
Proceedings of NAACL HLT 2007, pages 105–112,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

A Random Text Model for the Generation of

Statistical Language Invariants

 Chris Biemann

 NLP Dept., University of Leipzig

 Johannisgasse 26

04103 Leipzig, Germany

 biem@informatik.uni-leipzig.de

Abstract

A novel random text generation model is

introduced. Unlike in previous random

text models, that mainly aim at producing

a Zipfian distribution of word frequencies,

our model also takes the properties of

neighboring co-occurrence into account

and introduces the notion of sentences in

random text. After pointing out the defi-

ciencies of related models, we provide a

generation process that takes neither the

Zipfian distribution on word frequencies

nor the small-world structure of the

neighboring co-occurrence graph as a

constraint. Nevertheless, these distribu-

tions emerge in the process. The distribu-

tions obtained with the random generation

model are compared to a sample of natu-

ral language data, showing high agree-

ment also on word length and sentence

length. This work proposes a plausible

model for the emergence of large-scale

characteristics of language without as-

suming a grammar or semantics.

1 Introduction

G. K. Zipf (1949) discovered that if all words in a

sample of natural language are arranged in de-

creasing order of frequency, then the relation be-

tween a word’s frequency and its rank in the list

follows a power-law. Since then, a significant

amount of research in the area of quantitative lin-

guistics has been devoted to the question how this

property emerges and what kind of processes gen-

erate such Zipfian distributions.

The relation between the frequency of a word at

rank r and its rank is given by f(r) ∝ r
-z
, where z is

the exponent of the power-law that corresponds to

the slope of the curve in a log plot (cf. figure 2).

The exponent z was assumed to be exactly 1 by

Zipf; in natural language data, also slightly differ-

ing exponents in the range of about 0.7 to 1.2 are

observed (cf. Zanette and Montemurro 2002). B.

Mandelbrot (1953) provided a formula with a

closer approximation of the frequency distributions

in language data, noticing that Zipf’s law holds

only for the medium range of ranks, whereas the

curve is flatter for very frequent words and steeper

for high ranks. He also provided a word generation

model that produces random words of arbitrary

average length in the following way: With a prob-

ability w, a word separator is generated at each

step, with probability (1-w)/N, a letter from an al-

phabet of size N is generated, each letter having

the same probability. This is sometimes called the

“monkey at the typewriter” (Miller, 1957). The

frequency distribution follows a power-law for

long streams of words, yet the equiprobability of

letters causes the plot to show a step-wise rather

than a smooth behavior, as examined by Ferrer i

Cancho and Solé (2002), cf. figure 2. In the same

study, a smooth rank distribution could be obtained

by setting the letter probabilities according to letter

frequencies in a natural language text. But the

question of how these letter probabilities emerge

remains unanswered.

Another random text model was given by

Simon (1955), which does not take an alphabet of

single letters into consideration. Instead, at each

time step, a previously unseen new word is added

to the stream with a probability a, whereas with

probability (1-a), the next word is chosen amongst

the words at previous positions. As words with

higher frequency in the already generated stream

105

have a higher probability of being added again, this

imposes a strong competition among different

words, resulting in a frequency distribution that

follows a power-law with exponent z=(1-a). This

was taken up by Zanette and Montemurro (2002),

who slightly modify Simon’s model. They intro-

duce sublinear vocabulary growth by additionally

making the new word probability dependent on the

time step. Furthermore, they introduce a threshold

on the maximal probability a previously seen word

can be assigned to for generation, being able to

modify the exponent z as well as to model the flat-

ter curve for high frequency words. In (Ha et al.,

2002), Zipf’s law is extended to words and

phrases, showing its validity for syllable-class

based languages when conducting the extension.

Neither the Mandelbrot nor the Simon genera-

tion model take the sequence of words into ac-

count. Simon treats the previously generated

stream as a bag of words, and Mandelbrot does not

consider the previous stream at all. This is cer-

tainly an over-simplification, as natural language

exhibits structural properties within sentences and

texts that are not grasped by bags of words.

The work by Kanter and Kessler (1995) is, to

our knowledge, the only study to date that takes the

word order into account when generating random

text. They show that a 2-parameter Markov process

gives rise to a stationary distribution that exhibits

the word frequency distribution and the letter fre-

quency distribution characteristics of natural lan-

guage. However, the Markov process is initialized

such that any state has exactly two successor

states, which means that after each word, only two

other following words are possible. This certainly

does not reflect natural language properties, where

in fact successor frequencies of words follow a

power-law and more successors can be observed

for more frequent words. But even when allowing

a more realistic number of successor states, the

transition probabilities of a Markov model need to

be initialized a priori in a sensible way. Further,

the fixed number of states does not allow for infi-

nite vocabulary.

