
Proceedings of NAACL HLT 2007, pages 113–120,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

A Systematic Exploration of the Feature Space for Relation Extraction

Jing Jiang and ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{jiang4,czhai }@cs.uiuc.edu

Abstract

Relation extraction is the task of find-
ing semantic relations between entities
from text. The state-of-the-art methods
for relation extraction are mostly based
on statistical learning, and thus all have
to deal with feature selection, which can
significantly affect the classification per-
formance. In this paper, we systemat-
ically explore a large space of features
for relation extraction and evaluate the ef-
fectiveness of different feature subspaces.
We present a general definition of fea-
ture spaces based on a graphic represen-
tation of relation instances, and explore
three different representations of relation
instances and features of different com-
plexities within this framework. Our ex-
periments show that using only basic unit
features is generally sufficient to achieve
state-of-the-art performance, while over-
inclusion of complex features may hurt
the performance. A combination of fea-
tures of different levels of complexity and
from different sentence representations,
coupled with task-oriented feature prun-
ing, gives the best performance.

1 Introduction

An important information extraction task is relation
extraction, whose goal is to detect and characterize
semantic relations between entities in text. For ex-
ample, the text fragment “hundreds of Palestinians

converged on the square” contains thelocatedrela-
tion between thePersonentity “hundreds of Pales-
tinians” and theBounded-Areaentity “the square”.
Relation extraction has applications in many do-
mains, including finding affiliation relations from
web pages and finding protein-protein interactions
from biomedical literature.

Recent studies on relation extraction have shown
the advantages of discriminative model-based sta-
tistical machine learning approach to this problem.
There are generally two lines of work following this
approach. The first utilizes a set of carefully se-
lected features obtained from different levels of text
analysis, from part-of-speech (POS) tagging to full
parsing and dependency parsing (Kambhatla, 2004;
Zhao and Grishman, 2005; Zhou et al., 2005)1. The
second line of work designs kernel functions on
some structured representation (sequences or trees)
of the relation instances to capture the similarity be-
tween two relation instances (Zelenko et al., 2003;
Culotta and Sorensen, 2004; Bunescu and Mooney,
2005a; Bunescu and Mooney, 2005b; Zhang et al.,
2006a; Zhang et al., 2006b). Of particular interest
among the various kernels proposed are the convolu-
tion kernels (Bunescu and Mooney, 2005b; Zhang et
al., 2006a), because they can efficiently compute the
similarity between two instances in a huge feature
space due to their recursive nature. Apart from their
computational efficiency, convolution kernels also
implicitly correspond to some feature space. There-
fore, both lines of work rely on an appropriately de-

1Although Zhao and Grishman (2005) defined a number of
kernels for relation extraction, the method is essentially similar
to feature-based methods.

113

fined set of features. As in any learning problem, the
choice of features can affect the performance signif-
icantly.

Despite the importance of feature selection, there
has not been any systematic exploration of the fea-
ture space for relation extraction, and the choices
of features in existing work are somewhat arbitrary.
In this paper, we conduct a systematic study of the
feature space for relation extraction, and evaluate
the effectiveness of different feature subspaces. Our
motivations are twofold. First, based on previous
studies, we want to identify and characterize the
types of features that are potentially useful for rela-
tion extraction, and define a relatively complete and
structured feature space that can be systematically
explored. Second, we want to compare the effective-
ness of different features. Such a study can guide us
to choose the most effective feature set for relation
extraction, or to design convolution kernels in the
most effective way.

We propose and define a unified graphic repre-
sentation of the feature space, and experiment with
three feature subspaces, corresponding to sequences,
syntactic parse trees and dependency parse trees.
Experiment results show that each subspace is ef-
fective by itself, with the syntactic parse tree sub-
space being the most effective. Combining the three
subspaces does not generate much improvement.
Within each feature subspace, using only the basic
unit features can already give reasonably good per-
formance. Adding more complex features may not
improve the performance much or may even hurt
the performance. Task-oriented heuristics can be
used to prune the feature space, and when appropri-
ately done, can improve the performance. A com-
bination of features of different levels of complex-
ity and from different sentence representations, cou-
pled with task-oriented feature pruning, gives the
best performance.

