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Abstract 

A novel random text generation model is  

introduced. Unlike in previous random 

text models, that mainly aim at producing 

a Zipfian distribution of word frequencies, 

our model also takes the properties of 

neighboring co-occurrence into account 

and introduces the notion of sentences in 

random text. After pointing out the defi-

ciencies of related models, we provide a 

generation process that takes neither the 

Zipfian distribution on word frequencies 

nor the small-world structure of the 

neighboring co-occurrence graph as a 

constraint. Nevertheless, these distribu-

tions emerge in the process. The distribu-

tions obtained with the random generation 

model are compared to a sample of natu-

ral language data, showing high agree-

ment also on word length and sentence 

length. This work proposes a plausible 

model for the emergence of large-scale 

characteristics of language without as-

suming a grammar or semantics. 

1 Introduction 

G. K. Zipf (1949) discovered that if all words in a 

sample of natural language are arranged in de-

creasing order of frequency, then the relation be-

tween a word’s frequency and its rank in the list 

follows a power-law. Since then, a significant 

amount of research in the area of quantitative lin-

guistics has been devoted to the question how this 

property emerges and what kind of processes gen-

erate such Zipfian distributions. 

The relation between the frequency of a word at 

rank r and its rank is given by f(r) ∝ r
-z
, where z is 

the exponent of the power-law that corresponds to 

the slope of the curve in a log plot (cf. figure 2). 

The exponent z was assumed to be exactly 1 by 

Zipf; in natural language data, also slightly differ-

ing exponents in the range of about 0.7 to 1.2 are 

observed (cf. Zanette and Montemurro 2002). B. 

Mandelbrot (1953) provided a formula with a 

closer approximation of the frequency distributions 

in language data, noticing that Zipf’s law holds 

only for the medium range of ranks, whereas the 

curve is flatter for very frequent words and steeper 

for high ranks. He also provided a word generation 

model that produces random words of arbitrary 

average length in the following way: With a prob-

ability w, a word separator is generated at each 

step, with probability (1-w)/N, a letter from an al-

phabet of size N is generated, each letter having 

the same probability. This is sometimes called the 

“monkey at the typewriter” (Miller, 1957). The 

frequency distribution follows a power-law for 

long streams of words, yet the equiprobability of 

letters causes the plot to show a step-wise rather 

than a smooth behavior, as examined by Ferrer i 

Cancho and Solé (2002), cf. figure 2. In the same 

study, a smooth rank distribution could be obtained 

by setting the letter probabilities according to letter 

frequencies in a natural language text. But the 

question of how these letter probabilities emerge 

remains unanswered.  

Another random text model was given by 

Simon (1955), which does not take an alphabet of 

single letters into consideration. Instead, at each 

time step, a previously unseen new word is added 

to the stream with a probability a, whereas with 

probability (1-a), the next word is chosen amongst 

the words at previous positions. As words with 

higher frequency in the already generated stream 
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have a higher probability of being added again, this 

imposes a strong competition among different 

words, resulting in a frequency distribution that 

follows a power-law with exponent z=(1-a). This 

was taken up by Zanette and Montemurro (2002), 

who slightly modify Simon’s model. They intro-

duce sublinear vocabulary growth by additionally 

making the new word probability dependent on the 

time step. Furthermore, they introduce a threshold 

on the maximal probability a previously seen word 

can be assigned to for generation, being able to 

modify the exponent z as well as to model the flat-

ter curve for high frequency words. In (Ha et al., 

2002), Zipf’s law is extended to words and 

phrases, showing its validity for syllable-class 

based languages when conducting the extension. 

Neither the Mandelbrot nor the Simon genera-

tion model take the sequence of words into ac-

count. Simon treats the previously generated 

stream as a bag of words, and Mandelbrot does not 

consider the previous stream at all. This is cer-

tainly an over-simplification, as natural language 

exhibits structural properties within sentences and 

texts that are not grasped by bags of words. 

The work by Kanter and Kessler (1995) is, to 

our knowledge, the only study to date that takes the 

word order into account when generating random 

text. They show that a 2-parameter Markov process 

gives rise to a stationary distribution that exhibits 

the word frequency distribution and the letter fre-

quency distribution characteristics of natural lan-

guage. However, the Markov process is initialized 

such that any state has exactly two successor 

states, which means that after each word, only two 

other following words are possible. This certainly 

does not reflect natural language properties, where 

in fact successor frequencies of words follow a 

power-law and more successors can be observed 

for more frequent words. But even when allowing 

a more realistic number of successor states, the 

transition probabilities of a Markov model need to 

be initialized a priori in a sensible way. Further, 

the fixed number of states does not allow for infi-

nite vocabulary. 

