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An important information extraction task is relation
extraction, whose goal is to detect and characteri
semantic relations between entities in text. For exg,,
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Abstract

Relation extraction is the task of find-
ing semantic relations between entities
from text. The state-of-the-art methods
for relation extraction are mostly based
on statistical learning, and thus all have
to deal with feature selection, which can
significantly affect the classification per-
formance. In this paper, we systemat-
ically explore a large space of features
for relation extraction and evaluate the ef-

fectiveness of different feature subspaces.

We present a general definition of fea-

ture spaces based on a graphic represen-

tation of relation instances, and explore
three different representations of relation
instances and features of different com-
plexities within this framework. Our ex-
periments show that using only basic unit
features is generally sufficient to achieve
state-of-the-art performance, while over-
inclusion of complex features may hurt
the performance. A combination of fea-
tures of different levels of complexity and
from different sentence representations,
coupled with task-oriented feature prun-
ing, gives the best performance.

Introduction

t@cs.uiuc.edu

converged on the square” contains theatedrela-
tion between thd’ersonentity “hundreds of Pales-
tinians” and theBounded-Areantity “the square”.
Relation extraction has applications in many do-
mains, including finding affiliation relations from
web pages and finding protein-protein interactions
from biomedical literature.

Recent studies on relation extraction have shown
the advantages of discriminative model-based sta-
tistical machine learning approach to this problem.
There are generally two lines of work following this
approach. The first utilizes a set of carefully se-
lected features obtained from different levels of text
analysis, from part-of-speech (POS) tagging to full
parsing and dependency parsing (Kambhatla, 2004;
Zhao and Grishman, 2005; Zhou et al., 2005)he
second line of work designs kernel functions on
some structured representation (sequences or trees)
of the relation instances to capture the similarity be-
tween two relation instances (Zelenko et al., 2003;
Culotta and Sorensen, 2004; Bunescu and Mooney,
2005a; Bunescu and Mooney, 2005b; Zhang et al.,
2006a; Zhang et al., 2006b). Of particular interest
among the various kernels proposed are the convolu-
tion kernels (Bunescu and Mooney, 2005b; Zhang et
al., 2006a), because they can efficiently compute the
similarity between two instances in a huge feature
space due to their recursive nature. Apart from their
computational efficiency, convolution kernels also
implicitly correspond to some feature space. There-
fore, both lines of work rely on an appropriately de-

e ———
Although Zhao and Grishman (2005) defined a number of

nels for relation extraction, the method is essentially similar

ample, the text fragment “hundreds of Palestinians feature-based methods.
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fined set of features. As in any learning problem, théeature subspaces. Zelenko et al. (2003) and Culotta
choice of features can affect the performance signiknd Sorensen (2004) used tree kernels for relation
icantly. extraction. These kernels can achieve high precision
Despite the importance of feature selection, thereut low recall because of the relatively strict match-
has not been any systematic exploration of the fedlg criteria. Bunescu and Mooney (2005a) proposed
ture space for relation extraction, and the choices dependency path kernel for relation extraction.
of features in existing work are somewhat arbitrarylhis kernel also suffers from low recall for the same
In this paper, we conduct a systematic study of theeason. Bunescu and Mooney (2005b) and Zhang
feature space for relation extraction, and evalua!. al. (2006a; 2006b) applied convolution string ker-
the effectiveness of different feature subspaces. Ounels and tree kernels, respectively, to relation extrac-
motivations are twofold. First, based on previousion. The convolution tree kernels achieved state-
studies, we want to identify and characterize thef-the-art performance. Since convolution kernels
types of features that are potentially useful for relacorrespond to some explicit large feature spaces, the
tion extraction, and define a relatively complete anieature selection problem still remains.
structured feature space that can be systematicallyGeneral structural representations of natural lan-
explored. Second, we want to compare the effectivguage data have been studied in (Suzuki et al.,
ness of different features. Such a study can guide @903; Cumby and Roth, 2003), but these models
to choose the most effective feature set for relatiowere not designed specifically for relation extrac-
extraction, or to design convolution kernels in thdion. Our feature definition is similar to these mod-
most effective way. els, but more specifically designed for relation ex-
We propose and define a unified graphic repréraction and systematic exploration of the feature
sentation of the feature space, and experiment wigpace. Compared with (Cumby and Roth, 2003), our
three feature subspaces, corresponding to sequend@gture space is more compact and provides more
syntactic parse trees and dependency parse treg@gidance on selecting meaningful subspaces.
Experiment results show that each subspace is ef- o
fective by itself, with the syntactic parse tree sub® Task Definition