2 Related Work

Zhao and Grishman (2005) and Zhou et al. (2005)
explored a large set of features that are potentially
useful for relation extraction. However, the feature
space was defined and explored in a somewhat ad
hoc manner. We study a broader scope of features
and perform a more systematic study of different

feature subspaces. Zelenko et al. (2003) and Culotta
and Sorensen (2004) used tree kernels for relation
extraction. These kernels can achieve high precision
but low recall because of the relatively strict match-
ing criteria. Bunescu and Mooney (2005a) proposed
a dependency path kernel for relation extraction.
This kernel also suffers from low recall for the same
reason. Bunescu and Mooney (2005b) and Zhang
et. al. (2006a; 2006b) applied convolution string ker-
nels and tree kernels, respectively, to relation extrac-
tion. The convolution tree kernels achieved state-
of-the-art performance. Since convolution kernels
correspond to some explicit large feature spaces, the
feature selection problem still remains.

General structural representations of natural lan-
guage data have been studied in (Suzuki et al.,
2003; Cumby and Roth, 2003), but these models
were not designed specifically for relation extrac-
tion. Our feature definition is similar to these mod-
els, but more specifically designed for relation ex-
traction and systematic exploration of the feature
space. Compared with (Cumby and Roth, 2003), our
feature space is more compact and provides more
guidance on selecting meaningful subspaces.

3 Task Definition

Given a small piece of text that contains two entity
mentions, the task of relation extraction is to decide
whether the text states some semantic relation be-
tween the two entities, and if so, classify the rela-
tion into one of a set of predefined semantic rela-
tion types. Formally, letr = (s, arg1, arg2) de-
note a relation instance, wheres is a sentence,arg1

andarg2 are two entity mentions contained ins, and
arg1 precedesarg2 in the text. Given a set of rela-
tion instances{ri}, each labeled with a typeti ∈ T ,
whereT is the set of predefined relation types plus
the typenil, our goal is to learn a function that maps
a relation instancer to a typet ∈ T . Note that we
do not specify the representation ofs here. Indeed,s
can contain more structured information in addition
to merely the sequence of tokens in the sentence.

4 Feature Space for Relation Extraction

Ideally, we would like to define a feature space with
at least two properties: (1) It should becompletein
the sense that all features potentially useful for the

114

classification problem are included. (2) It should
have a goodstructureso that a systematic search in
the space is possible. Below we show how a unified
graph-based feature space can be defined to satisfy
these two properties.

4.1 A Unified View of Features for Relation
Extraction

Before we introduce our definition of the feature
space, let us first look at some typical features used
for relation extraction. Consider the relation in-
stance“hundreds of Palestinians converged on the
square”with arg1 = “hundreds of Palestinians”and
arg2 = “the square”. Various types of information
can be useful for classifying this relation instance.
For example, knowing thatarg1 is an entity of type
Personcan be useful. This feature involves the sin-
gle token“Palestinians”. Another feature, “the head
word of arg1 (Palestinians) is followed by a verb
(converged)”, can also be useful. This feature in-
volves two tokens,“Palestinians” and“converged”,
with a sequence relation. It also involves the knowl-
edge that“Palestinians” is part ofarg1 and “con-
verged” is a verb. If we have the syntactic parse tree
of the sentence, we can obtain even more complex
and discriminative features. For example, the syn-
tactic parse tree of the same relation instance con-
tains the following subtree: [VP→ VBD [PP→ [IN
→ on] NP]]. If we know thatarg2 is contained in the
NP in this subtree, then this subtree states thatarg2

is in a PP that is attached to a VP, and the proposition
is “on” . This subtree therefore may also a useful
feature. Similarly, if we have the dependency parse
tree of the relation instance, then the dependency
link “square Ã on” states that the token“square”
is dependent on the token“on” , which may also be
a useful feature.

Given that useful features are of various forms, in
order to systematically search the feature space, we
need to first have a unified view of features. This
problem is not trivial because it is not immediately
clear how different types of features can be unified.
We observe, however, that in general features fall
into two categories: (1) properties of a single token,
and (2) relations between tokens. Features that in-
volve attributes of a single token, such as bag-of-
word features and entity attribute features, belong
to the first category, while features that involve se-

quence, syntactic or dependency relations between
tokens belong to the second category. Motivated by
this observation, we can represent relation instances
as graphs, with nodes denoting single tokens or syn-
tactic categories such as NPs and VPs, and edges de-
noting various types of relations between the nodes.