In the next section we provide a model that 

does not suffer from all these limitations. 

2 The random text generation model 

When constructing a random text generation 

model, we proceed according to the following 

guidelines (cf. Kumar et al. 1999 for web graph 

generation): 

• simplicity: a generation model should reach 

its goal using the simplest mechanisms pos-

sible but results should still comply to char-

acteristics of real language 

• plausibility: Without claiming that our 

model is an exhaustive description of what 

makes human brains generate and evolve 

language, there should be at least a possibil-

ity that similar mechanisms could operate in 

human brains. For a discussion on the sensi-

tivity of people to bigram statistics, see e.g. 

(Thompson and Newport, 2007). 

• emergence: Rather than constraining the 

model with the characteristics we would like 

to see in the generated stream, these features 

should emerge in the process. 

Our model is basically composed of two parts 

that will be described separately: A word generator 

that produces random words composed of letters 

and a sentence generator that composes random 

sentences of words. Both parts use an internal 

graph structure, where traces of previously gener-

ated words and sentences are memorized. The 

model is inspired by small-world network genera-

tion processes, cf. (Watts and Strogatz 1998, 

Barabási and Albert 1999, Kumar et al. 1999, 

Steyvers and Tenenbaum 2005). A key notion is 

the strategy of following beaten tracks: Letters, 

words and sequences of words that have been gen-

erated before are more likely to be generated again 

in the future - a strategy that is only fulfilled for 

words in Simon’s model.  

But before laying out the generators in detail, 

we introduce ways of testing agreement of our ran-

dom text model with natural language text. 

2.1 Testing properties of word streams 

All previous approaches aimed at reproducing a 

Zipfian distribution on word frequency, which is a 

criterion that we certainly have to fulfill. But there 

are more characteristics that should be obeyed to 

make a random text more similar to natural lan-

guage than previous models: 

• Lexical spectrum: The smoothness or step-

wise shape of the rank-frequency distribu-

tion affects the lexical spectrum, which is 

the probability distribution on word fre-

106



quency. In natural language texts, this distri-

bution follows a power-law with an expo-

nent close to 2 (cf. Ferrer i Cancho and Solé, 

2002).  

• Distribution of word length: According to 

(Sigurd et al., 2004), the distribution of word 

frequencies by length follows a variant of 

the gamma distribution 

• Distribution of sentence length: The random 

text’s sentence length distribution should re-

semble natural language. In (Sigurd et al., 

2004), the same variant of the gamma distri-

bution as for word length is fit to sentence 

length. 

• Significant neighbor-based co-occurrence: 

As discussed in (Dunning 1993), it is possi-

ble to measure the amount of surprise to see 

two neighboring words in a corpus at a cer-

tain frequency under the assumption of in-

dependence. At random generation without 

word order awareness, the number of such 

pairs that are significantly co-occurring in 

neighboring positions should be very low. 

We aim at reproducing the number of sig-

nificant pairs in natural language as well as 

the graph structure of the neighbor-based co-

occurrence graph. 

The last characteristic refers to the distribution 

of words in sequence. Important is the notion of 

significance, which serves as a means to distin-

guish random sequences from motivated ones. We 

use the log-likelihood ratio for determining signifi-

cance as in (Dunning, 1993), but other measures 

are possible as well. Note that the model of Kanter 

and Kessler (1995) produces a maximal degree of 

2 in the neighbor-based co-occurrence graph. 

As written language is rather an artifact of the 

most recent millennia then a realistic sample of 

everyday language, we use the beginning of the 

spoken language section of the British National 

Corpus (BNC) to test our model against. For sim-

plicity, all letters are capitalized and special char-

acters are removed, such that merely the 26 letters 

of the English alphabet are contained in the sam-

ple. Being aware that a letter transcription is in 

itself an artifact of written language, we chose this 

as a good-enough approximation, although operat-

ing on phonemes instead of letters would be pref-

erable. The sample contains 1 million words in 

125,395 sentences with an average length of 7.975 

words, which are composed of 3.502 letters in av-

erage. 