In the next section we provide a model that

does not suffer from all these limitations.

2 The random text generation model

When constructing a random text generation

model, we proceed according to the following

guidelines (cf. Kumar et al. 1999 for web graph

generation):

• simplicity: a generation model should reach

its goal using the simplest mechanisms pos-

sible but results should still comply to char-

acteristics of real language

• plausibility: Without claiming that our

model is an exhaustive description of what

makes human brains generate and evolve

language, there should be at least a possibil-

ity that similar mechanisms could operate in

human brains. For a discussion on the sensi-

tivity of people to bigram statistics, see e.g.

(Thompson and Newport, 2007).

• emergence: Rather than constraining the

model with the characteristics we would like

to see in the generated stream, these features

should emerge in the process.

Our model is basically composed of two parts

that will be described separately: A word generator

that produces random words composed of letters

and a sentence generator that composes random

sentences of words. Both parts use an internal

graph structure, where traces of previously gener-

ated words and sentences are memorized. The

model is inspired by small-world network genera-

tion processes, cf. (Watts and Strogatz 1998,

Barabási and Albert 1999, Kumar et al. 1999,

Steyvers and Tenenbaum 2005). A key notion is

the strategy of following beaten tracks: Letters,

words and sequences of words that have been gen-

erated before are more likely to be generated again

in the future - a strategy that is only fulfilled for

words in Simon’s model.

But before laying out the generators in detail,

we introduce ways of testing agreement of our ran-

dom text model with natural language text.

2.1 Testing properties of word streams

All previous approaches aimed at reproducing a

Zipfian distribution on word frequency, which is a

criterion that we certainly have to fulfill. But there

are more characteristics that should be obeyed to

make a random text more similar to natural lan-

guage than previous models:

• Lexical spectrum: The smoothness or step-

wise shape of the rank-frequency distribu-

tion affects the lexical spectrum, which is

the probability distribution on word fre-

106

quency. In natural language texts, this distri-

bution follows a power-law with an expo-

nent close to 2 (cf. Ferrer i Cancho and Solé,

2002).

• Distribution of word length: According to

(Sigurd et al., 2004), the distribution of word

frequencies by length follows a variant of

the gamma distribution

• Distribution of sentence length: The random

text’s sentence length distribution should re-

semble natural language. In (Sigurd et al.,

2004), the same variant of the gamma distri-

bution as for word length is fit to sentence

length.

• Significant neighbor-based co-occurrence:

As discussed in (Dunning 1993), it is possi-

ble to measure the amount of surprise to see

two neighboring words in a corpus at a cer-

tain frequency under the assumption of in-

dependence. At random generation without

word order awareness, the number of such

pairs that are significantly co-occurring in

neighboring positions should be very low.

We aim at reproducing the number of sig-

nificant pairs in natural language as well as

the graph structure of the neighbor-based co-

occurrence graph.

The last characteristic refers to the distribution

of words in sequence. Important is the notion of

significance, which serves as a means to distin-

guish random sequences from motivated ones. We

use the log-likelihood ratio for determining signifi-

cance as in (Dunning, 1993), but other measures

are possible as well. Note that the model of Kanter

and Kessler (1995) produces a maximal degree of

2 in the neighbor-based co-occurrence graph.

As written language is rather an artifact of the

most recent millennia then a realistic sample of

everyday language, we use the beginning of the

spoken language section of the British National

Corpus (BNC) to test our model against. For sim-

plicity, all letters are capitalized and special char-

acters are removed, such that merely the 26 letters

of the English alphabet are contained in the sam-

ple. Being aware that a letter transcription is in

itself an artifact of written language, we chose this

as a good-enough approximation, although operat-

ing on phonemes instead of letters would be pref-

erable. The sample contains 1 million words in

125,395 sentences with an average length of 7.975

words, which are composed of 3.502 letters in av-

erage.