space being the most effective. Combining the thrégjyen 5 small piece of text that contains two entity
subspaces does not generate much improvemepfantions, the task of relation extraction is to decide
Within each feature subspace, using only the basig,ather the text states some semantic relation be-
unit features can already give reasonably good P&feen the two entities, and if so, classify the rela-
formance. Adding more complex features may NQfo into one of a set of predefined semantic rela-
improve the performance much or may even h“'ﬁon types. Formally, let = (s, argy, arg,) de-
the performance. Task-oriented heuristics can %te a relation instance, whesds a sentenceyry,
used to prune the feature space, and when approptisg ;. are two entity mentions containedsdnand
ately done, can improve the performance. A COMg., nrecedesuiry, in the text. Given a set of rela-
bination of features of different levels of complex-;,, instanced; }, each labeled with a type € 7
. . . 1 ’
ity and from different sentence representations, Co\are7 s the set of predefined relation types plus
pled with task-oriented feature pruning, gives thene typenil, our goal is to learn a function that maps
best performance. a relation instance to a typet € 7. Note that we
do not specify the representationsdfiere. Indeeds
2 Related Work can contain more structured information in addition

Zhao and Grishman (2005) and Zhou et al. (2005) merely the sequence of tokens in the sentence.

explored a large set of features that are potentialla_' Feature Space for Relation Extraction
useful for relation extraction. However, the feature

space was defined and explored in a somewhat édeally, we would like to define a feature space with
hoc manner. We study a broader scope of features least two properties: (1) It should bempleten
and perform a more systematic study of differenthe sense that all features potentially useful for the
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classification problem are included. (2) It shouldquence, syntactic or dependency relations between
have a goodtructureso that a systematic search intokens belong to the second category. Motivated by
the space is possible. Below we show how a unifiethis observation, we can represent relation instances
graph-based feature space can be defined to satisfygraphs, with nodes denoting single tokens or syn-
these two properties. tactic categories such as NPs and VPs, and edges de-

» _ _ noting various types of relations between the nodes.
4.1 A Unified View of Features for Relation

Extraction 4.2 Relation Instance Graphs

Before we introduce our definition of the featuréWe represent a relation instance as a labeled, di-
space, let us first look at some typical features usedcted graplG = (V, E, A, B), whereV is the set

for relation extraction. Consider the relation in-of nodes in the grapl¥ is the set of directed edges
stance*hundreds of Palestinians converged on then the graph, and!, B are functions that assign la-
square”with arg; =“hundreds of Palestiniansand bels to the nodes.

arg, = “the square”. Various types of information  First, for each nodev € V, A(v) =

can be useful for classifying this relation instance{ai,az, ..., a4} is @ set of attributes associated
For example, knowing thatrg, is an entity of type with nodev, wherea; € ¥, andX is an alphabet that
Personcan be useful. This feature involves the sineontains all possible attribute values. The attributes
gle tokert'Palestinians”. Another feature, “the head are introduced to help generalize the node. For ex-
word of arg, (Palestinian} is followed by a verb ample, if nodev represents a token, theh(v) can
(converged’, can also be useful. This feature in-include the token itself, its morphological base form,
volves two tokens'Palestinians” and“converged”, its POS, its semantic class (e.g. WordNet synset),
with a sequence relation. It also involves the knowletc. Ifv also happens to be the head word:ef, or
edge that'Palestinians” is part of arg; and“con- arg,, thenA(v) can also include the entity type and
verged”is a verb. If we have the syntactic parse treether entity attributes. If noderepresents a syntac-
of the sentence, we can obtain even more compléic category such as an NP or VR(v) can simply
and discriminative features. For example, the syrcontain only the syntactic tag.