2.2 Basic notions of graph theory 

As we use graphs for the representation of memory 

in both parts of the model, some basic notions of 

graph theory are introduced. A graph G(V,E) 

consists of a set of vertices V and a set of 

weighted, directed edges between two vertices 

E⊂V×V×R with R real numbers. The first vertex 

of an edge is called startpoint, the second vertex is 

called endpoint. A function weight: V×V→R 

returns the weight of edges. The indegree 

(outdegree) of a vertex v is defined as the number 

of edges with v as startpoint (endpoint). The 

degree of a vertex is equal to its indegree and 

outdegree if the graph is undirected, i.e. (u,v,w)∈E 

implies (v,u,w)∈E. The neighborhood neigh(v) of 

a vertex v is defined as the set of vertices s∈S 

where (v,s,weight(v,s))∈E. 

The clustering coefficient is the probability that 

two neighbors X and Y of a given vertex Z are 

themselves neighbors, which is measured for 

undirected graphs (Watts and Strogatz, 1998). The 

amount of existing edges amongst the vertices in 

the neighborhood of a vertex v is divided by the 

number of possible edges. The average over all 

vertices is defined as the clustering coefficient C.  

The small-world property holds if the average 

shortest path length between pairs of vertices is 

comparable to a random graph (Erdös and Rényi, 

1959), but its clustering coefficient is much higher. 

A graph is called scale-free (cf. Barabási and 

Albert, 1999), if the degree distribution of vertices 

follows a power-law. 

2.3 Word Generator 

The word generator emits sequences of letters, 

which are generated randomly in the following 

way: The word generator starts with a graph of all 

N letters it is allowed to choose from. Initially, all 

vertices are connected to themselves with weight 1. 

When generating a word, the generator chooses a 

letter x according to its probability P(x), which is 

computed as the normalized weight sum of 

outgoing edges: 

107



∑
∈

=

Vv

vweightsum

xweightsum
xP

)(

)(
)(   

 .),()(
)(

∑
∈

=

yneighu

uyweightyweightsum  

After the generation of the first letter, the word 

generator proceeds with the next position. At every 

position, the word ends with a probability w∈(0,1) 

or generates a next letter according to the letter 

production probability as given above. For every 

letter bigram, the weight of the directed edge 

between the preceding and current letter in the 

letter graph is increased by one. This results in 

self-reinforcement of letter probabilities: the more 

often a letter is generated, the higher its weight 

sum will be in subsequent steps, leading to an 

increased generation probability. Figure 1 shows 

how a word generator with three letters A,B,C 

changes its weights during the generation of the 

words AA, BCB and ABC. 

    
Figure 1: Letter graph of the word generator. Left: 

initial state. Right.: State after generating AA, 

BCB and ABC. The numbers next to edges are 

edge weights. The probability for the letters for the 

next step are P(A)=0.4, P(B)=0.4 and P(C)=0.2. 

 

The word end probability w directly influences 

the average word length, which is given by 

1+(1/w). For random number generation, we use 

the Mersenne Twister (Masumoto and Nishimura, 

1998). 

The word generator itself does produce a 

smooth Zipfian distribution on word frequencies 

and a lexical spectrum following a power-law. 

Figure 2 shows frequency distribution and lexical 

spectrum of 1 million words as generated by the 

word generator with w=0.2 on 26 letters in 

comparison to a Mandelbrot generator with the 

same parameters. The reader might note that a 

similar behaviour could be reached by just setting 

the probability of generating a letter according to 

its relative frequency in previously generated 

words. The graph seems an unnecessary 

complication for that reason. But retaining the 

letter graph with directed edges gives rise to model 

the sequence of letters for a more plausible 

morphological production in future extensions of 

this model, probably in a similar way than in the 

sentence generator as described in the following 

section.  

As depicted in figure 2, the word generator 

fulfills the requirements on Zipf’s law and the 

lexical spectrum, yielding a Zipfian exponent of 

around 1 and a power-law exponent of 2 for a large 

regime in the lexical spectrum, both matching the 

values as observed previously in natural language 

in e.g. (Zipf, 1949) and (Ferrer i Cancho and Solé, 

2002). In contrast to this, the Mandelbrot model 

shows to have a step-wise rank-frequency 

distribution and a distorted lexical spectrum. 