4.2 Relation Instance Graphs

We represent a relation instance as a labeled, di-
rected graphG = (V, E,A, B), whereV is the set
of nodes in the graph,E is the set of directed edges
in the graph, andA, B are functions that assign la-
bels to the nodes.

First, for each nodev ∈ V , A(v) =
{a1, a2, . . . , a|A(v)|} is a set of attributes associated
with nodev, whereai ∈ Σ, andΣ is an alphabet that
contains all possible attribute values. The attributes
are introduced to help generalize the node. For ex-
ample, if nodev represents a token, thenA(v) can
include the token itself, its morphological base form,
its POS, its semantic class (e.g. WordNet synset),
etc. If v also happens to be the head word ofarg1 or
arg2, thenA(v) can also include the entity type and
other entity attributes. If nodev represents a syntac-
tic category such as an NP or VP,A(v) can simply
contain only the syntactic tag.

Next, functionB : V → {0, 1, 2, 3} is introduced
to distinguish argument nodes from non-argument
nodes. For each nodev ∈ V , B(v) indicates how
nodev is related toarg1 andarg2. 0 indicates that
v does not cover any argument, 1 or 2 indicates that
v coversarg1 or arg2, respectively, and 3 indicates
that v covers both arguments. We will see shortly
that only nodes that represent syntactic categories in
a syntactic parse tree can possibly be assigned 3. We
refer toB(v) as theargument tagof v.

We now consider three special instantiations of
this general definition of relation instance graphs.
See Figures 1, 2 and 3 for examples of each of the
three representations.

Sequence: Without introducing any additional
structured information, a sequence representation
preserves the order of the tokens as they occur in the
original sentence. Each node in this graph is a token
augmented with its relevant attributes. For example,
head words ofarg1 andarg2 are augmented with the
corresponding entity types. A token is assigned the
argument tag 1 or 2 if it is the head word ofarg1 or

115

NNS
hundreds

IN
of

NNP
Palestinians

Person

VBD
converged

IN
on

DT
the

NN
square

Bounded-Area

00 1 0 0 0 2

Person VBD

1 0

Bounded-Area

2

Figure 1: An example sequence representation. The
subgraph on the left represents a bigram feature. The
subgraph on the right represents a unigram feature
that states the entity type ofarg2.

NNS
hundreds

IN
of

NNP
Palestinians

Person

VBD
converged

IN
on

DT
the

NN
square

Bounded-Area

00 1 0 0 0 2

NPB NPB

PP

NP

1

1

0

1

S

VP

PP

NPB

3

2

2

2

on DT Bounded-Area

0 0 2

PP

NPB

2

2

Figure 2: An example syntactic parse tree represen-
tation. The subgraph represents a subtree feature
(grammar production feature).

arg2. Otherwise, it is assigned the argument tag 0.
There is a directed edge fromu to v if and only if
the token represented byv immediately follows that
represented byu in the sentence.

Syntactic Parse Tree: The syntactic parse tree
of the relation instance sentence can be augmented
to represent the relation instance. First, we modify
the tree slightly by conflating each leaf node in the
original parse tree with its parent, which is a preter-
minal node labeled with a POS tag. Then, each node
is augmented with relevant attributes if necessary.
Argument tags are assigned to the leaf nodes in the
same way as in the sequence representation. For an
internal nodev, argument tag 1 or 2 is assigned if
eitherarg1 or arg2 is inside the subtree rooted atv,
and 3 is assigned if both arguments are inside the
subtree. Otherwise, 0 is assigned tov.

Dependency Parse Tree: Similarly, the depen-
dency parse tree can also be modified to represent
the relation instance. Assignment of attributes and
argument tags is the same as for the sequence repre-
sentation. To simplify the representation, we ignore

NNS
hundreds

IN
of

NNP
Palestinians

Person

VBD
converged

IN
on

DT
the

NN
square

Bounded-Area

00 1 0 0 0 2

of Palestinians

10

Figure 3: An example dependency parse tree rep-
resentation. The subgraph represents a dependency
relation feature betweenarg1 “Palestinians” and
“of” .

the dependency relation types.