2.2 Basic notions of graph theory

As we use graphs for the representation of memory

in both parts of the model, some basic notions of

graph theory are introduced. A graph G(V,E)

consists of a set of vertices V and a set of

weighted, directed edges between two vertices

E⊂V×V×R with R real numbers. The first vertex

of an edge is called startpoint, the second vertex is

called endpoint. A function weight: V×V→R

returns the weight of edges. The indegree

(outdegree) of a vertex v is defined as the number

of edges with v as startpoint (endpoint). The

degree of a vertex is equal to its indegree and

outdegree if the graph is undirected, i.e. (u,v,w)∈E

implies (v,u,w)∈E. The neighborhood neigh(v) of

a vertex v is defined as the set of vertices s∈S

where (v,s,weight(v,s))∈E.

The clustering coefficient is the probability that

two neighbors X and Y of a given vertex Z are

themselves neighbors, which is measured for

undirected graphs (Watts and Strogatz, 1998). The

amount of existing edges amongst the vertices in

the neighborhood of a vertex v is divided by the

number of possible edges. The average over all

vertices is defined as the clustering coefficient C.

The small-world property holds if the average

shortest path length between pairs of vertices is

comparable to a random graph (Erdös and Rényi,

1959), but its clustering coefficient is much higher.

A graph is called scale-free (cf. Barabási and

Albert, 1999), if the degree distribution of vertices

follows a power-law.

2.3 Word Generator

The word generator emits sequences of letters,

which are generated randomly in the following

way: The word generator starts with a graph of all

N letters it is allowed to choose from. Initially, all

vertices are connected to themselves with weight 1.

When generating a word, the generator chooses a

letter x according to its probability P(x), which is

computed as the normalized weight sum of

outgoing edges:

107

∑
∈

=

Vv

vweightsum

xweightsum
xP

)(

)(
)(

 .),()(
)(

∑
∈

=

yneighu

uyweightyweightsum

After the generation of the first letter, the word

generator proceeds with the next position. At every

position, the word ends with a probability w∈(0,1)

or generates a next letter according to the letter

production probability as given above. For every

letter bigram, the weight of the directed edge

between the preceding and current letter in the

letter graph is increased by one. This results in

self-reinforcement of letter probabilities: the more

often a letter is generated, the higher its weight

sum will be in subsequent steps, leading to an

increased generation probability. Figure 1 shows

how a word generator with three letters A,B,C

changes its weights during the generation of the

words AA, BCB and ABC.

Figure 1: Letter graph of the word generator. Left:

initial state. Right.: State after generating AA,

BCB and ABC. The numbers next to edges are

edge weights. The probability for the letters for the

next step are P(A)=0.4, P(B)=0.4 and P(C)=0.2.

The word end probability w directly influences

the average word length, which is given by

1+(1/w). For random number generation, we use

the Mersenne Twister (Masumoto and Nishimura,

1998).

The word generator itself does produce a

smooth Zipfian distribution on word frequencies

and a lexical spectrum following a power-law.

Figure 2 shows frequency distribution and lexical

spectrum of 1 million words as generated by the

word generator with w=0.2 on 26 letters in

comparison to a Mandelbrot generator with the

same parameters. The reader might note that a

similar behaviour could be reached by just setting

the probability of generating a letter according to

its relative frequency in previously generated

words. The graph seems an unnecessary

complication for that reason. But retaining the

letter graph with directed edges gives rise to model

the sequence of letters for a more plausible

morphological production in future extensions of

this model, probably in a similar way than in the

sentence generator as described in the following

section.

As depicted in figure 2, the word generator

fulfills the requirements on Zipf’s law and the

lexical spectrum, yielding a Zipfian exponent of

around 1 and a power-law exponent of 2 for a large

regime in the lexical spectrum, both matching the

values as observed previously in natural language

in e.g. (Zipf, 1949) and (Ferrer i Cancho and Solé,

2002). In contrast to this, the Mandelbrot model

shows to have a step-wise rank-frequency

distribution and a distorted lexical spectrum.