tactic parse tree of the same relation instance con-Next, functionB : V' — {0, 1, 2,3} is introduced
tains the following subtree: [VP> VBD [PP — [IN  to distinguish argument nodes from non-argument
— on] NP]]. If we know thatarg, is contained inthe nodes. For each node € V, B(v) indicates how
NP in this subtree, then this subtree states #h@¢y nodevw is related toarg,; andarg,. O indicates that
isin a PP that is attached to a VP, and the propositiandoes not cover any argument, 1 or 2 indicates that
is “on” . This subtree therefore may also a usefub coversarg, or arg,, respectively, and 3 indicates
feature. Similarly, if we have the dependency parsthat v covers both arguments. We will see shortly
tree of the relation instance, then the dependentlyat only nodes that represent syntactic categories in
link “square ~» on” states that the tokéeisquare” a syntactic parse tree can possibly be assigned 3. We
is dependent on the tokéan” , which may also be refer toB(v) as theargument tagf v.

a useful feature. We now consider three special instantiations of
Given that useful features are of various forms, ithis general definition of relation instance graphs.
order to systematically search the feature space, e Figures 1, 2 and 3 for examples of each of the

need to first have a unified view of features. Thishree representations.

problem is not trivial because it is not immediately Sequence Without introducing any additional
clear how different types of features can be unifiedstructured information, a sequence representation
We observe, however, that in general features fafireserves the order of the tokens as they occur in the
into two categories: (1) properties of a single tokempriginal sentence. Each node in this graph is a token
and (2) relations between tokens. Features that inugmented with its relevant attributes. For example,
volve attributes of a single token, such as bag-ohead words ofirg; andarg, are augmented with the
word features and entity attribute features, belongorresponding entity types. A token is assigned the
to the first category, while features that involve seargument tag 1 or 2 if it is the head word @fg, or
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Figure 1: An example sequence representation. The
subgraph on the left represents a bigram feature. TiFgure 3: An example dependency parse tree rep-
subgraph on the right represents a unigram featuresentation. The subgraph represents a dependency
that states the entity type afg,. relation feature betweenrg, “Palestinians” and
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the dependency relation types.

\\m@j 4.3 Features

Given the above definition of relation instance
graphs, we are now ready to define features. Intu-
itively, a feature of a relation instance captures part
of the attributive and/or structural properties of the
relation instance graph. Therefore, it is natural to de-
fine a feature as a subgraph of the relation instance
graph. Formally, given a grapi = (V, E, A, B),

Figure 2- An examole svntactic parse tree re resewhich represents a single relation instance, a fea-
9 : pie sy P P pure that exists in this relation instance is a sub-

tation. The subgraph represents a subtree featungaph G' = (V',E', A", B') that satisfies the fol-
(grammar production feature).

lowing conditions: V'’ C V, B/ C E, andYv €
V' Al(v) C A(v), B'(v) = B(v).
arg,. Otherwise, it is assigned the argument tag 0. We now show that many features that have been
There is a directed edge fromto v if and only if explored in previous work on relation extraction can
the token represented yimmediately follows that be transformed into this graphic representation. See
represented by in the sentence. Figures 1, 2 and 3 for some examples.

Syntactic Parse Tree The syntactic parse tree Entity Attributes : Previous studies have shown
of the relation instance sentence can be augmentdtht entity types and entity mention types @fy,
to represent the relation instance. First, we modifgndarg, are very useful (Zhao and Grishman, 2005;
the tree slightly by conflating each leaf node in th&hou et al., 2005; Zhang et al., 2006b). To represent
original parse tree with its parent, which is a pretera single entity attribute, we can take a subgraph that
minal node labeled with a POS tag. Then, each nod®ntains only the node representing the head word of
is augmented with relevant attributes if necessarthe argument, labeled with the entity type or entity
Argument tags are assigned to the leaf nodes in tmeention type. A particularly useful type of features
same way as in the sequence representation. Forame conjunctive entity featuresvhich are conjunc-
internal nodey, argument tag 1 or 2 is assigned iftions of two entity attributes, one for each argument.
eitherarg, or arg, is inside the subtree rooted@t To represent a conjunctive feature such agjj is
and 3 is assigned if both arguments are inside theePersonentity andarg, is aBounded-Areantity”,
subtree. Otherwise, 0 is assignedto we can take a subgraph that contains two nodes, one

