verb types extracted from the Sesotho corpus avail-
able from CHILDES (MacWhinney and Snow, 1985;
Demuth, 1992). We chose this corpus because the
words have been morphologically segmented manu-
ally, making it possible for us to evaluate the mor-
phological parses produced by our system. We con-
structed a CFGG containing the following produc-
tions

Word → V
Word → V M
Word → SM V M
Word → SM T V M
Word → SM T OM V M

together with productions expanding the pretermi-
nalsSM, T, OM, V andM to each of the 16,350 dis-
tinct substrings occuring anywhere in the corpus,
producting a grammar with 81,755 productions in
all. In effect, G encodes the basic morphologi-
cal structure of the Sesotho verb (ignoring factors
such as derivation morphology and irregular forms),
but provides no information about the phonological
identity of the morphemes.

Note thatG actually generates afinite language.
However,G parameterizes the probability distribu-
tion over the strings it generates in a manner that
would be difficult to succintly characterize except
in terms of the productions given above. Moreover,
with approximately 20 times more productions than
training strings, each string is highly ambiguous and
estimation is highly underconstrained, so it provides
an excellent test-bed for sparse priors.

We estimated the morphological parsest in two
ways. First, we ran the IO algorithm initialized
with a uniform initial estimateθ0 for θ to produce
an estimate of the MLÊθ, and then computed the
Viterbi parseŝt of the training corpusw with respect
to the PCFG(G, θ̂). Second, we ran the Hastings
sampler initialized with trees sampled from(G, θ0)
with several different values for the parameters of
the prior. We experimented with a number of tech-
niques for speeding convergence of both the IO and
Hastings algorithms, and two of these were particu-
larly effective on this problem. Annealing, i.e., us-
ing P(t|w)1/τ in place ofP(t|w) whereτ is a “tem-
perature” parameter starting around 5 and slowly ad-

justed toward 1, sped the convergence of both algo-
rithms. We ran both algorithms for several thousand
iterations over the corpus, and both seemed to con-
verge fairly quickly onceτ was set to 1. “Jittering”
the initial estimate ofθ used in the IO algorithm also
sped its convergence.

The IO algorithm converges to a solution where
θWord→ V = 1, and every stringw ∈ w is analysed
as a single morphemeV. (In fact, in this grammar
P(wi|θ) is the empirical probability ofwi, and it is
easy to prove that thisθ is the MLE).

The samplest produced by the Hastings algo-
rithm depend on the parameters of the Dirichlet
prior. We setαr to a single valueα for all pro-
ductionsr. We found that forα > 10−2 the sam-
ples produced by the Hastings algorithm were the
same trivial analyses as those produced by the IO
algorithm, but asα was reduced below thist be-
gan to exhibit nontrivial structure. We evaluated
the quality of the segmentations in the morpholog-
ical analysest in terms of unlabeled precision, re-
call, f-score and exact match (the fraction of words
correctly segmented into morphemes; we ignored
morpheme labels because the manual morphological
analyses contain many morpheme labels that we did
not include inG). Figure 3 contains a plot of how
these quantities vary withα; obtaining an f-score of
0.75 and an exact word match accuracy of 0.54 at
α = 10−5 (the corresponding values for the MLÊθ
are both 0). Note that we obtained good results asα
was varied over several orders of magnitude, so the
actual value ofα is not critical. Thus in this appli-
cation the ability to prefer sparse grammars enables
us to find linguistically meaningful analyses. This
ability to find linguistically meaningful structure is
relatively rare in our experience with unsupervised
PCFG induction.

We also experimented with a version of IO modi-
fied to perform Bayesian MAP estimation, where the
Maximization step of the IO procedure is replaced
with Bayesian inference using a Dirichlet prior, i.e.,
where the rule probabilitiesθ(k) at iterationk are es-
timated using:

θ(k)
r ∝ max(0,E[fr|w, θ(k−1)] + α− 1).