Hence, the word generator itself is already an

improvement over previous models as it produces

a smooth Zipfian distribution and a lexical

spectrum following a power-law. But to comply to

the other requirements as given in section 2.1, the

process has to be extended by a sentence generator.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

fr
e

q
u

e
n

c
y

rank

rank-frequency

word generator w=0.2
power law z=1

Mandelbrot model

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

P
(f

re
q
u
e
n
c
y
)

frequency

lexical spectrum

word generator w=0.2
power law z=2

Mandelbrot model

Figure 2: rank-frequency distribution and lexical

spectrum for the word generator in comparison to

the Mandelbrot model

initial state state after 3 words

108

2.4 Sentence Generator

The sentence generator model retains another di-

rected graph, which memorizes words and their

sequences. Here, vertices correspond to words and

edge weights correspond to the number of times

two words were generated in a sequence. The word

graph is initialized with a begin-of-sentence (BOS)

and an end-of-sentence (EOS) symbol, with an

edge of weight 1 from BOS to EOS. When gener-

ating a sentence, a random walk on the directed

edges starts at the BOS vertex. With a new word

probability (1-s), an existing edge is followed from

the current vertex to the next vertex according to

its weight: the probability of choosing endpoint X

from the endpoints of all outgoing edges from the

current vertex C is given by

∑
∈

==

)(

),(

),(
)(

CneighN

NCweight

XCweight
XwordP .

Otherwise, with probability s∈(0,1), a new

word is generated by the word generator model,

and a next word is chosen from the word graph in

proportion to its weighted indegree: the probability

of choosing an existing vertex E as successor of a

newly generated word N is given by

.),()(

,
)(

)(
)(

∑

∑

∈

∈

=

==

Vv

Vv

XvweightXindgw

vindgw

Eindgw
EwordP

For each sequence of two words generated, the

weight of the directed edge between them is in-

creased by 1. Figure 3 shows the word graph for

generating in sequence: (empty sentence), AA, AA

BC, AA, (empty sentence), AA CA BC AA, AA

CA CA BC.

During the generation process, the word graph

grows and contains the full vocabulary used so far

for generating in every time step. It is guaranteed

that a random walk starting from BOS will finally

reach the EOS vertex. It can be expected that sen-

tence length will slowly increase during the course

of generation as the word graph grows and the ran-

dom walk has more possibilities before finally ar-

riving at the EOS vertex. The sentence length is

influenced by both parameters of the model: the

word end probability w in the word generator and

the new word probability s in the sentence genera-

tor. By feeding the word transitions back into the

generating model, a reinforcement of previously

generated sequences is reached. Figure 4 illustrates

the sentence length growth for various parameter

settings of w and s.

Figure 3: the word graph of the sentence generator

model. Note that in the last step, the second CA

was generated as a new word from the word gen-

erator. The generation of empty sentences happens

frequently. These are omitted in the output.

 1

 10

 100

 10000 100000 1e+006

a
v
g
.

s
e
n
te

n
c
e
 l
e
n
g
th

text interval

sentence length growth

w=0.4 s=0.08
w=0.4 s=0.1

w=0.17 s=0.22
w=0.3 s=0.09

x^(0.25);

Figure 4: sentence length growth, plotted in aver-

age sentence length per intervals of 10,000 sen-

tences. The straight line in the log plot indicates a

polynomial growth.

It should be noted that the sentence generator

produces a very diverse sequence of sentences

which does not deteriorate in repeating the same

sentence all over again in later stages. Both word

and sentence generator can be viewed as weighted

finite automata (cf. Allauzen et al., 2003) with self-

training.

109

After having defined our random text genera-

tion model, the next section is devoted to testing it

according to the criteria given in section 2.1.

3 Experimental results

To measure agreement with our BNC sample, we

generated random text with the sentence generator

using w=0.4 and N=26 to match the English aver-

age word length and setting s to 0.08 for reaching a

comparable sentence length. The first 50,000 sen-

tences were skipped to reach a relatively stable

sentence length throughout the sample. To make

the samples comparable, we used 1 million words

totaling 125,345 sentences with an average sen-

tence length of 7.977.

3.1 Word frequency

The comparison between English and the sentence

generator w.r.t the rank-frequency distribution is

depicted in figure 5.

Both curves follow a power-law with z close to

1.5, in both cases the curve is flatter for high fre-

quency words as observed by Mandelbrot (1953).

This effect could not be observed to this extent for

the word generator alone (cf. figure 2).

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

fr
e
q
u
e
n
c
y

rank

rank-frequency

sentence generator
English

power law z=1.5

Figure 5: rank-frequency plot for English and the

sentence generator

3.2 Word length

While the word length in letters is the same in both

samples, the sentence generator produced more

words of length 1, more words of length>10 and

less words of medium length. The deviation in sin-

gle letter words can be attributed to the writing

system being a transcription of phonemes and few

phonemes being expressed with only one letter.