Dependency Parse Tree Similarly, the depen- for each argument, and each labeled with an en-
dency parse tree can also be modified to represdity attribute. Note that in this case, the subgraph
the relation instance. Assignment of attributes andontains two disconnected components, which is al-
argument tags is the same as for the sequence repmwved by our definition.
sentation. To simplify the representation, we ignore Bag-of-Words. These features have also been

VBD
Palestinians | | converged

Person Bounded-Area
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explore by Zhao and Grishman (2005) and Zhohave been found effective in previous studies and
et. al. (2005). To represent a bag-of-word featurere intuitively necessary for relation extraction. We
we can simply take a subgraph that contains a singthen systematically add unit features with different
node labeled with the token. Because the node algpanularities. We first consider the minimum (i.e.
has an argument tag, we can distinguish between amost basic) unit features. We then gradually include
gument word and non-argument word. more complex features. The motivations for this
Bigrams: A bigram feature (Zhao and Grishman,strategy are the following: (1) Using the smallest
2005) can be represented by a subgraph consistifeptures to represent a relation instance graph pre-
of two connected nodes from the sequence represesumably covers all unit characteristics of the graph.
tation, where each node is labeled with the token. (2) Using small subgraphs allows fuzzy matching,
Grammar Productions: The features in convo- which is good for our task because relation instances
lution tree kernels for relation extraction (Zhang ebf the same type may vary in their relation instance
al., 2006a; Zhang et al., 2006b) are sequences gfaphs, especially with the noise introduced by ad-
grammar productions, that is, complete subtrees gctives, adverbs, or irrelevant propositional phrases.
the syntactic parse tree. Therefore, these featur€® The number of features of a fixed small size is
can naturally be represented by subgraphs of the ngelynomial in terms of the size of the relation in-
lation instance graphs. stance graph. It is therefore feasible to generate all
Dependency Relations and Dependency Paths the small unit features and use any classifier such as
These features have been explored by Bunescu aadnaximum entropy classifier or an SVM.
Mooney (2005a), Zhao and Grishman (2005), and In our experiments, we consider three levels of
Zhou et. al. (2005). A dependency relation can bsmall unit features in increasing order of their com-
represented as an edge connecting two nodes frgotexity. First, we consideunigramfeaturess,,,,; =
the dependency tree. The dependency path betwedn}, 0, Ayni, B), whereA,,;(u) = {a;} C A(u).
the two arguments can also be easily representedlasanother word, unigram features consist of a sin-
a path in the dependency tree connecting the twgle node labeled with a single attribute. Examples
nodes that represent the two arguments. of unigram features include bag-of-word features
There are some features that are not covered laynd non-conjunctive entity attribute features. At the
our current definition, but can be included if wesecond level, we considdiigram featuresG,;, =
modify our relation instance graphs. For examplel{u,v}, {(u,v)}, Auni, B). Bigram features are
gapped subsequence features in subsequence kberefore single edges connecting two nodes, where
nels (Bunescu and Mooney, 2005b) can be repreach node is labeled with a single attribute. The
sented as subgraphs of the sequence representatioind level of attributes we consider atrégram fea-
if we add more edges to connect any pair of nodestures G, = ({u, v, w}, {(u,v), (u,w)}, Auni, B)
andv provided that the token representeddbpc- or Gy = ({u,v,w}, {(u,v), (v,w)}, Auni, B).
curs somewhere before that representea bythe Thus trigram features consist of two connected
sentence. Since our feature definition is very geredges and three nodes, where each node is also la-
eral, our feature space also includes many featurbgled with a single attribute.

that have not been explored before. We treat the three relation instance graphs (se-
_ guences, syntactic parse trees, and dependency parse
4.4 Searching the Feature Space trees) as three feature subspaces, and search in each