4.3 Features

Given the above definition of relation instance
graphs, we are now ready to define features. Intu-
itively, a feature of a relation instance captures part
of the attributive and/or structural properties of the
relation instance graph. Therefore, it is natural to de-
fine a feature as a subgraph of the relation instance
graph. Formally, given a graphG = (V,E, A,B),
which represents a single relation instance, a fea-
ture that exists in this relation instance is a sub-
graphG′ = (V ′, E′, A′, B′) that satisfies the fol-
lowing conditions: V ′ ⊆ V , E′ ⊆ E, and∀v ∈
V ′, A′(v) ⊆ A(v), B′(v) = B(v).

We now show that many features that have been
explored in previous work on relation extraction can
be transformed into this graphic representation. See
Figures 1, 2 and 3 for some examples.

Entity Attributes : Previous studies have shown
that entity types and entity mention types ofarg1

andarg2 are very useful (Zhao and Grishman, 2005;
Zhou et al., 2005; Zhang et al., 2006b). To represent
a single entity attribute, we can take a subgraph that
contains only the node representing the head word of
the argument, labeled with the entity type or entity
mention type. A particularly useful type of features
areconjunctive entity features, which are conjunc-
tions of two entity attributes, one for each argument.
To represent a conjunctive feature such as “arg1 is
a Personentity andarg2 is aBounded-Areaentity”,
we can take a subgraph that contains two nodes, one
for each argument, and each labeled with an en-
tity attribute. Note that in this case, the subgraph
contains two disconnected components, which is al-
lowed by our definition.

Bag-of-Words: These features have also been

116

explore by Zhao and Grishman (2005) and Zhou
et. al. (2005). To represent a bag-of-word feature,
we can simply take a subgraph that contains a single
node labeled with the token. Because the node also
has an argument tag, we can distinguish between ar-
gument word and non-argument word.

Bigrams: A bigram feature (Zhao and Grishman,
2005) can be represented by a subgraph consisting
of two connected nodes from the sequence represen-
tation, where each node is labeled with the token.

Grammar Productions: The features in convo-
lution tree kernels for relation extraction (Zhang et
al., 2006a; Zhang et al., 2006b) are sequences of
grammar productions, that is, complete subtrees of
the syntactic parse tree. Therefore, these features
can naturally be represented by subgraphs of the re-
lation instance graphs.

Dependency Relations and Dependency Paths:
These features have been explored by Bunescu and
Mooney (2005a), Zhao and Grishman (2005), and
Zhou et. al. (2005). A dependency relation can be
represented as an edge connecting two nodes from
the dependency tree. The dependency path between
the two arguments can also be easily represented as
a path in the dependency tree connecting the two
nodes that represent the two arguments.

There are some features that are not covered by
our current definition, but can be included if we
modify our relation instance graphs. For example,
gapped subsequence features in subsequence ker-
nels (Bunescu and Mooney, 2005b) can be repre-
sented as subgraphs of the sequence representation
if we add more edges to connect any pair of nodesu
andv provided that the token represented byu oc-
curs somewhere before that represented byv in the
sentence. Since our feature definition is very gen-
eral, our feature space also includes many features
that have not been explored before.

4.4 Searching the Feature Space

Although the feature space we have defined is rel-
atively complete and has a clear structure, it is still
too expensive to exhaustively search the space be-
cause the number of features is exponential in terms
of the size of the relation instance graph. We thus
propose to search the feature space in the follow-
ing bottom-up manner: We start with the conjunc-
tive entity features (defined in Section 4.3), which

have been found effective in previous studies and
are intuitively necessary for relation extraction. We
then systematically add unit features with different
granularities. We first consider the minimum (i.e.
most basic) unit features. We then gradually include
more complex features. The motivations for this
strategy are the following: (1) Using the smallest
features to represent a relation instance graph pre-
sumably covers all unit characteristics of the graph.
(2) Using small subgraphs allows fuzzy matching,
which is good for our task because relation instances
of the same type may vary in their relation instance
graphs, especially with the noise introduced by ad-
jectives, adverbs, or irrelevant propositional phrases.
(3) The number of features of a fixed small size is
polynomial in terms of the size of the relation in-
stance graph. It is therefore feasible to generate all
the small unit features and use any classifier such as
a maximum entropy classifier or an SVM.