However, the slight quantitative differences do not

oppose the similar distribution of word lengths in

both samples, which is reflected in a curve of simi-

lar shape in figure 6 and fits well the gamma dis-

tribution variant of (Sigurd et al., 2004).

 1

 10

 100

 1000

 10000

 100000

 1 10

fr
e

q
u

e
n

c
y

length in letters

word length

sentence generator
English

gamma distribution

Figure 6: Comparison of word length distributions.

The dotted line is the function as introduced in

(Sigurd et al., 2004) and given by f(x) ∝x
1.5

⋅0.45
x
.

3.3 Sentence length

The comparison of sentence length distribution

shows again a high capability of the sentence gen-

erator to model the distribution of the English

sample. As can be seen in figure 7, the sentence

generator produces less sentences of length>25 but

does not show much differences otherwise. In the

English sample, there are surprisingly many two-

word sentences.

 1

 10

 100

 1000

 10000

 1 10 100

n
u
m

b
e
r

o
f

s
e
n
te

n
c
e
s

length in words

sentence length

sentence generator
English

Figure 7: Comparison of sentence length distribu-

tion.

3.4 Neighbor-based co-occurrence

In this section, the structure of the significant

neighbor-based co-occurrence graphs is examined.

110

The significant neighbor-based co-occurrence

graph contains all words as vertices that have at

least one co-occurrence to another word exceeding

a certain significance threshold. The edges are un-

directed and weighted by significance. Ferrer i

Cancho and Solé (2001) showed that the neighbor-

based co-occurrence graph of the BNC is scale-

free and the small-world property holds.

For comparing the sentence generator sample to

the English sample, we compute log-likelihood

statistics (Dunning, 1993) on neighboring words

that at least co-occur twice. The significance

threshold was set to 3.84, corresponding to 5%

error probability when rejecting the hypothesis of

mutual independence. For both graphs, we give the

number of vertices, the average shortest path

length, the average degree, the clustering coeffi-

cient and the degree distribution in figure 8. Fur-

ther, the characteristics of a comparable random

graph as defined by (Erdös and Rényi, 1959) are

shown.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

n
r

o
f

v
e

rt
ic

e
s

degree interval

degree distribution

sentence generator
English

word generator
power law z=2

 English

sample

sentence

gen.

word

gen.

random

graph

of ver. 7154 15258 3498 10000

avg. sht.

path

2.933 3.147 3.601 4.964

avg.

deg.

9.445 6.307 3.069 7

cl.coeff. 0.2724 0.1497 0.0719 6.89E-4

z 1.966 2.036 2.007 -

Figure 8: Characteristics of the neighbor-based co-

occurrence graphs of English and the generated

sample.

From the comparison with the random graph it

is clear that both neighbor-based graphs exhibit the

small-world property as their clustering coefficient

is much higher than in the random graph while the

average shortest path lengths are comparable. In

quantity, the graph obtained from the generated

sample has about twice as many vertices but its

clustering coefficient is about half as high as in the

English sample. This complies to the steeper rank-

frequency distribution of the English sample (see

fig. 5), which is, however, much steeper than the

average exponent found in natural language. The

degree distributions clearly match with a power-

law exponent of 2, which does not confirm the two

regimes of different slopes as in (Ferrer i Cancho

and Solé 2001). The word generator data produced

an number of significant co-occurrences that lies in

the range of what can be expected from the 5%

error of the statistical test. The degree distribution

plot appears shifted downwards about one decade,

clearly not matching the distribution of words in

sequence of natural language.

 Considering the analysis of the significant

neighbor-based co-occurrence graph, the claim is

supported that the sentence generator model repro-

duces the characteristics of word sequences in

natural language on the basis of bigrams.

4 Conclusion

In this work we introduced a random text genera-

tion model that fits well with natural language with

respect to frequency distribution, word length, sen-

tence length and neighboring co-occurrence. The

model was not constrained by any a priori distribu-

tion – the characteristics emerged from a 2-level

process involving one parameter for the word gen-

erator and one parameter for the sentence genera-

tor. This is, to our knowledge, the first random text

generator that models sentence boundaries beyond

inserting a special blank character at random:

rather, sentences are modeled as a path between

sentence beginning and sentence end which im-

poses restrictions on the words possible at sentence

beginnings and endings. Considering its simplicity,

we have therefore proposed a plausible model for

the emergence of large-scale characteristics of lan-

guage without assuming a grammar or semantics.