Although the feature space we have defined is rebubspace. For each feature subspace, we incremen-
atively complete and has a clear structure, it is stilally add the unigram, bigram and trigram features
too expensive to exhaustively search the space b®-the working feature set. For the syntactic parse
cause the number of features is exponential in terntiee representation, we also consider a fourth level of
of the size of the relation instance graph. We thusmall unit features, which are single grammar pro-
propose to search the feature space in the follovaductions such as [VP-» VBD PP], because these
ing bottom-up manner: We start with the conjuncare the smallest features in convolution tree kernels.
tive entity features (defined in Section 4.3), whichAfter we explore each feature subspace, we try to
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combine the features from the three subspaces to g@m features on top of the unigram, bigram and tri-
whether the performance can be improved, that igram features. Adding production features allows us
we test whether the sequence, syntactic and depdo-study the effect of adding more complex and pre-

dency relations can complement each other. sumably more specific and discriminative features.
_ Table 1 shows the precision (P), recall (R) and F1
5 Experiments measure (F) from the experiments with the maxi-

mum entropy classifier (ME) and the SVM classi-
fier (SVM). We can compare the results in two di-
We used the data set from ACE (Automatic Conmensions. First, within each feature subspace, while
tent Extraction) 2004 evaluation to conduct our eXbigram features improved the performance signifi-
periments. This corpus defines 7 types of relationgantly over unigrams, trigrams did not improve the
Physical Personal / SociaEmpolyment/Memeber- performance very much. This trend is observed for
ship / SubsidiaryAgent-Artifact PER / ORG Affili- poth classifiers. In the case of the syntactic parse tree
ation, GPE AffiliationandDiscourse subspace, adding production features even hurt the
We used Collins parser to parse the sentences parformance. This suggests that inclusion of com-
the corpus because Collins parser gives us the hegiéx features is not guaranteed to improve the per-
of each syntactic category, which allows us to trangormance.
form the syntactic parse trees into dependency trees.Second, if we compare the best performance
We discarded sentences that could not be parsgghieved in each feature subspace, we can see that
by Collins parser. The candidate relation instancesr both classifiers, syntactic parse tree is the most
were generated by considering all pairs of entitiegffective feature space, while sequence and depen-
that occur in the same sentence. We obtained 48635ncy tree are similar. However, the difference in
candidate relation instances in total, among whicperformance between the syntactic parse tree sub-
4296 instances were positive. space and the other two subspaces is not very large.
As in most existing work, instead of using the enThis suggests that each feature subspace alone al-
tire sentence, we used only the sequence of tokensady captures most of the useful structural informa-
that are inside the minimum complete subtree covtion between tokens for relation extraction. The rea-
ering the two arguments. Presumably, tokens ouson why the sequence feature subspace gave good
side of this subtree are not so relevant to the task. fferformance although it contained the least struc-
our graphic representation of relation instances, th@ral information is probably that many relations de-
attribute set for a token node includes the token ifined in the ACE corpus are short-range relations,
self, its POS tag, and entity type, entity subtype angome within single noun phrases. For such kind of
entity mention type when applicable. The attributgelations, sequence information may be even more
set for a syntactic category node includes only theeliable than syntactic or dependency information,
syntactic tag. We used both maximum entropy clasvhich may not be accurate due to parsing errors.
sifier and SVM for all experiments. We adopted one Next, we conducted experiments to combine the
vs. others strategy for the multi-class classificatiofeatures from the three subspaces to see whether
problem. In all experiments, the performance showthis could further improve the performance. For se-
was based on 5-fold cross validation. quence subspace and dependency tree subspace, we
used up to bigram features, and for syntactic parse
tree subspace, we used up to trigram features. In Ta-
Following the general search strategy, we conductdile 2, we show the experiment results. We can see
the following experiments. For each feature subthat for both classifiers, adding features from the se-
space, we started with the conjunctive entity featureguence subspace or from the dependency tree sub-
plus the unigram features. We then incrementallgpace to the syntactic parse tree subspace can im-
added bigram and trigram features. For the syntaprove the performance slightly. But combining se-
tic parse tree feature space, we conducted an addidence subspace and dependency tree subspace does
tional experiment: We added basic grammar productot generate any performance improvement. Again,