Hence, the word generator itself is already an 

improvement over previous models as it produces 

a smooth Zipfian distribution and a lexical 

spectrum following a power-law. But to comply to 

the other requirements as given in section 2.1, the 

process has to be extended by a sentence generator.  
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Figure 2: rank-frequency distribution and lexical 

spectrum for the word generator in comparison to 

the Mandelbrot model 

initial state state after 3 words 
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2.4 Sentence Generator 

The sentence generator model retains another di-

rected graph, which memorizes words and their 

sequences. Here, vertices correspond to words and 

edge weights correspond to the number of times 

two words were generated in a sequence. The word 

graph is initialized with a begin-of-sentence (BOS) 

and an end-of-sentence (EOS) symbol, with an 

edge of weight 1 from BOS to EOS. When gener-

ating a sentence, a random walk on the directed 

edges starts at the BOS vertex. With a new word 

probability (1-s), an existing edge is followed from 

the current vertex to the next vertex according to 

its weight: the probability of choosing endpoint X 

from the endpoints of all outgoing edges from the 

current vertex C is given by  

∑
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Otherwise, with probability s∈(0,1), a new 

word is generated by the word generator model, 

and a next word is chosen from the word graph in 

proportion to its weighted indegree: the probability 

of choosing an existing vertex E as successor of a 

newly generated word N is given by 
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For each sequence of two words generated, the 

weight of the directed edge between them is in-

creased by 1. Figure 3 shows the word graph for 

generating in sequence: (empty sentence), AA, AA 

BC, AA, (empty sentence), AA CA BC AA, AA 

CA CA BC. 

 

During the generation process, the word graph 

grows and contains the full vocabulary used so far 

for generating in every time step. It is guaranteed 

that a random walk starting from BOS will finally 

reach the EOS vertex. It can be expected that sen-

tence length will slowly increase during the course 

of generation as the word graph grows and the ran-

dom walk has more possibilities before finally ar-

riving at the EOS vertex. The sentence length is 

influenced by both parameters of the model: the 

word end probability w in the word generator and 

the new word probability s in the sentence genera-

tor. By feeding the word transitions back into the 

generating model, a reinforcement of previously 

generated sequences is reached. Figure 4 illustrates 

the sentence length growth for various parameter 

settings of w and s.  

 
Figure 3: the word graph of the sentence generator 

model. Note that in the last step, the second CA 

was generated as a new word from the word gen-

erator. The generation of empty sentences happens 

frequently. These are omitted in the output. 
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Figure 4: sentence length growth, plotted in aver-

age sentence length per intervals of 10,000 sen-

tences. The straight line in the log plot indicates a 

polynomial growth. 

 

It should be noted that the sentence generator 

produces a very diverse sequence of sentences 

which does not deteriorate in repeating the same 

sentence all over again in later stages. Both word 

and sentence generator can be viewed as weighted 

finite automata (cf. Allauzen et al., 2003) with self-

training.  
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After having defined our random text genera-

tion model, the next section is devoted to testing it 

according to the criteria given in section 2.1. 

3 Experimental results 

To measure agreement with our BNC sample, we 

generated random text with the sentence generator 

using w=0.4 and N=26 to match the English aver-

age word length and setting s to 0.08 for reaching a 

comparable sentence length. The first 50,000 sen-

tences were skipped to reach a relatively stable 

sentence length throughout the sample. To make 

the samples comparable, we used 1 million words 

totaling 125,345 sentences with an average sen-

tence length of 7.977.   

3.1 Word frequency 

The comparison between English and the sentence 

generator w.r.t the rank-frequency distribution is 

depicted in figure 5.  

Both curves follow a power-law with z close to 

1.5, in both cases the curve is flatter for high fre-

quency words as observed by Mandelbrot (1953). 

This effect could not be observed to this extent for 

the word generator alone (cf. figure 2).  
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Figure 5: rank-frequency plot for English and the 

sentence generator 

3.2 Word length 

While the word length in letters is the same in both 

samples, the sentence generator produced more 

words of length 1, more words of length>10 and 

less words of medium length. The deviation in sin-

gle letter words can be attributed to the writing 

system being a transcription of phonemes and few 

phonemes being expressed with only one letter. 

However, the slight quantitative differences do not 

oppose the similar distribution of word lengths in 

both samples, which is reflected in a curve of simi-

lar shape in figure 6 and fits well the gamma dis-

tribution variant of (Sigurd et al., 2004). 
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Figure 6: Comparison of word length distributions. 

The dotted line is the function as introduced in 

(Sigurd et al., 2004) and given by f(x) ∝x
1.5

⋅0.45
x
. 