After all, our model produces gibberish – but gib-

berish that is well distributed.

The studies of Miller (1957) rendered Zipf’s

law un-interesting for linguistics, as it is a mere

artifact of language rather than playing an impor-

111

tant role in its production, as it emerges when put-

ting a monkey in front of a typewriter. Our model

does not only explain Zipf’s law, but many other

characteristics of language, which are obtained

with a monkey that follows beaten tracks. These

additional characteristics can be thought of as arti-

facts as well, but we strongly believe that the study

of random text models can provide insights in the

process that lead to the origin and the evolution of

human languages.

For further work, an obvious step is to improve

the word generator so that it produces morphologi-

cally more plausible sequences of letters and to

intertwine both generators for the emergence of

word categories. Furthermore, it is desirable to

embed the random generator in models of commu-

nication where speakers parameterize language

generation of hearers and to examine, which struc-

tures are evolutionary stable (see Jäger, 2003).

This would shed light on the interactions between

different levels of human communication.

Acknowledgements
The author would like to thank Colin Bannard,

Reinhard Rapp and the anonymous reviewers for

useful comments.

References

C. Allauzen, M. Mohri, and B. Roark. 2003. General-

ized algorithms for constructing language models. In

Proceedings of the 41st Annual Meeting of the Asso-

ciation for Computational Linguistics, pp. 40–47

A.-L. Barabási and R. Albert. 1999. Emergence of scal-

ing in random networks. Science, 286:509-512

T. Dunning. 1993. Accurate Methods for the Statistics

of Surprise and Coincidence. Computational Linguis-

tics, 19(1), pp. 61-74

P. Erdös and A. Rényi. 1959. On Random Graphs I.

Publicationes Mathematicae (Debrecen)

R. Ferrer i Cancho and R. V. Solé. 2001. The small-

world of human language. Proceedings of the Royal

Society of London B 268 pp. 2261-2266

R. Ferrer i Cancho and R. V. Solé. 2002. Zipf’s law and

random texts. Advances in Complex Systems, Vol.5

No. 1 pp. 1-6

L. Q. Ha, E. Sicilia-Garcia, J. Ming and F.J. Smith.

2002. Extension of Zipf's law to words and phrases.

Proceedings of 19th International Conference on

Computational Linguistics (COLING-2002), pp. 315-

320.

G. Jäger. 2003. Evolutionary Game Theory and Linguis-

tic Typology: A Case Study. Proceedings of the 14th

Amsterdam Colloquium, ILLC, University of Am-

sterdam, 2003.

I. Kanter and D. A. Kessler. 1995. Markov Processes:

Linguistics and Zipf’s law. Physical review letters,

74:22

S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tom-

kins. 1999. Extracting Large-Scale Knowledge Bases

from the Web. The VLDB Journal, pp. 639-650

B. B. Mandelbrot. 1953. An information theory of the

statistical structure of language. In Proceedings of

the Symposium on Applications of Communications

Theory, London

M. Matsumoto and T. Nishimura. 1998. Mersenne

Twister: A 623-dimensionally equidistributed uni-

form pseudorandom number generator. ACM Trans.

on Modeling and Computer Simulation, Vol. 8, No.

1, pp.3-30

G. A. Miller. 1957. Some effects of intermittent silence,.

American Journal of Psychology, 70, pp. 311-314

H. A. Simon. 1955. On a class of skew distribution

functions. Biometrika, 42, pp. 425-440

B. Sigurd, M. Eeg-Olofsson and J. van de Weijer. 2004.

word length, sentence length and frequency – Zipf

revisited. Studia Linguistica, 58(1), pp. 37-52

M. Steyvers and J. B. Tenenbaum. 2005. The large-

scale structure of semantic networks: statistical

analyses and a model of semantic growth. Cognitive

Science, 29(1)

S. P. Thompson and E. L. Newport. 2007. Statistical

learning of syntax: The role of transitional probabil-

ity. Language Learning and Development, 3, pp. 1-

42.

D. J. Watts and S. H. Strogatz. 1998. Collective dynam-

ics of small-world networks. Nature, 393 pp. 440-

442

D. H. Zanette and M. A. Montemurro. 2002. Dynamics

of text generation with realistic Zipf distribution.

arXiv:cond-mat/0212496

G. K. Zipf. 1949. Human Behavior and the Principle of

least Effort. Cambridge, MA: Addison Wesley

112