5.1 Data Set and Experiment Setup

5.2 General Search in the Feature Subspaces

118



Uni | +Bi | +Tri | +Prod 5.3 Task-Oriented Feature Pruning
P | 0.647 | 0.662 | 0.717
Seq| R | 0.614| 0.701 | 0.653| N/A Apart from the general bottom-up search strategy we
F | 0.630| 0.681 | 0.683 have proposed, we can also introduce some task-
P 0651 0.695 0.726 | 0.702 oriented heuristics based on intuition or domain
ME | Syn | R | 0.645| 0.698 | 0.688 | 0.691 knowled he
Floeas!| 0697 0707 | 0.696 nowledge to prune the feature space. In our ex-
P | 0647 | 0.673| 0.718 periments, we tried the following heuristics.
Dep 'Fi 8-2%3 8-232 8-222 N/A H1: Zhang et al. (2006a) found that usipgth-
5 0'583 0'666 0'684 enclosed tre@erformed better than usinginimum
Seq| R | 0.586| 0.650 | 0.648 | N/A complete treewhen convolution tree kernels were
F | 0.585| 0.658 | 0.665 applied. In path-enclosed trees, tokens beforg
P | 0.598 0.645| 0.679| 0.674 and afterarg, as well as their links with other nodes
SVM | Syn | R | 0.611| 0.663 | 0.681| 0.672 in the t d. Based thi :
F | 0604l 0652 0680 0673 in the tree are removed. Based on this previous
P | 0583 0.644| 0682 finding, our first heuristic was to change the syntac-
Dep | R | 0.586 | 0.638 | 0.645| N/A tic parse tree representation of the relation instances
F | 0.585]| 0.641 | 0.663

into path-enclosed trees.

Table 1: Comparison among the three feature sub- H2: We hypothesize that words such as articles,

spaces and the effect of including larger features. adjectives and adverbs are not very useful for rela-
tion extraction. We thus removed sequence unigram

Seq+Syn| Seq+Dep| Syn+Dep| All features and bigram features that contain an article,

P| 0737 0.687 0.695 | 0.724 adjective or adverb.
ME | R| 0.694 0.682 0.731 | 0.702 C Qimi - :

El 0715 0.684 0712 | 0.713 H3: Slmllar to H2, we can remove b!grams in thg

P 0689 0.669 0687 | 0691 syntactic parse tree subspace if the bigram contains
SVM | R| 0.686 0.653 0.682 | 0.686 an article, adjective or adverb.

F| 0.688 0.661 0.684 | 0.688

H4: Similar to H1, we can also remove the to-
Table 2: The effect of combining the three featur&€ns beforeurg, and afterarg, from the sequence
subspaces. representation of a relation instance.
In Table 3, we show the performance after apply-
ing these heuristics. We started with the best con-
this suggests that since many of the ACE relationgguration from our previous experiments, that is,
are local, there is likely much overlap between S€ombing up to bigram features in the sequence sub-
quence information and dependency information. space and up to trigram features in the syntactic tree
We also tried the convolution tree kernelsybspace. We then applied heuristics H1 to H4 in-
method (Zhang et al., 2006a), using an SVM tregrementally unless we saw that a heuristic was not
kernel package The performance we obtained waseffective. We found that H1, H2 and H4 slightly
P =0.705, R = 0.685, and F = 0.695This F mea- improved the performance, but H3 hurt the perfor-
sure is higher than the best SVM performance in Tanance. On the one hand, the improvement suggests
ble 1. The convolution tree kernel uses large subtraRat our original feature configuration included some
features, but such features are deemphasized Wwitfelevant features, and in turn confirmed that over-
an exponentially decaying weight. We found thainclusion of features could hurt the performance. On
the performance was sensitive to this decaying faghe other hand, since the improvement brought by
tor, suggesting that complex features can be usefHll, H2 and H4 was rather small, and H3 even hurt
if they are weighted appropriately, and further studyhe performance, we could see that it is in general

of how to optimize the weights of such complex feavery hard to find good feature pruning heuristics.
tures is needed.