Clearly such an approach is very closely related to
the Bayesian procedures presented in this article,

145

Exact
Recall

Precision
F-score

Dirichlet prior parameterαr

1 0.01 1e-04 1e-06 1e-08 1e-10

1

0.75

0.5

0.25

0

Figure 3: Accuracy of morphological segmentations
of Sesotho verbs proposed by the Hastings algo-
rithms as a function of Dirichlet prior parameter
α. F-score, precision and recall are unlabeled mor-
pheme scores, while Exact is the fraction of words
correctly segmented.

and in some circumstances this may be a useful
estimator. However, in our experiments with the
Sesotho data above we found that for the small val-
ues ofα necessary to obtain a sparse solution,the
expected rule countE[fr] for many rulesr was less
than1−α. Thus on the next iterationθr = 0, result-
ing in there being no parse whatsoever for many of
the strings in the training data. Variational Bayesian
techniques offer a systematic way of dealing with
these problems, but we leave this for further work.

7 Conclusion

This paper has described basic algorithms for per-
forming Bayesian inference over PCFGs given ter-
minal strings. We presented two Markov chain
Monte Carlo algorithms (a Gibbs and a Hastings
sampling algorithm) for sampling from the posterior
distribution over parse trees given a corpus of their
yields and a Dirichlet product prior over the produc-
tion probabilities. As a component of these algo-
rithms we described an efficient dynamic program-
ming algorithm for sampling trees from a PCFG
which is useful in its own right. We used these
sampling algorithms to infer morphological analy-
ses of Sesotho verbs given their strings (a task on
which the standard Maximum Likelihood estimator
returns a trivial and linguistically uninteresting so-
lution), achieving 0.75 unlabeled morpheme f-score
and 0.54 exact word match accuracy. Thus this
is one of the few cases we are aware of in which
a PCFG estimation procedure returns linguistically

meaningful structure. We attribute this to the ability
of the Bayesian prior to prefer sparse grammars.

We expect that these algorithms will be of inter-
est to the computational linguistics community both
because a Bayesian approach to PCFG estimation is
more flexible than the Maximum Likelihood meth-
ods that currently dominate the field (c.f., the use
of a prior as a bias towards sparse solutions), and
because these techniques provide essential building
blocks for more complex models.

References
Katherine Demuth. 1992. Acquisition of Sesotho. In Dan

Slobin, editor,The Cross-Linguistic Study of Language Ac-
quisition, volume 3, pages 557–638. Lawrence Erlbaum As-
sociates, Hillsdale, N.J.

Ye Ding, Chi Yu Chan, and Charles E. Lawrence. 2005. RNA
secondary structure prediction by centroids in a Boltzmann
weighted ensemble.RNA, 11:1157–1166.

Jenny Rose Finkel, Christopher D. Manning, and Andrew Y.
Ng. 2006. Solving the problem of cascading errors:
Approximate Bayesian inference for linguistic annotation
pipelines. InProceedings of the 2006 Conference on Empir-
ical Methods in Natural Language Processing, pages 618–
626, Sydney, Australia. Association for Computational Lin-
guistics.

Stuart Geman and Donald Geman. 1984. Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6:721–741.

James E. Gentle. 2003.Random number generation and Monte
Carlo methods. Springer, New York, 2nd edition.

Joshua Goodman. 1998. Parsing inside-out.
Ph.D. thesis, Harvard University. available from
http://research.microsoft.com/˜joshuago/.

Dan Klein and Chris Manning. 2004. Corpus-based induc-
tion of syntactic structure: Models of dependency and con-
stituency. InProceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics, pages 478–485.

K. Lari and S.J. Young. 1990. The estimation of Stochastic
Context-Free Grammars using the Inside-Outside algorithm.
Computer Speech and Language, 4(35-56).

Brian MacWhinney and Catherine Snow. 1985. The child lan-
guage data exchange system.Journal of Child Language,
12:271–296.

Noah A. Smith and Jason Eisner. 2006. Annealing structural
bias in multilingual weighted grammar induction. InPro-
ceedings of the 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 569–576, Sydney,
Australia. Association for Computational Linguistics.

146