3.3 Sentence length 

The comparison of sentence length distribution 

shows again a high capability of the sentence gen-

erator to model the distribution of the English 

sample. As can be seen in figure 7, the sentence 

generator produces less sentences of length>25 but 

does not show much differences otherwise. In the 

English sample, there are surprisingly many two-

word sentences. 
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Figure 7: Comparison of sentence length distribu-

tion. 

3.4 Neighbor-based co-occurrence 

In this section, the structure of the significant 

neighbor-based co-occurrence graphs is examined. 
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The significant neighbor-based co-occurrence 

graph contains all words as vertices that have at 

least one co-occurrence to another word exceeding 

a certain significance threshold. The edges are un-

directed and weighted by significance. Ferrer i 

Cancho and Solé (2001) showed that the neighbor-

based co-occurrence graph of the BNC is scale-

free and the small-world property holds.  

For comparing the sentence generator sample to 

the English sample, we compute log-likelihood 

statistics (Dunning, 1993) on neighboring words 

that at least co-occur twice. The significance 

threshold was set to 3.84, corresponding to 5% 

error probability when rejecting the hypothesis of 

mutual independence. For both graphs, we give the 

number of vertices, the average shortest path 

length, the average degree, the clustering coeffi-

cient and the degree distribution in figure 8. Fur-

ther, the characteristics of a comparable random 

graph as defined by (Erdös and Rényi, 1959) are 

shown. 
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Figure 8: Characteristics of the neighbor-based co-

occurrence graphs of English and the generated 

sample. 

 

From the comparison with the random graph it 

is clear that both neighbor-based graphs exhibit the 

small-world property as their clustering coefficient 

is much higher than in the random graph while the 

average shortest path lengths are comparable. In 

quantity, the graph obtained from the generated 

sample has about twice as many vertices but its 

clustering coefficient is about half as high as in the 

English sample. This complies to the steeper rank-

frequency distribution of the English sample (see 

fig. 5), which is, however, much steeper than the 

average exponent found in natural language. The 

degree distributions clearly match with a power-

law exponent of 2, which does not confirm the two 

regimes of different slopes as in (Ferrer i Cancho 

and Solé 2001). The word generator data produced 

an number of significant co-occurrences that lies in 

the range of what can be expected from the 5% 

error of the statistical test. The degree distribution 

plot appears shifted downwards about one decade, 

clearly not matching the distribution of words in 

sequence of natural language. 

 Considering the analysis of the significant 

neighbor-based co-occurrence graph, the claim is 

supported that the sentence generator model repro-

duces the characteristics of word sequences in 

natural language on the basis of bigrams. 

4 Conclusion 

In this work we introduced a random text genera-

tion model that fits well with natural language with 

respect to frequency distribution, word length, sen-

tence length and neighboring co-occurrence. The 

model was not constrained by any a priori distribu-

tion – the characteristics emerged from a 2-level 

process involving one parameter for the word gen-

erator and one parameter for the sentence genera-

tor. This is, to our knowledge, the first random text 

generator that models sentence boundaries beyond 

inserting a special blank character at random: 

rather, sentences are modeled as a path between 

sentence beginning and sentence end which im-

poses restrictions on the words possible at sentence 

beginnings and endings. Considering its simplicity, 

we have therefore proposed a plausible model for 

the emergence of large-scale characteristics of lan-

guage without assuming a grammar or semantics. 

After all, our model produces gibberish – but gib-

berish that is well distributed. 

The studies of Miller (1957) rendered Zipf’s 

law un-interesting for linguistics, as it is a mere 

artifact of language rather than playing an impor-
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tant role in its production, as it emerges when put-

ting a monkey in front of a typewriter. Our model 

does not only explain Zipf’s law, but many other 

characteristics of language, which are obtained 

with a monkey that follows beaten tracks. These 

additional characteristics can be thought of as arti-

facts as well, but we strongly believe that the study 

of random text models can provide insights in the 

process that lead to the origin and the evolution of 

human languages. 

For further work, an obvious step is to improve 

the word generator so that it produces morphologi-

cally more plausible sequences of letters and to 

intertwine both generators for the emergence of 

word categories. Furthermore, it is desirable to 

embed the random generator in models of commu-

nication where speakers parameterize language 

generation of hearers and to examine, which struc-

tures are evolutionary stable (see Jäger, 2003). 

This would shed light on the interactions between 

different levels of human communication. 
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