2http://ai-nlp.info.uniromaz2.it/moschitti/Tree-Kernel.htm 6 Conclusions and Future Work

3The performance we achieved is lower than that reporte hi d d . dv of
in (Zhang et al., 2006b), due to different data preprocessin n this paper, we conducted a systematic study o

I}

data partition, and parameter setting. the feature space for relation extraction. We pro-

119



ME SVM Acknowledgments
P R F P R F _ _ _ _
Best | 0.737 0694 0715 0689 0686 0.68d Ihisworkwasin partsupported by the National Sci-
+H1 | 0.714 0.729 0.721 0.698 0.699 0.699 ence Foundation under award numbers 0425852 and
+H2 | 0.730 0.723 0.726 0.704 0.704 0.704 o
+H3 | 0739 0704 0721 0.701 0696 0698 0_4?8472. We thank Alessandro Moschitti for pro-
-H3+H4 | 0.746 0.713 0.729| 0.702 0.701 0.702 viding the SVM tree kernel package. We also thank
_ o Min Zhang for providing the implementation details
Table 3: The effect of various heuristic feature prunat the convolution tree kernel for relation extraction.
ing methods.

References

Razvan C. Bunescu and Raymond J. Mooney. 2005a.
posed and defined a unified graphic representationA shortest path dependency kenrel for relation extrac-
of features for relation extraction, which serves as a ton- InProceedings of HLT/EMNLP
general framework for systematically exploring feaRazvan C. Bunescu and Raymond J. Mooney. 2005b.
tures defined on natural language sentences. WithSubsequence kernels for relation extraction.Pho-
this framework, we explored three different repre- ceedings of NIPS
sentations of sentences—sequences, syntactic patsen Culotta and Jeffrey Sorensen. 2004. Dependency
trees, and dependency trees—which lead to threetree kernels for relation extraction. Rroceedings of
feature subspaces. In each subspace, starting with*CL
the basic unit features, we systematically explore@had Cumby and Dan Roth. 2003. On kernel methods
features of different levels of complexity. The stud- for relational learning. IProceedings of ICML
ied feature space includes not only most of the efrakaaki Hasegawa, Satoshi Sekine, and Ralph Grishman.
fective features explored in previous work, but also 2004. Discovering relations among named entities
some features that have not been considered before from large corpora. IProceedings ACL

Nanda Kambhatla. 2004. Combining lexical, syntactic,

Our experiment results showed that using a set of and semantic features with maximum entropy models
basic unit features from each feature subspace, wefor extracting relations. IProceedings of ACL
can achieve reasonably good performance. Whegy, Suzuki, Tsutomu Hirao, Yutaka Sasaki, and Eisaku
the three subspaces are combined, the performanceviaeda. 2003. Hierarchical directed acyclic graph ker-
can improve only slightly, which suggests that the nel: Methods for structured natural language data. In
sequence, syntactic and dependency relations have’roceedings of ACL
much overlap for the task of relation extraction. Webmitry Zelenko, Chinatsu Aone, and Anthony
also found that adding more complex features may Richardella. 2003. Kernel methods for relation
not improve the performance much, and may even extraction. Journal of Machine Learning Reseatch

. 3:1083-1106.

hurt the performance. A combination of features
of different levels of complexity and from different Min Zhang, Jie Zhang, and Jian Su. 2006a. Exploring

sentence representations, coupled with task-orientedSyntactic features for relation extraction using a con-
P . ’ P volution tree kernel. IfProceedings of HLT/NAACL
feature pruning, gives the best performance.

Min Zhang, Jie Zhang, Jian Su, and Guodong Zhou.

In our future work, we will study how to auto- 2006b. A composite kernel to extract relations be-

maticallv conduct task-oriented feature search. fea- Ween entities with both flat and structured features.
y_ o . L In Proceedings of ACL

ture pruning and feature weighting using statistical ~ _ _
methods instead of heuristics. In this study, we onlghubin Zhao and Ralph Grishman. 2005. Extracting re-
considered features from the local context. i.e. the lations with integrated information using kernel meth-
. T ods. InProceedings of ACL
sentence that contains the two arguments. Some ex- _ _ _
isting studies use corpus-based statistics for relati¢ptioDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
extraction (Hasegawa et al., 2004). In the future, we 2005. Exploring various knowledge in relation extrac-

. . tion. In Proceedings of ACL
will study the effectiveness of these global features. g

120