In our experiments, we consider three levels of
small unit features in increasing order of their com-
plexity. First, we considerunigramfeaturesGuni =
({u}, ∅, Auni , B), whereAuni(u) = {ai} ⊆ A(u).
In another word, unigram features consist of a sin-
gle node labeled with a single attribute. Examples
of unigram features include bag-of-word features
and non-conjunctive entity attribute features. At the
second level, we considerbigram featuresGbi =
({u, v}, {(u, v)}, Auni , B). Bigram features are
therefore single edges connecting two nodes, where
each node is labeled with a single attribute. The
third level of attributes we consider aretrigram fea-
turesGtri = ({u, v, w}, {(u, v), (u, w)}, Auni , B)
or Gtri = ({u, v, w}, {(u, v), (v, w)}, Auni , B).
Thus trigram features consist of two connected
edges and three nodes, where each node is also la-
beled with a single attribute.

We treat the three relation instance graphs (se-
quences, syntactic parse trees, and dependency parse
trees) as three feature subspaces, and search in each
subspace. For each feature subspace, we incremen-
tally add the unigram, bigram and trigram features
to the working feature set. For the syntactic parse
tree representation, we also consider a fourth level of
small unit features, which are single grammar pro-
ductions such as [VP→ VBD PP], because these
are the smallest features in convolution tree kernels.
After we explore each feature subspace, we try to

117

combine the features from the three subspaces to see
whether the performance can be improved, that is,
we test whether the sequence, syntactic and depen-
dency relations can complement each other.

5 Experiments

5.1 Data Set and Experiment Setup

We used the data set from ACE (Automatic Con-
tent Extraction) 2004 evaluation to conduct our ex-
periments. This corpus defines 7 types of relations:
Physical, Personal / Social, Empolyment / Memeber-
ship / Subsidiary, Agent-Artifact, PER / ORG Affili-
ation, GPE AffiliationandDiscourse.

We used Collins parser to parse the sentences in
the corpus because Collins parser gives us the head
of each syntactic category, which allows us to trans-
form the syntactic parse trees into dependency trees.
We discarded sentences that could not be parsed
by Collins parser. The candidate relation instances
were generated by considering all pairs of entities
that occur in the same sentence. We obtained 48625
candidate relation instances in total, among which
4296 instances were positive.

As in most existing work, instead of using the en-
tire sentence, we used only the sequence of tokens
that are inside the minimum complete subtree cov-
ering the two arguments. Presumably, tokens out-
side of this subtree are not so relevant to the task. In
our graphic representation of relation instances, the
attribute set for a token node includes the token it-
self, its POS tag, and entity type, entity subtype and
entity mention type when applicable. The attribute
set for a syntactic category node includes only the
syntactic tag. We used both maximum entropy clas-
sifier and SVM for all experiments. We adopted one
vs. others strategy for the multi-class classification
problem. In all experiments, the performance shown
was based on 5-fold cross validation.

5.2 General Search in the Feature Subspaces

Following the general search strategy, we conducted
the following experiments. For each feature sub-
space, we started with the conjunctive entity features
plus the unigram features. We then incrementally
added bigram and trigram features. For the syntac-
tic parse tree feature space, we conducted an addi-
tional experiment: We added basic grammar produc-

tion features on top of the unigram, bigram and tri-
gram features. Adding production features allows us
to study the effect of adding more complex and pre-
sumably more specific and discriminative features.

Table 1 shows the precision (P), recall (R) and F1
measure (F) from the experiments with the maxi-
mum entropy classifier (ME) and the SVM classi-
fier (SVM). We can compare the results in two di-
mensions. First, within each feature subspace, while
bigram features improved the performance signifi-
cantly over unigrams, trigrams did not improve the
performance very much. This trend is observed for
both classifiers. In the case of the syntactic parse tree
subspace, adding production features even hurt the
performance. This suggests that inclusion of com-
plex features is not guaranteed to improve the per-
formance.

Second, if we compare the best performance
achieved in each feature subspace, we can see that
for both classifiers, syntactic parse tree is the most
effective feature space, while sequence and depen-
dency tree are similar. However, the difference in
performance between the syntactic parse tree sub-
space and the other two subspaces is not very large.
This suggests that each feature subspace alone al-
ready captures most of the useful structural informa-
tion between tokens for relation extraction. The rea-
son why the sequence feature subspace gave good
performance although it contained the least struc-
tural information is probably that many relations de-
fined in the ACE corpus are short-range relations,
some within single noun phrases. For such kind of
relations, sequence information may be even more
reliable than syntactic or dependency information,
which may not be accurate due to parsing errors.

Next, we conducted experiments to combine the
features from the three subspaces to see whether
this could further improve the performance. For se-
quence subspace and dependency tree subspace, we
used up to bigram features, and for syntactic parse
tree subspace, we used up to trigram features. In Ta-
ble 2, we show the experiment results. We can see
that for both classifiers, adding features from the se-
quence subspace or from the dependency tree sub-
space to the syntactic parse tree subspace can im-
prove the performance slightly. But combining se-
quence subspace and dependency tree subspace does
not generate any performance improvement. Again,

118

Uni +Bi +Tri +Prod
P 0.647 0.662 0.717

Seq R 0.614 0.701 0.653 N/A
F 0.630 0.681 0.683
P 0.651 0.695 0.726 0.702

ME Syn R 0.645 0.698 0.688 0.691
F 0.648 0.697 0.707 0.696
P 0.647 0.673 0.718

Dep R 0.614 0.676 0.652 N/A
F 0.630 0.674 0.683
P 0.583 0.666 0.684

Seq R 0.586 0.650 0.648 N/A
F 0.585 0.658 0.665
P 0.598 0.645 0.679 0.674

SVM Syn R 0.611 0.663 0.681 0.672
F 0.604 0.654 0.680 0.673
P 0.583 0.644 0.682

Dep R 0.586 0.638 0.645 N/A
F 0.585 0.641 0.663

Table 1: Comparison among the three feature sub-
spaces and the effect of including larger features.

Seq+Syn Seq+Dep Syn+Dep All
P 0.737 0.687 0.695 0.724

ME R 0.694 0.682 0.731 0.702
F 0.715 0.684 0.712 0.713
P 0.689 0.669 0.687 0.691

SVM R 0.686 0.653 0.682 0.686
F 0.688 0.661 0.684 0.688

Table 2: The effect of combining the three feature
subspaces.

this suggests that since many of the ACE relations
are local, there is likely much overlap between se-
quence information and dependency information.

We also tried the convolution tree kernel
method (Zhang et al., 2006a), using an SVM tree
kernel package2. The performance we obtained was
P = 0.705, R = 0.685, and F = 0.6953. This F mea-
sure is higher than the best SVM performance in Ta-
ble 1. The convolution tree kernel uses large subtree
features, but such features are deemphasized with
an exponentially decaying weight. We found that
the performance was sensitive to this decaying fac-
tor, suggesting that complex features can be useful
if they are weighted appropriately, and further study
of how to optimize the weights of such complex fea-
tures is needed.

2http://ai-nlp.info.uniroma2.it/moschitti/Tree-Kernel.htm
3The performance we achieved is lower than that reported

in (Zhang et al., 2006b), due to different data preprocessing,
data partition, and parameter setting.

5.3 Task-Oriented Feature Pruning

Apart from the general bottom-up search strategy we
have proposed, we can also introduce some task-
oriented heuristics based on intuition or domain
knowledge to prune the feature space. In our ex-
periments, we tried the following heuristics.

H1: Zhang et al. (2006a) found that usingpath-
enclosed treeperformed better than usingminimum
complete tree, when convolution tree kernels were
applied. In path-enclosed trees, tokens beforearg1

and afterarg2 as well as their links with other nodes
in the tree are removed. Based on this previous
finding, our first heuristic was to change the syntac-
tic parse tree representation of the relation instances
into path-enclosed trees.

H2: We hypothesize that words such as articles,
adjectives and adverbs are not very useful for rela-
tion extraction. We thus removed sequence unigram
features and bigram features that contain an article,
adjective or adverb.

H3: Similar to H2, we can remove bigrams in the
syntactic parse tree subspace if the bigram contains
an article, adjective or adverb.

H4: Similar to H1, we can also remove the to-
kens beforearg1 and afterarg2 from the sequence
representation of a relation instance.

In Table 3, we show the performance after apply-
ing these heuristics. We started with the best con-
figuration from our previous experiments, that is,
combing up to bigram features in the sequence sub-
space and up to trigram features in the syntactic tree
subspace. We then applied heuristics H1 to H4 in-
crementally unless we saw that a heuristic was not
effective. We found that H1, H2 and H4 slightly
improved the performance, but H3 hurt the perfor-
mance. On the one hand, the improvement suggests
that our original feature configuration included some
irrelevant features, and in turn confirmed that over-
inclusion of features could hurt the performance. On
the other hand, since the improvement brought by
H1, H2 and H4 was rather small, and H3 even hurt
the performance, we could see that it is in general
very hard to find good feature pruning heuristics.

6 Conclusions and Future Work

In this paper, we conducted a systematic study of
the feature space for relation extraction. We pro-

119

ME SVM
P R F P R F

Best 0.737 0.694 0.715 0.689 0.686 0.688
+H1 0.714 0.729 0.721 0.698 0.699 0.699
+H2 0.730 0.723 0.726 0.704 0.704 0.704
+H3 0.739 0.704 0.721 0.701 0.696 0.698

-H3+H4 0.746 0.713 0.729 0.702 0.701 0.702

Table 3: The effect of various heuristic feature prun-
ing methods.

posed and defined a unified graphic representation
of features for relation extraction, which serves as a
general framework for systematically exploring fea-
tures defined on natural language sentences. With
this framework, we explored three different repre-
sentations of sentences—sequences, syntactic parse
trees, and dependency trees—which lead to three
feature subspaces. In each subspace, starting with
the basic unit features, we systematically explored
features of different levels of complexity. The stud-
ied feature space includes not only most of the ef-
fective features explored in previous work, but also
some features that have not been considered before.

Our experiment results showed that using a set of
basic unit features from each feature subspace, we
can achieve reasonably good performance. When
the three subspaces are combined, the performance
can improve only slightly, which suggests that the
sequence, syntactic and dependency relations have
much overlap for the task of relation extraction. We
also found that adding more complex features may
not improve the performance much, and may even
hurt the performance. A combination of features
of different levels of complexity and from different
sentence representations, coupled with task-oriented
feature pruning, gives the best performance.

In our future work, we will study how to auto-
matically conduct task-oriented feature search, fea-
ture pruning and feature weighting using statistical
methods instead of heuristics. In this study, we only
considered features from the local context, i.e. the
sentence that contains the two arguments. Some ex-
isting studies use corpus-based statistics for relation
extraction (Hasegawa et al., 2004). In the future, we
will study the effectiveness of these global features.

Acknowledgments

This work was in part supported by the National Sci-
ence Foundation under award numbers 0425852 and
0428472. We thank Alessandro Moschitti for pro-
viding the SVM tree kernel package. We also thank
Min Zhang for providing the implementation details
of the convolution tree kernel for relation extraction.

References
Razvan C. Bunescu and Raymond J. Mooney. 2005a.

A shortest path dependency kenrel for relation extrac-
tion. In Proceedings of HLT/EMNLP.

Razvan C. Bunescu and Raymond J. Mooney. 2005b.
Subsequence kernels for relation extraction. InPro-
ceedings of NIPS.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. InProceedings of
ACL.

Chad Cumby and Dan Roth. 2003. On kernel methods
for relational learning. InProceedings of ICML.

Takaaki Hasegawa, Satoshi Sekine, and Ralph Grishman.
2004. Discovering relations among named entities
from large corpora. InProceedings ACL.

Nanda Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy models
for extracting relations. InProceedings of ACL.

Jun Suzuki, Tsutomu Hirao, Yutaka Sasaki, and Eisaku
Maeda. 2003. Hierarchical directed acyclic graph ker-
nel: Methods for structured natural language data. In
Proceedings of ACL.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation
extraction. Journal of Machine Learning Research,
3:1083–1106.

Min Zhang, Jie Zhang, and Jian Su. 2006a. Exploring
syntactic features for relation extraction using a con-
volution tree kernel. InProceedings of HLT/NAACL.

Min Zhang, Jie Zhang, Jian Su, and Guodong Zhou.
2006b. A composite kernel to extract relations be-
tween entities with both flat and structured features.
In Proceedings of ACL.

Shubin Zhao and Ralph Grishman. 2005. Extracting re-
lations with integrated information using kernel meth-
ods. InProceedings of ACL.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various knowledge in relation extrac-
tion. In Proceedings of ACL.

120

